
Refined strategies

for semantic unification

Pier Giorgio Bosco, Elio Giovannetti and Corrado Moiso

CSELT - Centro Studi E Laboratori Telecomunicazioni

via Reiss Romoli 274 -10148 Torino - Italy

1. Introduct ion

In the last few years there has been a growing interest on "semantic"
unification algorithms based on narrowing or paramodulation, particularly in
connection with the attempts to integrate logic and functional programming
languages on the basis of first-order-logic with equality. When an equational theory
E can be put into the form of a canonical rewrite system R, the well-known results
of [FA],[HU] ensure that a complete set of E-unifiers of a pair of terms (tl,t2), i.e.
a complete set of solutions, in the theory E, of the equation ?-tl=t2, can be found
by exhaustively searching the space of all possible R-narrowing sequences of the
fictitious term tl=t2. The practical interest of this method as a possible basis for
logic+functional programming languages has been questioned [GA], because of its
too wide generality, which translates into the huge amount of redundant search
usually involved in it. Some refinements which try to reduce the search space have
been proposed, from Hullot's one [HU] where only so-called "basic" chains are
taken into consideration, to more recent ones, based on innermost strategy
[FR1] , [FR2] , which require additional conditions on the theory E besides
canonicity, if completeness is to be preserved.

An alternative approach to equation-solving in a theory can be found in the
use, under particular conditions, of resolution instead of narrowing, after
transformation of the theory into a set of "flat" Horn clauses, i.e. clauses where
functional composition has been replaced by logical conjunction of "flat" literals.

This technique was first developed by Brand [BR] in the theorem proving
domain, while in logic programming it was introduced mainly by [BB] and [TA],
to achieve integration between logic and functional languages.

In this paper we show how this sort of "flat" or "surface" resolution [CP] can
be applied to obtain a complete E-unification algorithm for canonical theories
which do not necessarily present the distinction between functions and constructors
(on which both [BB] and [TA] are based), and how it allows integration between
logic and equational programming by means of a single computational mechanism.

The algorithm is shown to be more efficient than unconstrained (basic)
narrowing, owing to the fact that the well-known SLD refinement of resolution (for
Horn clauses) can be exploited to reduce the search space without losing
completeness.

277

Moreover, a refined narrowing strategy is derived which is equivalent, in a
well defined sense, to the SLD-resolution strategy, and thus has the same advantages
in terms of redundancy elimination without requiring, as resolution, a previous
flattening of the program.

The argument, based on the correspondence that can be established between
narrowing sequences and resolution sequences, is roughly the following. As has
been above recalled, narrowing is (the core of) a complete unification algorithm for
canonical theories; if the program (i.e. the theory) and the equational goal (i.e. the
pair of terms to be unified) are transformed into their flat forms, then for every
narrowing chain there is a corresponding resolution chain, so the use of (linear)
resolution instead of narrowing preserves completeness; it also preserves
soundness, because the flattened program is logically equivalent to the original one.
But the flattened program is a set of definite Horn clauses, and therefore SLD
strategy - where we recall that S stands for selection - can be applied without losing
completeness: which means that at each step one literal in the goal is selected, and
only the further paths which start from resolution against that literal are explored,
unlike in (unrestricted) narrowing, where all the possible choices of the subterm to
be narrowed are explored.

Finally, this procedure is translated back into a narrowing algorithm where at
each step one subterm is selected, and other subterm choices for the same step are
not taken into consideration in the search.

The paper is organized as follows: in section 2 we briefly recall the
well-known E-unification algorithm based on narrowing; in section 3 we describe
the optimized strategy based on flat resolution; in section 4 we compare it with
(unrestricted) narrowing; in section 5 we derive the corrispondingly refined
narrowing strategy; in section 6 possible applications to the domain of
logic/functional programming are considered; in section 7 we give some
non-exhaustive indication of the related work in the field; finally, in section 8 we
draw some conclusions.

We will use, among others, the following standard notations:
- occurrences are represented by sequences, possibly empty, of naturals;
- t/u is the subterm at the occurrence u of t;
- t[u<--r] is the term t with the subterm at the occurrence u replaced with r.

2. The traditional E-unification algorithm based on narrowing.

Let the equational theory E consist of a canonical (i.e. confluent and
terminating) rewrite system R, and (t l , t2) be the pair of terms for which a
complete set of E-unifiers has to be computed, i.e. ?- t l=t2 is the equation that has
to be solved in E - recall that a set S of E-unifiers of (tl , t2) is complete iff for

every unifier cy there is in S a unifier ~' such that (y=Eoc~', i.e. a unifier 6' E-equal to

c~ or "more general" than c (c~'< E cy).
Then the narrowing-based E-unification algorithm is, informally, the

following (where eq is a functor not occurring in the terms of R, which represents
the equality symbol "="):

278

uni fy(t l , t2 ,R) =
current-goal := eq(tl,t2)
current-subst := empty-subst

1. execute d o n ' t - k n o w - n o n - d e t e r m i n i s t i c a l l y 2 o r 3
2. let eq(tl ' ,t2') = current-goal

if t l ' and t2' syntactically unify with mgu

then (~ current-subst) is a E-unifier of tl and t2
3. select d o n ' t - k n o w - n o n - d e t e r r n i n i s t i c a l l y

a non-variable subterm cu r ren t -goa l /u of current-goal
and a rule l-->r

s.t. c u r r e n t - g o a l / u and 1 syntactically unify;

let ~ = m gu (current-goal /u , 1)

current-goal := ~(current-goal[u<--r])

current-subst :-- ~(current-subst)
goto 1.

The first refinement, introduced by [HU], makes use of the notion of basic
narrowing, i.e., roughly, a narrowing that may only reduce, at each step, a subterm
whose ou te rmos t functor is a descendant of (a subterm at) a non-variable
occurrence of the initial term.

If O ' (t) is the set of non-variable occurrences of t, and occ is the set of the
"narrowable" occurrences, the refined algorithm is:

un i fy l (t l , t 2 ,R) =
current-goal := eq(tl,t2)
current-subst := empty-subst
occ:= O'(eq(tl =t2))

1. execute d o n ' t - k n o w - n o n - d e t e r m i n i s t i c a l l y 2 or 3
2. let eq(tl ' ,t2') = current-goal

if ~ is the mgu of t l ' and t2'

then (~ current-subst) is a E-unifier of tl and t2
3. select d o n ' t - k n o w - n o n - d e t e r m i n i s t i c a l l y

a subterm cur ren t -goa l /u of current-goal with u belonging to occ
and a rule l-->r

s.t. c u r r e n t - g o a l / u and 1 syntactically unify;

let ~ = m gu (current-goal /u , 1)

current-goal := o(current-goal[u<--r])

current-subst := ~(current-subst)

occ:=(occ - {v I u_<v, i.e. u is a prefix of v})w{u.v I v is in O'(r)}
goto 1.

Both algorithms explore all possible choices, respectively, of non-variable
subterms and of subterms at basic occurrences.

279

In the following, narrowing will always be intended as basic narrowing, to
which additional refinements will be added.

3. Flat resolution

Narrowing and resolution are two inference rules based on the same sort of
mechanism, namely unification between a "piece" of the goal (a subgoal in
resolution, a subterm of an equation side in narrowing) and a "piece" of a rule (a
clause head in resolution, the lhs of a rewrite rule in narrowing), then application of
the unifier both to the whole goal and to the whole rule, and finally creation of a
goal by "sticking together" (the instances of) the two "remaining pieces" of the goal
and the "rule".

The main difference between narrowing and resolution lies in that the former,
to try unification, takes from the goal any subterm of the selected literal, while the
latter only takes the whole litteral and so the whole argument-terms.

A transformation of narrowing into resolution is then possible if - both in goal
and in rules - terms are "flattened out", i.e. subterms are unnested so that resolution
is allowed to apply unification to them; to this end, a new auxiliary variable is
introduced for each subterm, and all the new "flat" subterms become conditions,
i.e. the body of an equational Horn clause, so that in later steps resolution can apply
unification to them too.

Actually, for resolution to be able to mimic narrowing, the lhs's of the rules
need not be flattened, because after one of them is unified with the goal's subterm
being reduced, its occurrence is replaced, in narrowing, by the respective rhs, and
so it is no longer available for reduction in the next steps.

In conclusion, the flattening procedure, unlike the ones described in [BB] and
[TA], on the one hand cloes not leave constructor-terms unflattened, because the
distinction between constructors and functions is not necessarily present, on the
other hand, owing to the above remark, does not flatten the lhs's of the rules even if
nested functors are present.

The algorithm, for rewrite rules l-->r and goals ? - t l= t2 is then, with a
sloppy but hopefully self-explaining notation, the following:

flat(l-->r) = if r is a variable (atso occurring in 1)
then l=r

else I=Z :- flatterm(r,Z) (where Z is a new variable)
flatgoal(tl =t2) = flatterm(tl,Z),flatterm(t2,Z) (where Z is a new variable)
flatterm(f(tl,...,tn),Z) =

let til tiq be the non-variable arguments

let Zi=ti if ti is a variable
Zi=Xk if ti is tik in

f(Zl,...,Zn)=Z,flatterm(til,X1) flatterm(tiq,Xq)

If R is a (canonical) rewrite system, the corresponding "flat resolution"
program Rfla t is, of course, the set of Horn clauses obtained by flattening all the

280

rewrite rules of R.
Every goal submitted to the system has first to be flattened out; then it can be

solved by means of the sole use of SLD-resolution as if the equality symbol were an
ordinary predicate, provided that the clause X=X is added to the program Rflat:
resolution against X=X corresponds to the final step of the narrowing-based
unification algorithm, where the two sides of the goal are syntactically unified.

The transformation is sound because the trasformed program is a logical
consequence of the original one and of the equality axioms.

For the proof of completeness of flat resolution, we need the following

Lemma: If t-->* R s through a basic derivation, then there exists a substitution (~,

whose domain is the set of the new variables introduced in flattening the term

t, such that ~Z=s, and

Rfla t u {X=X} l= (~ flatterm(t,Z).

The lemma can be proved by induction on the length of the derivation
t--t0 - ->Rt l ->R -->R tn=s"

We are then able to prove the

Proposition (completeness of flat resolution):
If R I= ~ t l = G t 2 , then there is an SLD-resolution computation which

solves the goal ? - f l a tgoa l (t l= t2) with respect to the program Rflat u

{X=X} and yields a solution "c such that 'I~<--R(~ , i.e. R 1= ~ =R ~q~'

where o~ is any (possibly empty) substitution.
Proof:

Owing to the canonicity of R, every substitution (r can be normalized to a

C~no r = {X:=q I q is the normal form of ~(X)}. From R I=(ytl=crt2 follows

then
R [=(y tl=(y t2; so there must exist a term t such that •

I lOr n o r

~nortl-->*Rt and qnort2-->*Rt
where the two derivation chains "'>*R are basic (see [HE] lemma 3). Then, by our

previous lemma, there are two substitutions 91 and 92 such that:

Rna t u {X=X} 1= 9 1 (f l a t t e r m (~ n o r t l , Z)) with 91(Z)=t and

Rfla t u {X=X} [= p 2 (f l a t t e r m (C~nort2,Z)) with 92(Z) =t

p u t t i n g 9 = 91 • p2 we h a v e

Rflat U {X=X} [= p (f l a t t e r m (Gnor t l ,Z) , f l a t t e rm (cr ,or t2 ,Z))

Due to the normalization of (Inor, w e can write:

281

Rflat k) {X=X} I = p 6nor (f l a t t e rm (t l , Z) , f l a t t e r m (t2,Z))

i.e. Rflat k) {X=X} t= p 6 n o r f l a t g o a l (t l = t 2)
Completeness of SLD-resolution ensures that there is a resolution sequence starting

from ? - f l a t g o a l (t l = t 2) which yields a result "c'_< P6nor; then

"c = "c'/Var(tl=t2) _ 6nor=R 6, i.e. "~ -<R 6, q.e.d.

The lemma completes the proof of the logical equivalence between the transformed
and the original program and corresponds to the theorem in [TA]; the proposition
is the proof of the completeness of the resolution on the flattened program as
E-unification algorithm.
As a matter of fact, for every basic narrowing derivation there is a corresponding
resolution derivation with the same result: a narrowing step performed, with the
application of the rule l --> r, on the subterm (at the occurrence) u in the goal,
translates into the resolution of the flat literal corresponding to the term u against
the clause flat(l-->r), and into the subsequent resolutions against X=X of all the
literals corresponding to the subterms of u (i.e. to the occurrences u.v), because in
the narrowing sequence these subterms disappear, the term u being replaced by the
instance of the rhs of the rewrite rule, or become no longer narrowable; syntactical
unification between the two sides of the equation translates in successive resolution
against X=X of all the literals in the goal.

This translation is possible because at each narrowing step:
- there is a one-to-one correspondence between the elements of the set occ of
narro,,vable occurrences in algorithm unify1, and the literals in the flattened goal.
- there is a one-to-one correspondence between cur ren t -goa l in the algorithm
u n i f y 1 , and the flattened goal; in fact, the goal is always of the form

?-L, t l '=Z, t2 '=Z, where L is a set of literals, and there is a substitution 6, such

that {X=X} 1= 6 L and c u r r e n t - g o a l = e q (6 t l ' , 6 t 2 ') .
Thus every solution found by narrowing is found by flat resolution as well,

and that explains again why we were able to extend to the latter the completeness
result of [HU] holding for the former.

Moreover, the construction - which we witl sketch in next section - of an
onto-map from the set of all the basic narrowing sequences to the set of all the fiat
SLD-resolution sequences ensures, among other things, that no unsound solutions
can be derived by SLD-resolution (or by generic resolution, due to the completeness
of SLD strategy).

4. Narrowing and flat SLD-reso lut ion

It is well known that, in case of Horn clauses, the SLD refinement of resolution
preserves completeness, whatever be the rule for selecting the literal to be resolved.
Once fixed this rule, there is an onto-map from a subset of the set of all linear
resolution derivations, including all successful derivations, to the set of all SLD
derivations: the inverse image of an SLD derivation is the set of all the derivations
that only differ in the order of selection of the literals.

282

Let us see now what the meaning of this refinement is with respect to our
translation of narrowing into resolution.

We start by mapping the set of successful narrowing sequences onto the set of
successful resolution sequences: the inverse image of an SLD-resolution derivation
is the set of all the narrowing derivations that satisfy the condition that a narrowing
step with the rule l-->r is performed at the occurrence u of the goal iff the literal
corresponding to u is resolved against clause flat(l-->r).

Given for example the program
(unflattened) (flattened)

f(a) --> a f(a)=X :- a=X
g(X)-->x g(X)=X

and the goal
?- f(X)=g(Y) ?- f(X)=Z,g(Y)=Z

the SLD-resolution derivation
?- f(X)=Z,g(Y)=Z ?- a=Z,g(Y)=Y ?- g(Y)=a ?-
yielding the solution {X:=a;Y:--a}, is the image of two narrowing sequences:
f(X)=g(Y) ->~-> a=g(Y) ->~-> a=Y result: {X:=a;Y:=a}
f(X)=g(Y) ->>-> f(X)=Y->>-> a=Y result: {X:=a;Y:=a}
So, there are less successful flat SLD-resolutions than successful narrowing chains,
without losing completeness.

If the selection rule adopted is the innermost rule, this map can be surjectively
extended to the set of all the narrowing sequences; of course, in correspondence to
failing (finitely or infinitely) narrowing sequences there will be failing resolution
sequences.The innermost rule consists in always selecting an innermost l i teral, i.e. a
literal of the form f(tl tn)=t, where the ti's are not variables introduced during
flattening.

More generally, the above map extension is possible whenever the literals
selected are always resolved without variables introduced in the lhs of the literal
during flattening being bound; for example, an outermost selection rule, like the
one used in LEAF [BB], would do as well. On the contrary, for an arbitrary
selection rule the above extension would not work, because in general there would
be failing resolution sequences that do not correspond to any narrowing, as in the
following example.

Given the program
(flattened) (unflattened)

f(a)=Z :- c=Z f(a)-->c
f(b)=Z :- c=Z f(b)-->c
a=Z :- b=Z a --> b

and the goal
?- a=X, f(X)=Z, f(R)=Z ?- f(a)=f(R)

the SLD sequence
?- a=X, f(X)=Z, f(R)=Z
9_ b=X, f(X)=Z, f(R)=Z
?- b=a, c=Z, f(R)=Z

failure
does not correspond to any narrowing sequence, because after the step

f(a)=f(R) -,~-> f(b)=f(R)

283

the rule f(a)-->c cannot be applied to f(b) anymore. This kind of failure in
resolution is actually the counterpart of a failure in trying unification between the
term f(b) of the goal and the ths f(a) of the rule f(a)-->e.

The comparison between the two algorithms shows that in SLD-resolution the
number of successful computations leading to a same solution is smaller than in
(unrestricted) narrowing, because all the narrowing derivations that only differ in
the selection order of subterms are mapped into one SLD sequence corresponding to
one selection order.

For example, given the program
(unflattened) (flattened)
f(X) --> X f(X) = X
h(h(X)) --> X h(h(X))=X
h(a) --> a h(a)=Z :- a=Z

if the goal is
?-f(h(R))=h(h(a)) ?- h(R)=X,f(X)=Z,h(Y)=Z,h(W) =Y,a=W

fiat SLD-resolution (with an arbitrary selection rule) and (basic) narrowing
compute respectively the following sets of solutions:

Computed value of R number of successful paths
SLD narrowing basic-narrowing

a 3 20 11
h(a) 3 19 11

h(h(a)) 1 6 2
h(h(h(a))) 1 2 1

The same property holds, in case of an innermost rule, for failing derivations
too, as shown in the following example:

given the program
(tmflattened)

f(X) --> g(X,X)
h(a) - > a

if the goal is
?- f(h(R))=g(a,h(a))

flat SLD-resolution with

(flattened)
f(X) = Z :- g(X,X) = Z
h(a) = Z :- a = Z

?- h(R) =X,f(X)=Z,a=Y,a=W,h(W)=T,g(Y,T)=Z
an innermost selection rule and (basic) narrowing

computes the following answers:

number of successful and failing computations
SLD basic-narrowing

{X:= a} 1 3
failure 7 9

The innermost selection rule can be implemented by means of the leftmost
selection rule (selection of the left-most literal, as in Prolog), provided that the
"compilation" step puts the flat literals in the right order:
flat(1-->r) = if r is a variable (also occurring in I)

then l=r
else I=Z :- flatterm(r,Z) (where Z is a new variable)

284

flatgoal(tl=t2) = flat(tl,Z),flat(t2,Z) (where Z is a new variable)
flatterm(f(tl ,tn),Z) =

let til tiq be the non-variable arguments

let Zi=ti if ti is a variable
Zi=Xk if ti is tik in

flatterm(til,X1),....flatterm(tiq,Xq), f(Zl, . . . ,Zn)=Z

5. A complete "selection" narrowing strategy

The above comparison between the two algorithms, which resulted in the
est imation of a better eff iciency of SLD-resolut ion with respect to the usual
presentat ions of narrowing, is actually somewhat unfair, because the same
"selection" strategy can be applied to narrowing too, so producing a refined, but
still comple te , a lgor i thm which exactly "mimics" SLD-resolu t ion (with an
innermost selection strategy), in the sense that there is a one-to-one correspondence
between the set of all the SLD sequences and the set of the narrowing sequences
which obey to this refined strategy:

un i fy2(t l , t2 ,R) =
current-goal := eq(tl,t2)
occ := O'(eq(tl,t2)) - {<>}
current-subst := empty-subst

1. if occ = O then let eq(tl',t2') = current-goal in

if c~ is the mgu of tl ' and t2'

then (~ current-subst) is a E-unifier of tl and t2
else goto 2.

2.don't-eare-nondeterministieally-select from oee
an innermost occurrence u
(i.e. an occurrence which is not the prefix of any other occurrence in occ)
and don ' t -know-nonde te rmin i s t i ca l ly -execu te 3 or 4.

3. occ := occ- {u}
goto 1.

{corresponding to resolution with X=X}
4. d o n ' t - k n o w - n o n d e t e r m i n i s t i c a l l y - s e l e e t l - ->r from R

s.t. 1 and eur ren t -goa l /u syntactically unify;

let ~ = m g u (e u r r e n t - g o a l / u , 1) in

current-goal:= c~(current-goal[u<--r])

current-subst:=~(current-subst)

occ:= (occ-{u}) u {u.vt v is in O'(r)}
goto 1.

{corresponding to resolution with flat(1-->r)}

285

The algorithm unify2 achieves exactly the same elimination of redundant
computations with respect to unconstrained (basic) narrowing as flat
SLD-resolution does, but without requiring the presence of the "compilation" phase
with the associated introduction of new variables.

The existence of a one-to-one mapping between innermost-SLD derivations
and the derivations obtained with this new algorithm can be easily proved by
induction on the length of the sequences.

The algorithm unify2 is sound because it explores only a subset of the paths
followed by unifyl; so the correctness of flat resolution is confirmed.

Completeness, of course, is direct consequence of completeness of
SLD-resolution. An important point to remark is that completeness is only
guaranteed if, as in point 3 of the above algorithm, among all the possible
narrowing reductions of the subterm selected, also the "null" reduction is taken into
account, i.e., also the paths are explored where the subterm selected at each step,
instead of being reduced, is excluded from the possible reducible terms for all the
subsequent subpaths. That corresponds to resolution against X=X, which is
necessary in general, although it may be disposed of in particular cases, such as the
one of theories with constructors : if a distinction is operated between data
constructors, which never rewrite, and actual function symbols, and if moreover
the actual functions are "everywhere defined", then if the flattening algorithm is
modified so as not to apply to data terms, resolution against X=X, and therefore
"null" narrowing, become useless.

The following is the Prolog program implementing unify2, which we are
using to carry out comparative experiences:

• preprocess ing on rewrite rules to compute the set of non variable
occurrences of rhs:

init :- L-->R, occ(R,OR),assertz(rwr(L,R,OR)),fail.
init. ; OR denotes the set O'(R)
occ(T,0) :- var(T),!.

; 0 indicates that the corresponding term is not to be rewritten
occ(T,[llAnn]) :-T =.. [FIARG], occl(ARG,Ann).

; 1 indicates that the corresponding term is to be rewritten
occl([],[]).
occ 1 ([THITT], [AtAnn]) :-occ(TH,A),occ 1 (TT,Ann).

• ref ined narrowing strategy:
unify(T,S):-occ(T,OT),occ(S,OS), !,narrred(T,OT,TR),

narrred(S,OS,SR),TR=SR.
narrred(T,0,T) :- !. ; 0 denotes that this is a term not to be narrowed
narrred(TC,[lIOarg],TR) :- TC =.. [FlArg], narrarg(Arg,Oarg,Narg),

; before narrowing a term, its arguments must be narrowed
TCI =.. [FtNarg],

; now TC1 is an innermost term
narrterm(TC!,TR).

narrterm(T,T). ; clause corresponding to step 3 of unify2
narrterm(TC,TR) :- rwr(TC,R,OR),narrred(R,OR,TR).

; clause corresponding to step 4 of unify2

286

narrarg([],[],[]).
narrarg([A 1 t Arg], [O 1 lOarg], [AR[ArgR]) :- narrred(A 1 ,O 1,AR),

narrarg(Arg,Oarg,ArgR).

6. Application to Logic/Functional languages

The algorithms presented in the above sections can be most naturally applied to
logic programming with equality. Consider a language like the one proposed in
[GM], for which a program consists of a set of Horn clauses p:-bl , . . . ,bn, where
the bi's are either predicates or equality, and of an equational theory described by a
canonical rewrite system: its execution strategy is the same as the one used for Horn
clause programs without equality (Prolog), with syntactic unification replaced by a
complete E-unification algorithm. The flattening procedure can be easily extended
to deal with this kind of programs (a similar procedure is found in [TA]):

flatrule(1-->r) = if r is a variable (also occurring in 1)
then l=r

else I=Z :- flatterm(r,Z) (where Z is a new variable)
flatterm(f(tl,...,tn),Z) =

let til,...tiq be the non-variable arguments

let Zi--ti if ti is a variable
Zi;Xk if ti is tik in

flatterm(til,X1) flatterm(tiq,Xq), f(Zl,...,Zn)=Z

flatclause(p(tl,...,pn) :- body) =
let til,...tiq be the non-variable arguments

let Zi=ti if ti is a variable
Zi=Xk if ti is tik in

p(Zl,...,Zn) :- flatterm(til,X 1),....flatterm(tiq,Xq),flatbody(body)

flatboby(bl,...,bn) = flatgoal(bl), flatgoal(bn)
flatgoal(tl =t2) = flat(tl,Z),flat(t2,Z) (where Z is a new variable)
flatgoal(p(tl ,tn)) =

let til,...tiq be the non-variable arguments

let Zi=ti if ti is a variable
Zi--Xk if fi is tik in

flatterm(til ,X1),....flatterm(tiq,Xq) , p(Zl,...,Zn)

Then, for every goal G, a complete set of solutions is found by normal
SLD-resolution (provided that the clause X=X is added, as usual, to the flattened
program).

Alternatively, the selection narrowing algorithm could be used to replace
syntactical unification in the resolution procedure running on the original program.

The use of the proposed algorithms reduces the search space both in the
unification phase and, by reducing the number of duplicated unifiers, in the overall

287

resolution procedure. Flat SLD-resolution has the advantage of not introducing a
different computational mechanism, at the price of a previous compilation stage.

With respect to the amount of computation, flat SLD-resolution and selection
narrowing are not equivalent in this context: the first unification algorithm avoids
term duplications, and so duplications of narrowing steps introduced by resolution
in the second unification algorithm.

This improvement is comparable with the one introduced by basic-chains in
the narrowing algorithm.

In spite of this reduction of the search space, completeness is not lost: it is easy,
but tedious, to prove that at least all the solutions in normal form (or substitutions
more general than them) are computed: starting by a resolution with selection
narrowing which computes one of the normalized solutions, it is possible to build a
resolution chain where all the occurrences of the same term are narrowed in the
same way: this sequence, in turn, is shown to be correspondent to a flat
SLD-resolution sequence.

A transformation based on flattening has been used to implement a
higher-order functional plus logic programming language [BG].

7. Related work

Related work on the subject has been constantly increasing during the last few
years. Maybe the closest proposals to the kind of approach here advocated are
LEAF [BB], already quoted above, and SLOG [FR2].

In the LEAF language, based on full Horn-clause logic with equality, the
flat-resolution approach is adopted, along with a demand-driven selection strategy
which allows to deal with infinite data.

SLOG, on the other hand, adopts the innermost-narrowing approach; as
remarked in section 5, since the execution mechanism of SLOG does not admit a
step equivalent to "null" narrowing, completeness is only preserved as long as the
functions are "everywhere defined"; being the language based on conditional
rewrite rules, the interpretation algorithm is also related to the one proposed in
[KA] (conditional narrowing).

Other similar approaches are those of [RE],[SU], which use an outermost
constructor-driven narrowing strategy: the algorithm in [SU] is incomplete, the
E-unification algorithm in [RE] is based on a notion of equality, called "continous
equality", different from the more usual algebraic equality considered in our work.
As the pure outermost strategy is incomplete for algebraic equality, an
almost-outermost E-unification algorithm was proposed in [MM].

The above languages, all based on theories with constructors, do not allow
rules whose lhs's contain functional composition (e.g. f(f(X)) --> g(X)), which on
the contrary are permitted in the algorithms we have presented. This limitation,
which may be undesirable when working with specifications, is sensible if the
systems are used as programming languages.

288

8. Conclusions and future work

As has been remarked in the introduction, the problem - which has a definite
importance in connection with attempted extensions of logic programming - of
moving from syntacticaI to so-called "semantical" unification, or E-unification,
even though theoretically rather well understood, does not present, in practice, easy
solutions. Even if the stepping from a decidable to a semi-decidable procedure is
accepted because inherent in the nature of the problem, there still remains a lot of
inefficiency researchers who have tried to use narrowing in programming or
specification languages [GA],[BE] including ourselves, feel uncomfortable about.

The algorithms presented in this paper are a step towards the discovery of
methods more suitable to practical implementability. Our work also shows how
narrowing and resolution, though being quite distinct inference rules, are actually
two different versions of a common underlying mechanism, so that refinements
found out for resolution can be applied to narrowing as well. The worse behaviour
of the usual narrowing-based unification algorithms is therefore merely the result
of these straightforward optimizations not being applied to them; when this
handicap is eliminated, narrowing becomes as efficient as SLD-resolution.

Nevertheless, what is gained over flat SLD-resolution with this optimized
narrowing strategy is a minor advantage, namely the absence of a quite simple
compilation phase; that, in our opinion, does not seem to counterbalance the benefit
of having just one inference rule, resolution, i.e. one computational model, for
which efficient implementations are already available and more efficient ones based
on specially-conceived architectures are being developed.

In this paper we have shown how an innermost selection strategy for flat
SLD-resolution can easily be compiled; but an innermost selection rule in
E-unification has the same drawbacks of innermost strategy in reduction (i.e. call by
value): i.e. it performs unnecessary computations. We are therefore trying to define
a complete "almost-outermost" strategy for flat SLD-resolutions, where
"outermost" literals are selected, so that resolution with clauses different from X=X
is only applied on request. This strategy, unlike the innermost case, cannot be
implemented by means of a trivial compilation, because the atom selection order is
not known statically.

Acknowledgement

This work has been partially sponsored by EEC through ESPRIT Project 415
"Parallel Architectures and Languages for Advanced Information Processing - a
VLSI-directed Approach".

9. References

BB R. Barbuti , M. Bellia, G. Levi and M. Martell i , LEAF: A language
which integrates logic, equations and functions. In Logic Programming:
Functions, Relations and Equations , D. DeGroot and G. Lindstrom, Eds.

289

(Prentice-Hall, 1985), 201-238.

BE D. Bert, personal communication.

BG P.G. Bosco and E. Giovannetti, IDEAL: an Ideal DEductive Applicative
Language. Proc. 1986 Symp. on Logic Programming (IEEE Comp. Society
Press, 1986), 89-94.

BR D. Brand, Proving theorems with the modification method. SIAM J. Comput.
4 (1975), 412-430.

CP P.T. Cox and T. Pietrzykowski, Surface deduction: a uniform mechanism
for Logic Programming. Proc. 1985 Syrup. on Logic Programming (IEEE
Comp. Society Press, 1985), 220-227.

FA M. Fay, First order unification in an equational theory. Proc. 4 th Workshop
on Automated Deduction (1979), 161-167.

FR1 L. Fribourg, A narrowing procedure for theories with constructors. Proc.
7th Int. Conf. on Automated Deduction, LNCS 170 (Springer Verlag, 1984),
259-301.

FR2 L. Fribourg, SLOG: A logic programming language interpreter based on
clausal superposition and rewriting. Proc. 1985 Syrup. on Logic
Programming (IEEE Comp. Society Press, 1985), 172-184.

GA H. Gallaire, Logic programming: further developments. Proc. of the 1985
Symp. on Logic Programming (IEEE Comp. Society Press, 1985), 88-96.

GM J.A. Goguen and J. Meseguer, Equality, types, modules and (why not?)
generics for logic programming. J. Logic Programming 1 (1984), 179-210.

HU J.-M. Hullot, Canonical forms and unification. Proc. 5 th Conf. on Automated
Deduction, LNCS 87 (Springer Verlag, 1980), 318-334.

KA S. Kaplan, Fair conditional term rewriting systems: Unification, termination
and confluence. Technical Report no. 194, University of Orsay (t984).

MM A. Martelli, C. Moiso and G.F. Rossi, An algorithm for unification in
equational theories. Proc. 1986 Syrup. on Logic Programming (IEEE Comp.
Society Press, 1986), 180-186.

RE U.S. Reddy, Narrowing as the operational semantics of functional languages.
Proc. 1985 Syrup. on Logic Programming (IEEE Comp. Society Press, 1985),
138-151.

SU P.A. Subrahmanyam and J.-H. You, FUNLOG = functions + logic: A

290

computational model integrating functional and logic programming. Proc.
1984 Int. Syrup. on Logic Programming (IEEE Comp. Society Press, 1984),
I44-153.

TA H. Tarnaki, Semantics of a logic programming language with a reducibility
predicate. Proc. of the 1984 Symp. on Logic Programming (IEEE Comp.
Society Press, 1984), 259-264

