
Extensional Models for Polymorphism 

Val Breazu- T annen  
M I T  Laboratory for Computer Science 

545 Technology Sq., Cambridge, MA 02139, USA 

Thierry  Coquand 
INRIA 

Domaine de Voluceau, 78150 Rocquencourt, France 

A b s t r a c t .  We present a general method for constructing extensional models for the polymorphic 
lambda calculus--the polymorphic extensional collapse. The method yields models that satisfy 
additional, computationally motivated constraints like having only two polymorphic booleans and 
having only the numerals as polymorphic integers. Moreover the method yields models that prove 
that the polymorphic lambda calculus can be conservatively added to arbitrary algebraic data 
typ~ specifications, even with complete transfer of the computational power to the added data 
types. 

1 I n t r o d u c t i o n  

The design of functional and object-oriented programming languages has recently witnessed the 
widespread adoption of polymorphic type systems. A list of examples that is by no means exhaus- 
tive includes, in addition to the archetype ML [Gordon et al. 1979], such languages as Miranda 
[Turner 1985], Poly [Matthews 1985], Amber [Cardelli 1985], polymorphic FQL [Nikhil 1984], 
Ponder [Fairbairn 1982], and Hope [Burstall et al. 1980], while an excellent survey of the field 
is provided by [Cardelli & Wegner 1985]. 

We adopt the Girard-Reynolds polymorphic lambda calculus (henceforth denoted ~v) as a formal 
setting for studying properties of such languages. Our concern here will be to construct models 
for ~v that satisfy additional constraints computationally motivated. These constraints have to do 
with the interaction between the type discipline of ~v and the data types with which we compute, 
eg. integers, booleans etc. An example follows. 

Consider the representation of the integers in ~v where the numerals are taken to be the closed 
terms of type 

polyint de~ Vt. (t -~  t) -*  t -~  t .  

The numeral corresponding to the integer n is 

%3 At. ~f: t -* t. ~x: t. f ~ x .  

The first author was supported in part by an IBM Graduate Fellowship and in part by NSF Grant DCR-8511190 



292 

One can then define 

A d d  ~ f  )~u: p o l y i n t .  )w : p o l y i n t .  )~t. )~ f : t --* t. Ax: t. u t  f (v t  f x)  : p o l y i n t  --* p o l y i n t  --+ p o l y i n t  

and verify that  ,k v proves 
(1) A d d ~  ~ = m ~ n  . 

The arithmetic functions that  are numeralwise representable in the same way addit ion is repre- 
sented above are exactly the functions which are provably total  recursive in second-order Peano 
arithmetic [Girard 1972], [Statman t981], [Fortune et al. 1983]. To date, no "natural" examples 
of total recursive functions that  are not in this class are known and one can argue that  such 
computational power is adequate for most purposes [Leivant 1983], [Reynolds 1985]. Therefore 
it appears that  )Y can be regarded as a programming language already equipped with a type of 
integers and, as it turns out, also with one of booleans: 

polybool  dej Yr. t --~ t --~ t 

True  ~ f  )~t. )~x: t .  )~y: t .  x 

False de_~f )~t. Ax: t. )~y: t. y 

as well as many other familiar da ta  types [Reynolds 1985]. 

There is a problem, though. While we would like to reason about the terms of type p o l y i n t  as 

if they actually are the integers, the pure ~v is no t  sufficient for that .  For example, by a simple 
Church-Rosser argument,  
(2) A d d  u v = A d d  v u 

with arbi t rary u,  v: p o l y i n t  is no t  provable in ~v. But if u and v are  n u m e r a l s  then the equation (2) 
follows from (1). Hence the question: is it consistent to assume equation (2) as a further axiom 
of ,kv? This would follow from the existence of a model in which the on ly  elements of type p o l y i n t  

are the (denotations of the) numerals, t 

Such a question (actually for polybool)  was asked in [Meyer 1986]. A positive answer was 
obtained in two ways using two different model constructions [Moggi 1986a], [Coquand 1986]. 
Both constructions used part ia l  equivalence relations to interpret types, suggesting that  there 
might be some relationship between them and, indeed, a common generalization was found 
[Breazu-Tannen 1986]. 

We are going to present this general construction, which we call po l ymorph i c  e x t e n s i o n a l  collapse, 

that has as part icular  cases both the HEO-like model construction [Mitchell 1986b] ~ (the one 
used in [Moggi 1986a]) and the closed type/closed term model construction (the one used in 
[Coquand 1986]). 

Another application of our general construction is to show that  arbi t rary algebras can be fully and 
faithfully embedded in models of )~v Moreover, such embeddings can be achieved in a manner that  
connects the computational  power of ~v to the embedded algebras. The conserva t i ve  e x t e n s i o n  

theorems of [Breazu-Tannen & Meyer 1987] then follow as corollaries from our full and faithful 
embedding results. 

The investigation of these conservative extension situations started from the same concern that  
suggested the question asked in [Meyer 1986], namely, is it possible to have da ta  types with 

1This account is inspired from [Meyer et al. 1987] where another example, involving polybool~ is presented. 
2[Mitchell 1986b] also contains a short history of the idea of interpreting types using partial equivalence relations. 

We want to add one reference to Mitchell's account, namely [Gandy 1956], which introduced the extensional collapse 
model construction for simple types, later called the ~Gandy hull" in [Statman 1980]. 



293 

"classical" properties live in a computational framework? In [Breazu-Tannen & Meyer 1987] it 
is remarked that unrestricted recursion is not compatible with "classical" properties. Then, 
computation done within the framework of the type discipline of )v is offered as an alternative. 
However, unlike in the above discussion, one does not use the built-in integers, booleans, etc.; 
instead one adds such data types to )v as algebraic data type specifications. The advantage is 
that we can postulate for these added data types whatever equations we wish, so that  problems 
like the one with equation (2) do not arise. 

The conservative extension theorems assure us that  we can continue to reason about algebraic 
data expressions "classically", i.e., using the data type specification, even when these expressions 
occur in the computational framework provided by Av 

It is possible that there are some connections between the model constructions we describe here 
and the work reported in [Scedrov 1986]. However, [Scedrov 1986] does not give enough details 
for us to be able to verify this yet. 

Finally, we should mention that detailed proofs of most of the new results mentioned here are 
also included in [Breazu-Tannen]. 

2 T h e  p o l y m o r p h i c  l a m b d a  c a l c u l u s  

2.1 S y n t a x  

We assume we have an infinite set of type variables. By convention, t will range over type variables 
while a, r will range over type expressions which are defined by the grammar: 

r : : =  t l a - * r l V t ,  a.  

We identify type expressions that differ only in the names of bound variables. The set of free 
type variables of a will be denoted f v (a) .  

We also assume we have a separate infinite set of variables. By convention, x will range over 
variables while M, N will range over raw terms which are defined by the grammar: 

M : : =  x [ M N I ) ~ x : a .  M I M a [ A t . M .  

Again, we identify raw terms that differ only in the names of bound variables. The set of free 
variables of the term M will be denoted F V  (M) while the set of free type variables of M wilt be 

denoted fv(M). 

Type assignments are partial functions that map variables to type expressions and that have finite 
domain. Alternatively, we can regard type assignments as finite sets of pairs x: a such that  no x 
occurs twice. We will use A to range over type assignments. When we write A , x : a  we mean a 
type assignment A t that contains x: a and such that  A = A F \ {x: a}. 

Typing judgments have the form A F M : a. Here are the type-checking rules: 

(variable introduction) x :a  F x :  a 

A F M : a  
(extension) A, x: r F M : a x ~ domA 



(--+ introduction) 

294 

A , x : a  h M :  r 

A F )~x:a .M:  a---+'r 

( 4  elimination) 
A ~- M : a - - + r  A F N : a  

A F M N : r  

A F M : a  
(V introduction) A F M. M :  Vt. a t f[ f v ( r a n A )  

A F M :  V t . a  
(V elimination) a F M r :  a[ t :=  r] 

Equations have the form 
A . M =  N : a  

where the role of A and a is to help check that  the equational reasoning is type-correct. 

The core proof system for deriving equations, denoted A v, consists of 

A . M  = N :  a 
(extension) A , x : r  F M = N :  a x ~ d o r n A  

reflexivity, symmetry, transitivity, congruence w.r.t, application, 

A , x : a . M  = N :  r 

(~) A . )~x:a .M = A x : a . N  : a--~r 

~, rl, congruence w.r.t, polymorphic application, type ~, 

(type Z) A .  (At. M ) r  = M [ t : =  r ] :  a [ t : =  r] 

where A F M : a ,  t ~ f v ( r a n A )  

(type ~) A .At .  M r  = M :  V t . a  

where A F M : V t . a  , t ~ f v ( r a n A )  , t ~ f v ( M )  

As usual, conversion can be analyzed by a reduction system. We wili call "13r/-reduction" the 
notion of reduction consisting of both the "regular" and the "type" t3 and r/. The definition is 
omitted here. 



295 

2 .2  S e m a n t i c s  

An algebra of polymorphie types, T ,  consists of the following: 

• a non-empty set T of types; 

• a binary operation ~ on T; 

• a non-empty set [T =~ T] of functions from T to T; 

• a map V from [T =~z T] to T; 

such that the following inductive definition of an assignment of meanings in T to type expressions 
in type environments is possible (we define a type environment to be a map from type variables 
to T and we will use ~ to range over type environments): 

By "the definition is possible" we understand that each inductive application of step 3 is defined, 
i.e., ,~a • T. ~alr/{t: = a} • [T :=~ T]. Here ~7{t: = a} is the type environment equal to ri 
everywhere except at t where it takes the value a. 

A polymorpMe lambda interpretation (p.l.i.) consists of the following: 

• an algebra of polymorphic types, T;  

• a set D, for each type a • T (the domain of a); 

• a binary operation "~b : Da-~b X D~ ~ Db for each pair of types a,b • T (functional 
application); 

• a binary operation .~ : Dr(c) x T , U{Da} for each function ¢ • [T ~ T], such that 
p .¢ a • D~(~) (polymorphic application); 

Given a type assignment A and a type environment 7, we define an Ay-eavironment to be a 
function p that maps domA to U{D~} such that p(x) • D|a(~)D for each variable x • domA. As 
with type assignments, we will regard Ar/-environments as finite sets of pairs x: d, extending to 
them the notational convention p, x: d. With this, the final component of a polymorphic lambda 
interpretation is 

• a "meaning" map that assigns to every typing judgment A F M : a that is derivable and 
every type environment ~ a map ~A ~- M : al~? from A~-environments to DIol~ such that 

where x ~ domA and pl ~f p ]do,~a 



296 

3. ~/', F M N :  r]~p = ~A F M: a-~r ly  p "=b ~ ~- N:a~71p 

where a ~ ~o~ and b ~ ff~ln 

4. IA ~- )~x:a.M : a--+r~p "~b d = IA , x :a  F- M :  r]~lp' 

where a ~f [ a ~ / ,  b ~f ~r~rl, d E D a  a n d p '  ~f p,x:d 

5. ~A ~- M r :  a[t:= r]~/p = ~A F M :  Vt .a~/p  °¢ [rlr/ 

where ¢ de=f Aa E T. ~a~Tl{t: = a} 

6. ~A F A t . M :  Vt .a~lp "¢ a = ~A ~ M :  a]l?{t:= a} p 

where a E T and ¢ ~f Aa E T. Is le{ t : - -  a} 

7. if Yt e f v ( r a n A ) U  f v (M) ,  ~ ( t ) =  tT'(t) then IA F- M :  alT/ = IA F M :  a~/ '  

An equation A . M = N:  a is valid in a polymorphic lambda interpretation when ~A ~- M:  a l~  = 
~A ~- N : a l~  for every 7/. 

A p.l.i, is a quite general concept. For example, not even basic axioms like fl are necessarily valid 
in arbi trary p.Li.'s. 

A model of the polymorphic lambda calculus is a polymorphic lambda interpretation in which 
functional and polymorphic applications are extensional: 

(VdEDa,  f .abd  = g'abd) ~ f = g  f ,  gEDa-*~ 

( V a E T ,  p . ¢ a  = q . ¢ a ) ~ p = q  p, qEDv(¢ ) .  

This definition is equivalent and, in fact, very close to the one in [Bruce & Meyer 1984]. 

A model is trivial when all its domains have at most one element. It is not hard to check that  a 
model is trivial if and only if it equates True and False (i.e., . True = False : polybool is valid). 

It is easy to see that  the proof rules of the core system A v are sound for this notion of model. As was 
recently explained in [Meyer et al. 1987], completeness is more complicated. One is, of course, 
interested in the strong kind of completeness~ i.e., completeness of reasoning from additional 
premises. In [Bruce & Meyer 1984] such a result is stated, but  it amounts to completeness of the 
core proof system extended with the rule: 

(discharging) A , x : a . M  = N :  r x f [ F V ( M )  U F V ( N )  
A . M = N : r  

for the subclass of models with all types non-empty. (Discharging is not sound, in general, in 
models that  can have empty type domains.) 

The model definition presented here allows empty types and, in fact, if additional constraints like 
having only two potymorphic booleans or having only the numerals as potymorphic integers are 
to hold, then some type domains must be empty [Meyer et al. 1987]. 

In [Meyer et al. 1987] it is stated that  the core proof system )v (no discharging), while sound, is 
not complete for the class of all models. The paper then gives an extension of the proof system 



297 

that is sound and complete for all models. This extension involves modifying the syntax of the 
equations to allow "type emptiness" assertions to be added to the type assignments as well as new 
axioms and inference rules. Our full and faithful embedding constructions (Subsection 4.3) imply 
the conservative extension results of [Breazu-Tannen & Meyer 1987] w.r.t, to this new extended 
proof system. 

As far as the model constructions described in the present paper,  we have noted that  it does not 
matter  which of the three proof systems we use to construct our closed term interpretations.  

Indeed, by Chureh-Rosser arguments, discharging is a derived rule in the pure )~v theory or in 
theories axiomatized by additional equations that  can be analyzed with delta reduction rules, like 
the ones we use in Subsection 4.3. Thus, the closed type/closed term constructions of Subsec- 
tions 4.2 and 4.3 are the same as the ones that  would be obtained using the extended proof system 
of [Meyer et al. 1987] or the proof system wit h discharging. 

2 . 3  L o g i c a l  r e l a t i o n s  

The concept of second-order logical relation was introduced in [Mitchell & Meyer 1985]. Here 
we will review only a part icular  case of this concept, namely, the case that  we need for the 
polymorphic extensional collapse. 

Given a polymorphic lambda interpretation,  a logical relation on it is a family of binary relations 
)~ = {Rain E T,R~ C_ D~ x D~} such that  

f Ra-,bg iff VdVc d R a e  ~ f .abd Rb g'abe 

and 
p Rv(+)q iff Va p.¢  a R¢(~) q-¢ a .  

P r o p o s i t i o n  2.1 (Fundamental  property of logical relations) Assume we have a logical relation 
/~ on a polymorphie lambda interpretation. For any derivable typing judgment A ~- M : a, any 
type environment ~? and any two A~?-environments Px and p2, if 

Vx C domA, pl(x) R[a(~)D pz(x) 

then 
~A F M :  a~rlp, RIal, ~A F M :  a~?P2 . 

We will make essential use of this property in the polymorphic extensional collapse and, in fact, 
the definition of the concept of polymorphic lambda interpretation was engineered to consist of 
the "minimum necessary" to make the proof of Proposition 2.1 work. 

3 Polymorphic extensional collapse 

If D is a set, let per(D) denote the set of partial equivalence (i.e., symmetric and transitive but 
not necessarily reflexive) relations (p.e.r.'s) on D. Let R E per(D). We denote by Rid] the p.e.r. 
class of d w . r . t . R .  Note tha t  Rid] ~ 0 iff d R d. The quotient set D / R  is the set of all nonempty 
p.e.r, classes w.r.t R. 



298 

3.1 Factoring by a logical partial  equivalence relation 

Suppose that we have a polymorphic lambda interpretation I together with a logical relation 
on it such that each R~ is a p.e.r. We call )~ a logical p.e.r. Then, we can construct a new 

polymorphic lambda interpretation, I/]~ (the quotient of I by ~), which is actually extensional, 
i.e., a model. 

The algebra of types wilt be the same. As domains we take the quotient sets D,/R~. Since )~ is 
logical, it is also a congruence w.r.t, functional and polymorphic application therefore application 
on the quotient sets is defined straightforwardly. 

C la im.  Both functional and polymorphic application are extensional. 

For polymorphic application this is immediate. For functional application it can be seen that 

if fRa-~b f  and gR~-~bg and (Yd f . abd  Rb g-abd) then f R a ~ b g .  

To show how to define the meaning function let us fix a derivable typing statement A ~- M : a 
and a type environment r/. For any I/)~-A~-environment/~, choose an I-Ar/-environment p such 
that 

V= C domZX, ~(x) = RI~(:}l~[p(=)] 

and then define 
IA F- M: a~Xlg~ d~j R[aIn[IA F- M :  a~Z~p]. 

Indeed, by Proposition 2.1 the definition does not depend on the choice of p and also IA k 
M : a]I~p is related to itself hence its p.e.r, class is nonempty. 

Any equation valid in I is valid in I/]~. The converse is in general not true since there can 
be pairs of closed terms whose meanings in I are distinct but  related by R and therefore whose 
meanings in I/]~ are the same p.e.r, class. 

If I is actually a model then the relation consisting of the identity on each of its types is actually 
logical (because of extensionaiity) and the model I / I d  is isomorphic to I .  Therefore, the class of 
models obtained as quotients of arbitrary polymorphic lambda interpretations by logical p.e.r.'s 
is the same as the class of all models. 

3.2 Tagg ing  t he  types with partial equivalence relations 

In order to take advantage of the construction in the previous subsection, assuming that one has 
a p.l.i., how does one construct a logical p.e.r, on it so that one would then obtain a model by 
taking the quotient? 

The idea is the same as the one behind Girard's "candidats de r6ductibilit6": since we don' t  know 
in advance which p.e.r.'s we will need, we will put in all of them[ 

Starting with an arbitrary polymorphic lambda interpretation I we show how to construct a new 
one, I ~ ,  that has a logical p.e.r, on it and, moreover, the same equations are valid in I and 
I P~r . 

First, from the algebra of types T construct T p*r as follows: 

* the new types, T p'r, are pairs <a ,R>  with a E T and R E per(Da); 



299 

• <a, R> --* <b, S> ~f <a ~ b, R --+ S> where R ~ S is defined by 

f R - * S g  iff YdVe d R e  ~ f ' a b d S g ' a b e  

and is shown to be a p.e.r, also; 

• IT p~r =¢, T per] consists of the functions determined (one-to-one) by pairs < ¢, H > where 
¢ E [T =:~ T] and H is a family of maps 

Ha: per(On) , per(D~(~)) 

one for each type a E T; 

• V(<¢,H>)  a,~ <V(¢),V(H)> where V(H) is defined by 

pV(H) q iff V < a , R > e  T p'~ p .~ a H~(R) q .¢ a .  

and is, of course, also a p.e.r. 

To check that this is an algebra of polymorphic types, one further shows that the inductive 
definition of meaning is possible. Moreover 

p r o j @ ~ r ' " , 7 )  = M r ( p r o j ~  o '7) • 

The rest of the definition of the polymorphic lambda interpretation is by "taking the first projec- 
tion of the types" : 

• D<~,R> d~j Da ; 

° f "<o,R><b,S> d d~j f "~ d ;  

clef 
• p ' < ~ , / / > a  = p ' ¢ a  ; 

• ~/~ ~ M :  o~'°'~ doj ~/~ ~ M :  o~(pro£  o 7) 

Clearly, any equation valid in I is valid in t ~r. The converse is also true since any T-type 
environment is the first projection of some TPer-type environment. 

The benefit of all this is that now we have at each type <a,  R>  a p.e.r., namely R, and, more 
importantly, this collection of p.e.r.'s, call it )~p~r is a logical relation on ~rper as one can readily 
check. 

We define the polymorphic extensional collapse of I to be the model IP~r/]~ r'r. 

The models obtained as polymorphic extensional collapses of arbitrary polymorphic lambda in- 
terpretations are not arbitrary at all. For example, it is not hard to see that in all of them the 
type Vt. t is empty. This implies the validity of certain non-trivial equations~ for example 

True Vt. t = False Vt. t . 

An interesting open question is to obtain a characterization of the set of equations that are valid 
in all such models. 



300 

4 A p p l i c a t i o n s  

4 . 1  H E O - l l k e  m o d e l s  

These models are obtained by applying the polymorphic extensional collapse to %rase-types" 
polymorphic lambda interpretations,  i.e., ones in which the terms are interpreted by first erasing 
the type information and then interpreting the resulting untyped terms in, say, some combinatory 
algebra (via the usual translation into combinatory terms; see [Barendregt 1984]). 

We consider tmtyped lambda terms built  from the same variables used for the polymorphic lambda 
terms. Again, we identify terms that  differ only in the name of the bound variables. 

An untyped lambda interpretation (called pseudo-),-strueture in [Hindley & Longo 1980]), ~/, con- 
sists of the following: 

* a non-empty set D; 

. a binary operation • on D (application); 

• a "meaning" map that  assigns to every untyped lambda term M and every D-environment 
~r an element ~M~r of D (we define a D-environment to be a map from variables to D and 
we will use r to range over D-environments) such that:  

i .  ~ = ~(~) 

2. ~ M N I r  = IMl~r . ~NIr 

3. IAx. M l r  . d = IM~r{x :=  d} where d E D 

4. if Vx E F V ( M ) ,  ~rl(x) = ~r2(x) then ~Ml~rl = IM]zr2 

If application is also extensional we get the usual concept of model of the untyped )~fl~-ealeulus 
[ttindley & Longo 1980], [Meyer 1982], [Barendregt 1984]. 
Any combinatory algebra yields an untyped lambda interpretation. Namely, the meaning map 
~Ml~r is defined by first translating M into a combinatory term [Barendregt 1984] and then 
interpreting the result in the algebra, 

Now, start ing from an arbi t rary  algebra of polymorphic types T and an arbi t rary  untyped lambda 
interpretation ~/, we construct the "erase-types" polymorphic lambda interpretation , I ~''u as 
follows: 

The algebra of types is, of course, T. The domains of all types are equal to D, the domain of ~/. 
Functional application is given by the application in U. Polymorphic application simply erases 
the type: 

def p . ¢ a  = p .  

Finally, the meaning map is defined by 

~A F- M :  a~Iurlp a~f ~Erase(M)]Ur 

where ~r is some D-environment that  takes the same values as p on F V ( M )  (by (4) above, 
only these values matter)  and Erase()~x:a. M)  -= )~x. Erase(M),  Erase(Ma)  = Erase(M),  
Erase(At. M)  = Erase(M) ,  etc. 



301 

We then define the HEO-like model with parameters 7" and U to be the polymorphic extensional 
collapse of I T~u . 

The construction can be further generalized to start  from partial combinatory algebras, just  like 
the original HEO~ model 3 [Girard 1972], [Troelstra (ed.) 1973], as was discovered by indepen- 
dently by Gordon Plotkin and Eugenio Moggi. 

Moggi's ingenious construction [Moggi 1986a] of a model that  has exactly two elements of type 
polybool amounts t o - - i n  the terminology of this pape r - - the  HEO-like model whose parameters 
are the trivial algebra of types (just one type) and the open term model of the untyped lambda 
calculus. 

Such HEO-like models whose second parameters  are actually untyped lambda models (untyped 
application is already extensional) are part icularly intriguing. This is because the corresponding 
"erase-types" polymorphic lambda interpretations are already models: functional application is 
extensional because the untyped application is while polymorphic application is always (trivially) 
extensional! However, these "erase-types" models are much too coarse: all elements have all 
types! The point of continuing with a polymorphic extensional col lapse--as suggested by Moggi's 
idea--seems therefore to be the "pruning" of the model, while preserving extensionality. 

Another connection is with the PER models of [Mitchell 1986b]. PER models are, in general, 
not obtained by (what we defined as) polymorphic extensional collapse (for example, one can 
construct PER models that  have all types non-empty). Nonetheless, we have developed enough 
terminology to be able to say what they are. 

Such models have three parameters:  an algebra of polymorphic types T,  an untyped lambda 
interpretation ~/4 and a logical p.e.r. ~ on the "erase-types" polymorphic lambda interpretation 
I r,u. The model is then defined as the quotient ! r ' u / ~ .  

Any HEO-like model is a PER-model.  Indeed, given an HEO-like model with parameters T and 
~/, we note that  ( I f ' u )  w~ - I r~' ' 'u.  Therefore this model is the same as the PER model with 
parameters T p~r, U and )~p~r. 

A characterization of the theories of PER models is given in [Mitchell 1986b]. It essentially says 
that the only additional equations that  hold in PER models- -compared to general mode ls - -  are 
those obtained by equating terms that  look the same when types are erased. I t  is an open question 
whether these are also the only additional equations that  hold in HEO-like models- -compared to 
general models obtained by polymorphic extensional collapse. 

4 . 2  T h e  c l o s e d  t y p e / c l o s e d  t e r m  m o d e l  c o n s t r u c t i o n  

We start  with the observation that  the closed type expressions form an algebra of polymorphic 
types. Indeed, we can take [T =~ T] to be the set of functions ¢v ~ a[t: = w] determined by the 
closed polymorphic type expressions Vt. a. 

Then, for each closed type expression w we have an equivalence relation on the set of closed terms 

of type w: 
M ~ - w N  iff )~v ~__ . M = N : w .  

We take the domain of w to consist of equivalence classes of closed terms of type w modulo ~,~. 
We can also think of this domain as the set of all closed normal forms of type w. The definitions 
of application and the definition of the meaning map by substitution are straightforward. It is 

3HEO2 starts from the partial eombinatory algebra of integers and "Kleene brackets ~ application 
aActually, Mitchell requires U to be a lambda model but the construction goes through for interpretations 



302 

easy to check that we get a polymorphic lambda interpretation (call it the closed type/closed 
term polymorphic lambda interpretation). Moreover, the elements of type polyint, for example, 
are in one to one correspondence with the numerals. Unfortunately, extensionality fails since, 
for example, there are no elements of type Vt. t but there are two distinct elements of type 
(Vt.t) -÷(Vt.t) -~(Vt.t) namely (the equivalence classes of) ix :  Vt.t. Ay: Vt . t . x  and ),x: Vt.t. ).y: Vt . t .y  
while by extensionality there should be at most one. 

Hence the idea of [Coquand 1986] of combining the closed type/closed term construction with 
factoring by p.e.r.'s and thus achieving extensionality. This amounts to taking the polymorphic 
extensional collapse of the closed type/closed term polymorphic lambda interpretation. Let us 
call the resulting model C. In [Coquand 1986] it is shown that in C there are exactly two elements 
of type polybool namely (the meanings of) True and False. In particular, C is non-trivial. Here 
we will show that in C the elements of type polyint are exactly the numerals. This will provide a 
positive answer to the question we asked in the introduction, as well as another proof that C is 
non-trivial. 

Since the numerals are the only closed normal forms of type polyint we need only show that no 
further identifications between numerals take place. 

Suppose that F- ~ = ~ : polyint  is valid in C. Then, for any closed type expression w and for 
any p.e.r. R on the set of equivalence classes modulo ---~ we must have (recall that -~[M] is the 
equivalence class of M modulo ----~) 

Define 
Succ  d~=f Au:poIyint .  Add u 1 : poIyint  --+polyint . 

Taking w = polyint  and R to be the identity we have 

Succ  R--+ R Succ  and 5 R 5  

hence 

But 

polyint  Succ  0 ~po~vi,t n polyint  Succ  D . 

polyint  Succ  0 = Suce "~ D = 

hence ~ ~p0~,~ n which implies m = n. 

Let w be a closed type. A model is said to be canonical at w if its elements of type w are in 
one-to-one correspondence with the closed normal forms of type w. So far, we have seen that C 
is canonical at polybool and polyint. As it was pointed out to us by Albert Meyer, it follows from 
a result in [Statman 1983] that this generalizes to all "such" types. 

More precisely, let us define an ML-polymorphic type to be a closed type of the form Vtl. • • Vt,. a 
where a is V-free 5. As expected, the "combinatorics" of terms of ML-polymorphic type is es- 
sentially that of simply typed terms. The following is a result about simple lambda terms from 
[Statman 1983], rephrased for ML-polymorphic terms. 

S ta tman~s  Typ i ca l  A m b i g u i t y  T h e o r e m  Let w be an ML-polymorphic type and M ,  N two 
closed terms of type w. I f  M and N are not fiT-convertible then there exists a closed term 
L : ~, --~ polybooI such that L M = True  and L N = False .  

Since C is non-triviah 

SThese types correspond to the limited kind of polymorphism allowed in the language ML [Gordon et al. 1979] 



303 

C o r o l l a r y  4.1 The model C is canonical at all ML-polymorphie types. 

An interesting open problem is to characterize the theory of C. A possibility, suggested by Rick 
Statman [Moggi 1986b], is that  C is a minimal model for )~v, i.e., that  any equation that  can be 
consistently added to )~v is valid in C. 

4.3 Full and faithful embeddings of algebras 

This subsection is a spin-off from [Breazu-Tannen & Meyer 1987]. The results presented here can 
be thought of as model-theoretical versions of the conservative extension theorems stated there. 

For the conservative extension theorem that  corresponds to (and follows from) Theorem 4.2 below, 
an alternative, purely syntactic, proof is given in [Breazu-Tannen & Meyer 1987]. We know of 
no such syntactic proof for the conservative extension theorem corresponding to Theorem 4.3. In 
fact, [Breazu-Tannen & Meyer 1987] refers to Theorem 4.3 in this paper for a model-theoretical 
proof of the corresponding result. 

Let A be an algebra with (say, just  for simplicity) just  one sort and a binary operation f .  Given 
a model of 3~ v, we say tha t  (A, f )  is fully and faithfully embedded in it if there exists a type alg 
and an element f l  E Dala-~ azg-, alg such that  when regarding ft as a binary operation on D,zg the 
resulting algebra (Dang, f~) is isomorphic to (A, f ) .  

T h e o r e m  4.2 Any many-sorted algebra can be fully and faithfully embedded in a a model of the 
polymorphic lambda calculus. 

We are going to explain briefly how this is done. Given (again, for simplicity) an algebra (A, f )  
with one sort and a binary operation f ,  we construct first an extension of )v by adding: 

1. a type constant alg, 

2. for each a C A, a constant q~ and a type-checking axiom I- qa : alg , 

3. a constant f with t- f : alg -* alg --+ alg , 

4. for each a, b E A, an equational axiom F f q~ qb = qf(a,b) : alg . 

Then, we construct the closed type/closed term polymorphic lambda interpretat ion of this ex- 
tension. We claim that  (A, f )  is fully and faithfully embedded here at type alg. For this it is 
sufficient to see that  any closed term of type atg converts to a term of the form q~ (true because 
the/3~/-normal forms of type alg are algebraic terms which then convert via the axioms (4) above 
to terms of the desired form) and that  no two distinct terms of the form qa are convertible to 
each other (true because the axioms (4) seen as reduction rules from left to right form together 
with/3 and ~? a Church-Rosser sys tem-- these  are delta rules, see [Klop 1980]). 

Next, we can see tha t  the full and faithful embedding "survives" the subsequent polymorphic 
extensional collapse. This is because in the final model we have the liberty to choose a p.e.r for 
the interpretation of the type constant alg and we choose the identity p.e.r. Therefore, we have 
a full and and faithful embedding of (A, f)  at type <alg, identity>. 

In [Mitchell 1986b] it is s tated that  PER models can be used to obtain faithful but  not full 
embeddings of algebras into models of the polymorphic lambda calculus. Subsequently, John 



304 

Mitchell and Eugenio Moggi have discovered how to do faithful and ful l  embeddings of algebras 
into PER models that have empty types (actually HEO-like models) and, if the algebra has all 
sorts non-empty, even into PER models that have all types nonempty (these cannot be HEO-like 
models) [Mitchell 1986a]. The construction that we have presented here always yields models with 
empty types and had been obtained by us previously and independently. 

While Theorem 4.2 is providing us complete information about the "pure" interaction between 
the polymorphic type discipline and algebraic data type specifications, its setting is not entirely 
satisfactory from the computer scientist's point of view. Indeed, the enormous computational 
power that A v has over the numerals is only superficially used over the added data types. How- 
ever, as shown in [Breazu-Tannen & Meyer 1987}, there are extensions  of +~v in which a strong 
connection between the computational power of )v and the added data types can be set up and, 
moreover, the equational theory of the resulting language is still a conservative extension of the 
data type specifications. Theorem 4.3 below is a model-theoretic version of this result, show- 
ing that both full and faithful embedding and (semantic) computational power over the added 
data types can be simultaneously achieved. The corresponding conservative extension result from 
[Breazu-Tannen & Meyer 1987] follows as a corollary of the proof of Theorem 4.3. 

We will assume that the added data type has a set of observables---say, character strings or 
lists or t rees--and that we care only about computational behavior on the observables. We will 
also assume that there is some standard way to enumerate the observables with each observable 
appearing exactly once in the enumeration. This in turn will yield a one-to-one correspondence 
between functions on the integers and functions on the observables. 

T h e o r e m  4.3 Let ~ be a many-sor ted  algebra. Let co, cl,  c2 , . . ,  be a sequence of  dis t inct  e lements  

of some sort obs of  ~, called observables. Then, there exists a model ~ of the polymorphic lambda 

calculus such that  

(i} A is fu l ly  and fa i th ful ly  embedded in ~, and 

(i 0 every f unc t ion  on observables which is provably total recursive in second-order Peano arith- 

metic  is in ~. 

The construction of ~ is a refinement of the one we use for Theorem 4.2. Like there, we add 
a constant type for each sort of $, constants for the elements and operations of A and axioms 
corresponding to the "tables" of these operations (items (1)-(4)). Moreover, here we also add the 
following items: 

5. a constant I n  with ~- I n  : obs-+ po ly in t  , 

6. a constant Out  with ~- Out  : p o l y i n t - +  obs , 

7. for each observable c,, an axiom . I n  q¢. = ~ : po l y in t  , 

8. for each element a of sort obs that is not an observable, an axiom . I n  qa = ~} : po l y in t  , 

9. for each integer n, an axiom . O ut  ~ = qc. : obs . 

Again, we construct the closed type/closed term polymorphic lambda interpretation of this ex- 
tension. We claim that A is fully and faithfully embedded here and moreover the elements of type 

polylnt are exactly the numerals. 



305 

To see this, note that  conversion in the extended calculus can be analyzed with the reduction 
system consisting of fl, rl and the delta rules obtained by orienting the axioms, (4), (7), (8) and 
(9) from left to right. This system is strongly normalizable [Mitchell 1986b] and Church-Rosser 
[Klop 1980] and, using this, we can argue in the same spirit as in the proof of Theorem 4.2. 

Like before, the full and faithful embedding survives the subsequent polymorphic extensional 
collapse. But, equally important,  so do In and Out. Moreover, no identifications between distinct 
numerals take place (see the previous subsection). Since the collapse preserves the validity of 
axioms (7) and (9), we end up in the final model with two maps that establish a bijection between 
the observables and the numerals. This immediately implies the second part  of the theorem. 

A c k n o w l e d g m e n t s  

We are grateful to John Mitchell for reading an earlier version and suggesting some corrections 
and improvements. Any remaining errors are, of course, our responsibility. The first author 
also benefited from a discussion on full and faithful embeddings with John Mitchell and Eugenio 
Moggi. 

References 

[Barendregt 1984} 

[Breazu-Tannen] 

[Breazu-Tannen & Meyer 1987] 

[Breazu-Tannen 1986] 

[Bruce & Meyer 1984] 

[Burstall et aI. 1980] 

[Cardelli & Wegner 1985] 

[Cardelli 1985] 

[Coquand 1986] 

H. P. Barendregt. The Lambda Calculus: Its Syntax and Se- 
mantics. Volume 103 of Studies in Logic and the Foundations of 
Mathematics, North-Holland, Amsterdam, second edition, 1984. 

V. Breazu-Tannen. Ph.D. thesis, MIT. Expected Feb.1987. 

V. Breazu-Tannen and A. R. Meyer. Computable values can be 
classical. In Proceedings of the 1~th Symposium on Principles of 
Programming Languages, ACM, 1987. To appear. 

V. Breazu-Tannem Communication in the TYPES electronic fo- 
rum (xx.lcs.mit.edu), July 29th. 1986. Unpublished. 

K. B. Bruce and A. R. Meyer. The semantics of second order 
polymorphic lambda calculus. In G. Kahn, D. B. MacQueen, 
and G. Plotkin, editors, Semantics of Data Types, pages 131- 
144, Springer-Verlag, Berlin, June 1984. 

R. M. Burstall, D.B. MacQueen, and D.T. Sanella. Hope: an ex- 
perimental applicative language. In LISP Conference, pages 136- 
143, Stanford University Computer Science Department,  1980. 

L. Cardelli and P. Wegner. On understanding types, data  ab- 
straction and polymorphism. Computing Surveys, 17(4):471- 
522, 1985. 

L. Cardelli. Amber. In Combinators and functional programming 
languages, Proceedings of the 13th Summer School of the LITP, 
Le Val D'Ajol, Vosges, France, May 1985. 

T. Coquand. Communication in the TYPES electronic forum 
(xx.lcs.mit.edu), April 14th. 1986. Unpublished. 



306 

[Fairbairn 1982] 

[Fortune et al. 1983] 

[Gandy 1956] 

[Girard 1972] 

[Gordon et al. 1979] 

[Hindley & Longo 1980] 

[Klop 1980] 

[Leivant 1983] 

[Matthews 1985] 

[Meyer et al. 1987] 

[Meyer 1982] 

]Meyer 1986] 

[Mitchell & Meyer 1985] 

]Mitchell 1986a] 

]Mitchell 1986b] 

J. Fairbairn. Ponder and its type system. Tech. Rep. 31, Com- 
puter Laboratory, Univ. of Cambridge, Cambridge, England, 
November 1982. 

S. Fortune, D. Leivant, and M. O'Donnell. The expressiveness of 
simple and second-order type structures. Journal of the ACM, 
30(1):151-185, January 1983. 

R. O. Gandy. On the axiom of extensionality--Part I. Journal 
of Symbolic Logic, 21, 1956. 

J.-Y. Girard. Interprdtation fonctionelle et glimination des cou- 
pures dans l'arithmdtique d'ordre supdrieure. Ph.D. thesis, Uni- 
versit~ Paris VII, 1972. 

M. J. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh 
LCF. Volume 78 of Lecture Notes in Computer Science, Springer- 
Verlag, Berlin, 1979. 

R. Hindley and G. Longo. Lambda-caleulus models and exten- 
sionality. Zeitsehrift fgir Mathematisehe Logic und Grundlagen 
der Mathematik, 26:289-310, 1980. 

J. W. Klop. Combinatory reduction systems. Tract 129, Mathe- 
matical Center, Amsterdam, 1980. 

D. Leivant. Reasoning about functional programs and com- 
plexity classes associated with type disciplines. In 24th Sympo- 
sium on Foundations of Computer Science, pages 460-469, IEEE, 
1983. 

D. C. J. Matthews. Poly manual. Teeh. Rep. 63, Computer 
Laboratory, Univ. of Cambridge, Cambridge, England, 1985. 

A. R. Meyer, J. C. Mitchell, E. Moggi, and R. Statman. Empty 
types in polymorphic )~-calculus. In Proceedings of the 14th Sym- 
posium on Principles of Programming Languages, ACM, 1987. 
To appear. 

Albert R. Meyer. What is a model of the lambda calculus? In- 
formation and Control, 52(1):87-122, January 1982. 

A. R. Meyer. Communication in the TYPES electronic forum 
(xx.lcs.mit.edu), February 7th. 1986. Unpublished. 

J. C. Mitchell and A.R. Meyer. Second-order logical relations 
(extended abstract). In R. Parikh, editor, Logics of Programs, 
pages 225-236, Springer-Verlag, Berlin, June 1985. 

J. C. Mitchell. Personal communication, August. 1986. Unpub- 
lished. 

J. C. Mitchell. A type-inference approach to reduction properties 
and semantics of polymorphic expressions. In LISP Conference, 
pages 308-319, ACM, New York, August 1986. 



307 

[Moggi 1986a] 

[Moggi 1986b] 

[Nikhil 1984] 

[Reynolds 1985] 

IScedrov 1986] 

[Statman 1980] 

IStatman 1981] 

[Statman 1983] 

[Troelstra (ed.) 1973] 

[Turner 1985] 

E. Moggi. Communication in the TYPES electronic forum 
(xx.lcs.mit.edu), February 10th. 1986. Unpublished. 

E. Moggi. Communication in the TYPES electronic forum 
(xx.lcs.mit.edu), July 23rd. 1986. Unpublished. 

R. S. Nikhil. An incremental, strongly typed database query lan- 
guage. Ph.D. thesis, Univ. of Pennsylvania, Philadelphia, August 
1984. Available as tech. rep. MS-CIS-85-02. 

J. C. Reynolds. Three approaches to type structure. In TAP- 
SOFT advanced seminar on the role of semantics in software 
development, Springer-Verlag, Berlin, 1985. 

A. Scedrov. Semantical methods for polymorphism. 1986. Un- 
published manuscript, Univ. of Pennsylvania, July 1986. 

R. Statman. On the existence of closed terms in the typed A- 
calculus. In J. P. Seldin and R. Hindley, editors, To H. B. Curry: 
Essays in Combinatory Logic, Lambda Calculus, and Formalism, 
pages 511-534, Academic Press, New York, 1980. 

R. Statman. Number theoretic functions computable by poly- 
morphic programs. In g2nd Symposium on Foundations of Com- 
puter Science, pages 279-282, IEEE, 1981. 

R. Statman. A-definable functionals and/3T/ conversion. Arch. 
math. Logik, 23:21-26, 1983. 

A. S. Troelstra (ed.). Metamathematical investigation of intu- 
itionistic arithmetic and analysis. Volume 344 of Lecture Notes 
in Mathematics, Springer-Verlag, 1973. 

D. A. Turner. Miranda: a non-strict functional language with 
polymorphic types. In J.-P. Jouannaud, editor, Functional 
programming languages and computer architecture, pages 1-16, 
Springer-Verlag, Berlin, September 1985. 


