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Abstract. We present a general method for constructing extensional models for the polymorphic
lambda calculus—the polymorphic extenstonal collapse. The method yields models that satisfy
additional, computationally motivated constraints like having only two polymorphic booleans and
having only the numerals as polymorphic integers. Moreover the method yields models that prove
that the polymorphic lambda calculus can be conservatively added to arbitrary algebraic data
type specifications, even with complete transfer of the computational power to the added data
types.

1 Introduction

The design of functional and object-oriented programming languages has recently witnessed the
widespread adoption of polymorphic type systems. A list of examples that is by no means exhaus-
tive includes, in addition to the archetype ML [Gordon et al. 1979], such languages as Miranda
[Turner 1985], Poly [Matthews 1985], Amber [Cardelli 1985], polymorphic FQL [Nikhil 1984],
Ponder [Fairbairn 1982}, and Hope [Burstall et al. 1980], while an excellent survey of the field
is provided by [Cardelli & Wegner 1985].

We adopt the Girard-Reynolds polymorphic lambda calculus (henceforth denoted AY) as a formal
setting for studying properties of such languages. Our concern here will be to construct models
for AY that satisfy additional constraints computationally motivated. These constraints have to do
with the interaction between the type discipline of A and the data types with which we compute,
eg. integers, booleans etc. An example follows.

Consider the representation of the integers in AY where the numerals are taken to be the closed
terms of type

polyint & Vt. (t—t) >t —t .
The numeral corresponding to the integer n is

fi Y AL Aot Azt iz
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One can then define
Add ¥ u:polyint. Av: polyint. At. Af:t — t. Az:t. utf(vtfz) : polyint — polyint — polyint

and verify that A” proves
(1) AddPWH =m*n.

The arithmetic functions that are numeralwise representable in the same way addition is repre-
sented above are exactly the functions which are provably total recursive in second-order Peano
arithmetic [Girard 1972}, [Statman 1981}, [Fortune et al. 1983]. To date, no “natural” examples
of total recursive functions that are not in this class are known and one can argue that such
computational power is adequate for most purposes [Leivant 1983], [Reynolds 1985]. Therefore
it appears that AY can be regarded as a programming language already equipped with a type of
integers and, as it turns out, also with one of booleans:

polybool © Gttt i
True % At z:t. Ayt z

False % Xt.Az:t. Ayt y

as well as many other familiar data types [Reynolds 1985].

There is a problem, though. While we would like to reason about the terms of type polyint as
if they actually are the integers, the pure )Y is not sufficient for that. For example, by a simple
Church-Rosser argument,

2) Adduv = Addvu

with arbitrary u, v: polyint is not provable in A7. But if u and v are numerals then the equation (2)
follows from (1). Hence the question: is it consistent to assume equation (2) as a further axiom
of A\¥? This would follow from the existence of a model in which the only elements of type polyint
are the {denotations of the) numerals. *

Such a question (actually for polybool) was asked in [Meyer 1986]. A positive answer was
obtained in two ways using two different model constructions [Moggi 1986a], [Coquand 1986].
Both constructions used partial equivalence relations to interpret types, suggesting that there
might be some relationship between them and, indeed, a common generalization was found
[Breazu-Tannen 1986].

We are going to present this general construction, which we call polymorphic extensional collapse,
that has as particular cases both the HEO-like model construction [Mitchell 1986b] ? (the one
used in [Moggi 1986a]) and the closed type/closed term model construction (the one used in
[Coquand 1986]).

Another application of our general construction is to show that arbitrary algebras can be fully and
faithfully embedded in models of Y. Moreover, such embeddings can be achieved in a manner that
connects the computational power of AY to the embedded algebras. The conservative extension
theorems of [Breazu-Tannen & Meyer 1987] then follow as corollaries from our full and faithful
embedding results.

The investigation of these conservative extension situations started from the same concern that
suggested the question asked in [Meyer 1986, namely, is it possible to have data types with

1This account is inspired from [Meyer et al. 1987] where another example, involving polybool, is presented.

2[Mitchell 1986b] also contains a short history of the idea of interpreting types using partial equivalence relations.
We want to add one reference to Mitchell’s account, namely [Gandy 1956}, which introduced the extensional collapse
model construction for simple types, later called the “Gandy bul” in {Statman 1980].
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“classical” properties live in a computational framework? In [Breazu-Tannen & Meyer 1987] it
is remarked that unrestricted recursion is not compatible with “classical” properties. Then,
computation done within the framework of the type discipline of AY is offered as an alternative.
However, unlike in the above discussion, one does not use the built-in integers, booleans, etc.;
instead one adds such data types to A" as algebraic data type specifications. The advantage is
that we can postulate for these added data types whatever equations we wish, so that problems
like the one with equation {2} do not arise.

The conservative extension theorems assure us that we can continue to reason about algebraic
data expressions “classically”, i.e., using the data type specification, even when these expressions
occur in the computational framework provided by AY.

It is possible that there are some connections between the model constructions we describe here
and the work reported in [Scedrov 1986]. However, [Scedrov 1986] does not give enough details
for us to be able to verify this yet.

Finally, we should mention that detailed proofs of most of the new results mentioned here are
also included in [Breazu-Tannen].

2 The polymorphic lambda calculus

2.1 Syntax

We assume we have an infinite set of type variables. By convention, ¢ will range over type variables
while o,7 will range over type ezpressions which are defined by the grammar:

Tii=t]lo—r |Vio.

We identify type expressions that differ only in the names of bound variables. The set of free
type variables of ¢ will be denoted fv(o).

We also assume we have a separate infinite set of variables. By convention, = will range over
variables while M, N will range over raw terms which are defined by the grammar:

M:=z|MN| o M| Mo | M. M.

Again, we identify raw terms that differ only in the names of bound variables. The set of free
variables of the term M will be denoted FV (M) while the set of free type variables of M will be
denoted fv(M).

Type assignments are partial functions that map variables to type expressions and that have finite
domain. Alternatively, we can regard type assignments as finite sets of pairs z:o such that no z
occurs twice. We will use A to range over type assignments. When we write A, z:0 we mean a
type assignment A’ that contains z:o and such that A = A"\ {z:0}.

Typing judgments have the form A + M : ¢. Here are the type-checking rules:

(variable introduction) o -z 0

AFM:o

(extenswn) m

z & domA
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Ao M:r
AFAzieM:0—7

(— introduction)

ArFM:0—-7 AF N:o
AFMN:T

(— elimination)

A+FM:0o

Vi 1 —
(V introduction) TN M Vg

t & fv(ranA)

At M:Vto
AF Mr:oft:=r]

(V elimination)

FEquations have the form
A.M=N:o

where the role of A and o is to help check that the equational reasoning is type-correct.
The core proof system for deriving equations, denoted 1Y, consists of

A.M=N:o

(eatension) AzmrbM=N:vo

z & domA

reflexivity, symmetry, transitivity, congruence w.r.t. application,

Ayzio . M = N7

(©) A.driooM = Ario. N:o—r1

8, n, congruence w.r.t. polymorphic application, type &,

(type B) A(MMr =Mt:=r1]:0oft:=1]

where A F M: o, t¢ fv{rand)

(type n) A.MM. Mt = M:Vio
where A - M:Vt.o,t ¢ fulrand), t & fo(M)

As usual, conversion can be analyzed by a reduction system. We will call “Bn-reduction” the
notion of reduction consisting of both the “regular” and the “type” §# and 7. The definition is
omitted here.
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2.2 Semantics
An algebra of polymorphic types, T, consists of the following:

e a non-empty set T of types;
¢ 3 binary operation — on T}
¢ a non-empty set [T => T of functions from T to T;

e amap Virom [T = T] to T

such that the following inductive definition of an assignment of meanings in T to type expressions
in type environments is possible (we define a type environment to be a map from type variables
to T and we will use n to range over type environments):

L. [tln = n(t)
2. [o—7ln = [oln — [ln
3. [Vt.o]n = V(da € T [o]n{t: = a})
By “the definition is possible” we understand that each inductive application of step 3 is defined,

ie, da € T. Jefn{t:=a} € [T = T|. Here n{i:= a} is the type environment equal to 5
everywhere except at ¢ where it takes the value a.

A polymorphic lambda interpretation {p.l.1.) consists of the following:
o an algebra of polymorphic types, T;
o aset D, for each type a € T (the domain of a);

e a binary operation - : Dy X D, —— D, for each pair of types a,b € T (functional
application);

¢ a binary operation -4 : Dyig) X T —— U{D,} for each function ¢ € [T = T, such that
P-4 a € Dy (polymorphic application);

Given a type assignment A and a type environment 7, we define an An-environment to be a
function p that maps domA to U{D,} such that p(z) € Dya(s)}, for each variable z € domA. As
with type assignments, we will regard Azn-environments as finite sets of pairs z:d, extending to
them the notational convention p, z: d. With this, the final component of a polymorphic lambda
interpretation is

¢ a “meaning” map that assigns to every typing judgment A + M : o that is derivable and
every type environment 1 a map [A + M : o]y from An-environments to Dy}, such that

1. [z:0 b z: onp = p(z)
2. [Ayzir - M:o]np = [A F M: o]np

where z & domA and p' def P ldoma
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S.[AFMN:7fnp=[AF M:0—r7lnp w [AF N:o]np

where « & [o]n and b & Irln

4. [A ¢ AzioM:o—71]np -ap d = [A,zi0 F M: 7]np
ef

where ¢ & loln, b o Irln, d € D, and o' e oozid

5. [AF Mriofti=7llnp = [A + M:Vt.olnp -4 [r]n

where ¢ & Xa € T.[o]n{t:= a}

6. [AL MM:Viojnp ya=[AF M:on{t:i=a}p

where a € T and ¢ ¥ e e T. [o]n{t: = a}
7. i VYt € fo(ranA) U fo(M), n(t) =%'(t) then [A F M:oln = [A - M: o]y

Anequation A . M = N:ois valid in a polymorphic lambda interpretation when [A F M:o]n =
[A F N:o]n for every 7.

A p.Li is a quite general concept. For example, not even basic axioms like 3 are necessarily valid
in arbitrary p.Li’s.

A model of the polymorphic lambda calculus is a polymorphic lambda interpretation in which
functional and polymorphic applications are eztensional:

(VdeDasf'abdzg'abd)ﬁf:g Frd € Doy

(VaeT,pya=qya)=>p=q p,q€ Dyy -
This definition is equivalent and, in fact, very close to the one in {Bruce & Meyer 1984].

A model is frivial when all its domains have at most one element. It is not hard to check that a
model is trivial if and only if it equates True and False (i.e., . True = False: polybool is valid).

It is easy to see that the proof rules of the core system AY are sound for this notion of model. Aswas
recently explained in [Meyer et al. 1987], completeness is more complicated. One is, of course,
interested in the strong kind of completeness, i.e., completeness of reasoning from additional
premises. In [Bruce & Meyer 1984] such a result is stated, but it amounts to completeness of the
core proof system extended with the rule:

Ayre. M =N:r1
A.M=N:r

for the subclass of models with all types non-empty. (Discharging is not sound, in general, in
models that can have empty type domains.)

(discharging) z & FV(M)UFV(N)

The model definition presented here allows empty types and, in fact, if additional constraints like
having only two polymorphic booleans or having only the numerals as polymorphic integers are
to hold, then some type domains must be empty [Meyer et al. 1987].

In [Meyer et al. 1987] it is stated that the core proof system AY (no discharging), while sound, is
not complete for the class of all models. The paper then gives an extension of the proof system
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that is sound and complete for all models. This extension involves modifying the syntax of the
equations to allow “type emptiness” assertions to be added to the type assignments as well as new
axioms and inference rules. Our full and faithful embedding constructions (Subsection 4.3) imply

the conservative extension results of [Breazu-Tannen & Meyer 1987] w.r.t. to this new extended
proof system.

As far as the model constructions described in the present paper, we have noted that it does not
matter which of the three proof systems we use to construct our closed term interpretations.

Indeed, by Church-Rosser arguments, discharging is a derived rule in the pure A" theory or in
theories axiomatized by additional equations that can be analyzed with delta reduction rules, like
the ones we use in Subsection 4.3. Thus, the closed type/closed term constructions of Subsec-
tions 4.2 and 4.3 are the same as the ones that would be obtained using the extended proof system
of {Meyer et al. 1987] or the proof system with discharging.

2.3 Logical relations

The concept of second-order logical relation was introduced in [Mitchell & Meyer 1985], Here
we will review only a particular case of this concept, namely, the case that we need for the
polymorphic extensional collapse.

Given a polymorphic lambda interpretation, a logical relation on it is a family of binary relations
R ={R,la € T,R, C D, X D,} such that

fRacyg iff VdVe dRye => f-ud By g-ape

PRy g iff Ya prye Byay gpa.

Proposition 2.1 {Fundamental property of logical relations) Assume we have a logical relation
R on a polymorphic lambda interpretiation. For any derivable typing judgment A + M : o, any
type environment n and any two An-environments py and pz, if

Vz € domA, pi(z) Rja(m)n p2(z)

then
[A+ M:olnps Ry [A& F M: o]np, .

We will make essential use of this property in the polymorphic extensional collapse and, in fact,
the definition of the concept of polymorphic lambda interpretation was engineered to consist of
the “minimum necessary” to make the proof of Proposition 2.1 work.

3 Polymorphic extensional collapse

If D is a set, let per(D) denote the set of partial equivalence (i.e., symmetric and transitive but
not necessarily reflexive) relations (p.e.r.’s) on D. Let R € per(D). We denote by R[d] the p.e.r.

class of d w.rt. R. Note that R[d] # 0 iff d B d. The quotient set D/R is the set of all nonempty
p.e.r. classes w.r.t R.
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3.1 VFactoring by a logical partial equivalence relation

Suppose that we have a polymorphic lambda interpretation I together with a logical relation
R on it such that each R, is a p.e.r. We call R a logical p.e.r. Then, we can construct a new

polymorphic lambda interpretation, I /R (the quotient of I by R}, which is actually extensional,
1.e., a model,

The algebra of types will be the same. As domains we take the quotient sets D,/R,. Since R is
logical, it is also a congruence w.r.t. functional and polymorphic application therefore application
on the quotient sets is defined straightforwardly.

Claim. Both functional and polymorphic application are extensional.

For polymorphic application this is immediate. For functional application it can be seen that

if fByny f and gRonpg and (Vd f-upd Ry g-apd) then f Ry g.

To show how to define the meaning function let us fix a derivable typing statement A - M : o

and a type environment 5. For any I/R-An-environment 3, choose an J-An-environment p such
that

Vz € domA, p(z) = Rpa(mmle(e)]
and then define
[A+ M: o] *np def Riopl]A + M: ol’np} .
Indeed, by Proposition 2.1 the definition does not depend on the choice of p and also [A +
M : o] np is related to itself hence its p.e.r. class is nonempty.

Any equation valid in [ is valid in J/R. The converse is in general not true since there can
be pairs of closed terms whose meanings in J are distinct but related by R and therefore whose
meanings in /R are the same p.e.r. class.

If I is actually a model then the relation consisting of the identity on each of its types is actually
logical (because of extensionality) and the model I/Id is isomorphic to I. Therefore, the class of
models obtained as quotients of arbitrary polymorphic lambda interpretations by logical p.e.r.’s
is the same as the class of all models.

3.2 Tagging the types with partial equivalence relations

In order to take advantage of the construction in the previous subsection, assuming that one has
a p.li., how does one construct a logical p.e.r. on it so that one would then obtain a model by
taking the quotient?

The idea is the same as the one behind Girard’s “candidats de réductibilité”: since we don’t know
in advance which p.e.r.’s we will need, we will put in all of them!

Starting with an arbitrary polymorphic lambda interpretation J we show how to construct a new
one, IP**, that has a logical p.e.r. on it and, moreover, the same equations are valid in I and

Ip!?

First, from the algebra of types T construct 77 as follows:

¢ the new types, TP*, are pairs <a,R> witha € T"and R € per(D,);
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o <a,R>— <b,5> & <a—+b, R — 5S> where R — S is defined by
fR—Sg ifi VdVe dRe = [ dS g me
and is shown to be a p.e.r. also;

o [TP" = TP"] consists of the functions determined (one-to-one) by pairs < ¢, H > where
¢ €|T = T and H is a family of maps

H, : per(D,) — per(Dy(a))
one for each type a € T}
o V(<¢, H>) & <¥(¢),V(H)> where V(H) is defined by
pV(H) q iff V<a,R>€T?™ p-yaH,(R)qya.

and is, of course, also a p.e.r.

To check that this is an algebra of polymorphic types, one further shows that the inductive
definition of meaning is possible. Moreover

proji([e]™ n) = [o]" (proj1on) .

The rest of the definition of the polymorphic lambda interpretation is by “taking the first projec-
tion of the types”:

def
L4 D<a,R> = Da;
def
¢ freapscts>d = fad;
def .
® DcpH>A = Py

oA F M:0)™ n ¥ [AF M: o] (projion) .

Clearly, any equation valid in I is valid in J?". The converse is also true since any T-type
environment is the first projection of some I -type environment.

The benefit of all this is that now we have at each type <a,R> a p.e.r., namely R, and, more
importantly, this collection of p.e.r.’s, call it R?*, is a logical relation on IP" as one can readily

check.
We define the polymorphic estensional collapse of I to be the model I/ RP",

The models obtained as polymorphic extensional collapses of arbitrary polymorphic lambda in-
terpretations are not arbitrary at all. For example, it is not hard to see that in all of them the
type Vt.t is empty. This implies the validity of certain non-trivial equations, for example

True Vt.t = FalseVt.t .

An interesting open question is to obtain a characterization of the set of equations that are valid
in all such models,
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4 Applications

4.1 HEO-like models

These models are obtained by applying the polymorphic extensional collapse to “erase-types”
polymorphic lambda interpretations, i.e., ones in which the terms are interpreted by first erasing
the type information and then interpreting the resulting untyped terms in, say, some combinatory
algebra (via the usual translation into combinatory terms; see [Barendregt 1984]).

We consider untyped lambda terms built from the same variables used for the polymorphic lambda
terms. Again, we identify terms that differ only in the name of the bound variables,

An untyped lambda interpretation (called pseudo-A-structure in [Hindley & Longo 1980}) , U, con-
sists of the following:

¢ a non-empty set D;
e 2 binary operation - on D (application);

s a “meaning” map that assigns to every untyped lambda term M and every D-environment
# an element [M]r of D {we define a D-environment to be a map from variables to D and
we will use 7 to range over D-environments) such that:

1. [z]r = n(z)
2. [MN]r = [M]x - [N]»
3. [Az. M]x - d = [M]r{z:=d} where d € D

4. if Vz € FV(M), m(z) = mo{z) then [M]m = [M]r,

If application is also extensional we get the usual concept of model of the untyped Afn-calculus
[Hindley & Longo 1980], [Meyer 1982}, [Barendregt 1984].

Any combinatory algebra yields an untyped lambda interpretation. Namely, the meaning map
[M]x is defined by first translating M into a combinatory term [Barendregt 1984] and then
interpreting the result in the algebra.

Now, starting from an arbitrary algebra of polymorphic types 7 and an arbitrary untyped lambda
interpretation U, we construct the “erase-types” polymorphic lambda interpretation , I Tl a5
follows:

The algebra of types is, of course, T. The domains of all types are equal to D, the domain of U.
Functional application is given by the application in U. Polymorphic application simply erases

the type:
def
pga = p.

Finally, the meaning map is defined by
[Aa+ M:o]"np & [Erase(M)]*r

where 7 is some D-environment that takes the same values as p on FV (M) (by (4) above,
only these values matter) and Erase(Az:0. M) = Az. Erase(M), Erase(Mo) = Erase(M),
Erase(At. M) = Erase(M), etc.
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We then define the HEO-like model with parameters T and U to be the polymorphic extensional
collapse of 74,

The construction can be further generalized to start from partial combinatory algebras, just like
the original HEO, model ® [Girard 1972], [Troelstra {ed.) 1973], as was discovered by indepen-
dently by Gordon Plotkin and Eugenio Moggi.

Moggi'’s ingenious construction [Moggi 1986a] of a model that has exactly two elements of type
polybool amounts to—in the terminology of this paper—the HEQ-like model whose parameters

are the trivial algebra of types (just one type} and the open term model of the untyped lambda
calculus.

Such HEO-like models whose second parameters are actually untyped lambda models (untyped
application is already extensional} are particularly intriguing. This is because the corresponding
“erase-types” polymorphic lambda interpretations are already models: functional application is
extensional because the untyped application is while polymorphic application is always (trivially)
extensional! However, these “erase-types” models are much too coarse: all elements have all
types! The point of continuing with a polymorphic extensional collapse—as suggested by Moggi’s
idea—seems therefore to be the “pruning” of the model, while preserving extensionality.

Another connection is with the PER models of [Mitchell 1986b]. PER models are, in general,
not obtained by {what we defined as) polymorphic extensional collapse {for example, one can
construct PER models that have all types non-empty). Nonetheless, we have developed enough
terminology to be able to say what they are.

Such models have three parameters: an algebra of polymorphic types T, an untyped lambda
interpretation U * and a logical p.e.r. R on the “erase-types” polymorphic lambda interpretation
IT#, The model is then defined as the quotient JT#/R.

Any HEO-like model is a PER-model. Indeed, given an HEO-like model with parameters T and
U, we note that (J7¥)per = IT*"Y Therefore this model is the same as the PER model with
parameters 77, f and R?*.

A characterization of the theories of PER meodels is given in [Mitchell 1986b]. It essentially says
that the only additional equations that hold in PER models—compared to general models— are
those obtained by equating terms that look the same when types are erased. It is an open question
whether these are also the only additional equations that hold in HEO-like models—compared to
general models obtained by polymorphic extensional collapse.

4.2 The closed type/closed term model construction

We start with the observation that the closed type expressions form an algebra of polymorphic
types. Indeed, we can take [T = T| to be the set of functions w +— o[t: = w]| determined by the
closed polymorphic type expressions Vt.o.

Then, for each closed type expression w we have an equivalence relation on the set of closed terms
of type w:
ME,Nif Y b M=N:w.

We take the domain of w to consist of equivalence classes of closed terms of type w modulo =,,.
We can also think of this domain as the set of all closed normal forms of type w. The definitions
of application and the definition of the meaning map by substitution are straightforward. It is

3HEO, starts from the partial combinatory algebra of integers and “Kleene brackets” application
4 Actually, Mitchell requires U to be a lambda model but the construction goes through for interpretations
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easy to check that we get a polymorphic lambda interpretation (call it the closed type/closed
term polymorphic lambda interpretation). Moreover, the elements of type polyint, for example,
are in one to one correspondence with the numerals. Unfortunately, extensionality fails since,
for example, there are no elements of type V.t but there are two distinet elements of type
(Vt.t) —(Vt.t) —(Vt.t) namely (the equivalence classes of) Az:Vi.t. Ay: Vi.t.x and Az: VE.£. Ay ViE.ty
while by extensionality there should be at most one.

Hence the idea of [Coquand 1986] of combining the closed type/closed term construction with
factoring by p.e.r.’s and thus achieving extensionality. This amounts to taking the polymorphic
extensional collapse of the closed type/closed term polymorphic lambda interpretation. Let us
call the resulting model C. In [Coquand 1986] it is shown that in C there are exactly two elements
of type polybool namely (the meanings of} True and False. In particular, C is non-trivial. Here
we will show that in C the elements of type polyint are exactly the numerals. This will provide a
positive answer to the question we asked in the introduction, as well as another proof that C is
non-trivial.

Since the numerals are the only closed normal forms of type polyint we need only show that no
further identifications between numerals take place.

Suppose that + # = #i: polyint is valid in C. Then, for any closed type expression w and for
any p.e.r. R on the set of equivalence classes modulo =, we must have (recall that =2,[M] is the
equivalence class of M modulo =,))

E(w_.m)_.w_.u{ﬁw} (R—-R)—R—R E(w_*w}_.w.*wifiw} .

Define

Suce & Au:polyint. Add w1 : polyint — polyint .

Taking w = polyint and R to be the identity we have
Suce R~ R Succ and ORD

hence
7 polyint Suce 0 =pyine 7 polyint SuccO .
But

~ ~

7 polyint Succ 0 = Suce™0 =
hence 7 Zyoyine f# which implies m = n.

Let w be a closed type. A model is said to be canonical at w if its elements of type w are in
one-to-one correspondence with the closed normal forms of type w. So far, we have seen that C
is canonical at polybool and polyint. As it was pointed out to us by Albert Meyer, it follows from
a result in {Statman 1983] that this generalizes to all “such” types.

More precisely, let us define an ML-polymorphic type to be a closed type of the form V¢, ... Vi,.0
where o is V-free 5. As expected, the “combinatorics” of terms of ML-polymorphic type is es-
sentially that of simply typed terms. The following is a result about simple lambda terms from
[Statman 1983}, rephrased for ML-polymorphic terms.

Statman’s Typical Ambiguity Theorem Let w be an ML-polymorphie type and M, N two
closed terms of type w. If M and N are not fBn-convertible then there evists a closed term
L: w— polybool such that LM = True and LN = False.

Since C is non~trivial:

5These types correspond to the limited kind of polymorphism allowed in the language ML [Gordon et al. 1979}
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Corollary 4.1 The model C is canonical at all ML-polymorphic types.

An interesting open problem is to characterize the theory of C. A possibility, suggested by Rick
Statman [Moggi 1986b}, is that C is a minimal model for XY, i.e., that any equation that can be
consistently added to A is valid in C.

4.3 Full and faithful embeddings of algebras

This subsection is a spin-off from [Breazu-Tannen & Meyer 1987]. The results presented here can
be thought of as model-theoretical versions of the conservative extension theorems stated there.

For the conservative extension theorem that corresponds to (and follows from) Theorem 4.2 below,
an alternative, purely syntactic, proof is given in [Breazu-Tannen & Meyer 1987]. We know of
no such syntactic proof for the conservative extension theorem corresponding to Theorem 4.3. In
fact, [Breazu-Tannen & Meyer 1987] refers to Theorem 4.3 in this paper for a model-theoretical
proof of the corresponding result.

Let A be an algebra with (say, just for simplicity) just one sort and a binary operation f. Given
a model of XY, we say that (4, f) is fully and faithfully embedded in it if there exists a type alg
and an element f' € Dag— aig— aiy Such that when regarding f' as a binary operation on Da, the
resulting algebra { Dy, f') is isomorphic to (4, f).

Theorem 4.2 Any many-sorted algebra can be fully and faithfully embedded in a a model of the
polymorphic lambda calculus.

We are going to explain briefly how this is done. Given (again, for simplicity) an algebra (4, f)
with one sort and a binary operation f, we construct first an extension of AY by adding:

1. a type constant alg,
2. for each a € A, a constant g, and a type-checking axiom F ¢,: alg ,
3. a constant f with  f: alg—alg—alg,

4. for each ¢,b € 4, an equational axiom + f¢. ¢ = gy : olg .

Then, we construct the closed type/closed term polymorphic lambda interpretation of this ex-
tension. We claim that (A, f) is fully and faithfully embedded here at type alg. For this it is
sufficient to see that any closed term of type alg converts o a term of the form g, (true because
the Sn-normal forms of type alg are algebraic terms which then convert via the axioms (4) above
to terms of the desired form) and that no two distinct terms of the form ¢, are convertible to
each other (true because the axioms (4) seen as reduction rules from left to right form together
with 8 and 5 a Church-Rosser system—these are delta rules, see [Klop 1980}).

Next, we can see that the full and faithful embedding “survives” the subsequent polymorphic
extensional collapse. This is because in the final model we have the liberty to choose a p.e.r for
the interpretation of the type constant alg and we choose the identity p.e.r. Therefore, we have
a full and and faithful embedding of (A4, f) at type <alg, identity>.

In [Mitchell 1986b] it is stated that PER models can be used to obtain faithful but not full
embeddings of algebras into models of the polymorphic lambda calculus. Subsequently, John
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Mitchell and Eugenio Moggi have discovered how to do faithful and full embeddings of algebras
into PER models that have empty types (actually HEO-like models) and, if the algebra has all
sorts non-empty, even into PER models that have all types nonempty (these cannot be HEO-like
models)[Mitchell 1986a]. The construction that we have presented here always yields models with
empty types and had been obtained by us previously and independently.

While Theorem 4.2 is providing us complete information about the “pure” interaction between
the polymorphic type discipline and algebraic data type specifications, its setting is not entirely
satisfactory from the computer scientist’s point of view. Indeed, the enormous computational
power that AY has over the numerals is only superficially used over the added data types. How-
ever, as shown in [Breazu-Tannen & Meyer 1987], there are extensions of A in which a strong
connection between the computational power of A¥Y and the added data types can be set up and,
moreover, the equational theory of the resulting language is still a conservative extension of the
data type specifications. Theorem 4.3 below is a model-theoretic version of this result, show-
ing that both full and faithful embedding and {semantic) computational power over the added
data types can be simultaneously achieved. The corresponding conservative extension result from
|Breazu-Tannen & Meyer 1987 follows as a corollary of the proof of Theorem 4.3.

We will assume that the added data type has a set of observables—say, character strings or
lists or trees—and that we care only about computational behavior on the observables. We will
also assume that there is some standard way to enumerate the observables with each observable
appearing exactly once in the enumeration. This in turn will yield a one-to-one correspondence
between functions on the integers and functions on the observables.

Theorem 4.3 Let A be a many-sorted algebra. Let co,c;,¢3,... be a sequence of distinct elements
of some sort obs of A, called observables. Then, there exists a model € of the polymorphic lambda
calculus such that

(i) A s fully and faithfully embedded in £, and

(i) every function on observables which is provably total recursive in second-order Peano arith-

metic is tn £.

The construction of € is a refinement of the one we use for Theorem 4.2. Like there, we add
a constant type for each sort of A, constants for the elements and operations of A and axioms
corresponding to the “tables” of these operations (items (1)-(4)). Moreover, here we also add the
following items:

5. a constant In with + In: obs— polyint ,

6. a constant Out with +~ Out: polyint — obs ,

7. for each observable ¢,, an axiom . In q.,, = i: polyint ,

8. for each element a of sort obs that is not an observable, an axiom .In g, = 0: polyint ,

9. for each integer n, an axiom . Out %t = ¢, : obs .
Again, we construct the closed type/closed term polymorphic lambda interpretation of this ex-

tension. We claim that A is fully and faithfully embedded here and moreover the elements of type
polyint are exactly the numerals.



305

To see this, note that conversion in the extended calculus can be analyzed with the reduction
system consisting of 8, n and the delta rules obtained by orienting the axioms, (4}, (7), (8) and
(9) from left to right. This system is strongly normalizable [Mitchell 1986b] and Church-Rosser
[Klop 1980] and, using this, we can argue in the same spirit as in the proof of Theorem 4.2.

Like before, the full and faithful embedding survives the subsequent polymorphic extensional
collapse. But, equally important, so do In and Out. Moreover, no identifications between distinct
numerals take place (see the previous subsection). Since the collapse preserves the validity of
axioms (7) and (9), we end up in the final model with two maps that establish a bijection between
the observables and the numerals. This immediately implies the second part of the theorem.
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