
Theory and practice of canonical term functors 
in abstract data type specifications 

Christoph Beierle 
TK LILOG, IBM Deutschland GmbH 

Postfach 800880, D-7000 Stuttgart I 
EARN/BITNET: BEIERLE at DSOLILOG 

Angelika Voss 
GMD, Gruppe Expertensysteme 

Postfach 1240, D-5205 St. Augustin l 
USENET: AVOSS%GMDXPS at GMDZI 

Abstract.. Term algebras have been widely used in the theory of abstract data types. Here, 
the concept of canonical term algebra is generalized to the notion of canonical term 
functor, which is useful for various aspects of abstract data type specifications. In 
particular, we show how canonical term functors provide a constraint mechanism in loose 
specifications and how they constitute a junction between axiomatic and constructive 
approaches. These concepts are the semantic base for the specification development 
language ASPIK which has been implemented as a core component of an integrated 
software development and verification system. 

1. Introduction 

During the last decade the field of abstract data type theory has received much attention, 
yielding numerous papers on various approaches, To mention only a few, there is the 
initial approach proposed by the ADJ group ([GTW 78], see also [EM 85]) which is based 
on equational specifications and was later generalized to conditional equations and 
universal Horn clauses, the terminal approach advocated by e.g, [GGM 76], [Wa 79], 
[Kam 80], the loose approaches of Clear [BG 80] or CIP-L [CIP85], the algorithmic 
approaches of [Cart 80], [KL 84], [Lo 84], etc.) for a more complete list of references see 
e.g. [EM 85]. 

In many of these approaches term algebras have played an important role, and the 
concept of canonical term algebra as introduced in [GTW 78] has been used also in e.g. 
[Pad 79] and [KL 83]. Here we generalize canonical term algebras to the new notion of 
canonical term functors and show how this notion provides a powerful concept both 
under theoretical and practical aspects of abstract data types. It eases the stepwise 
development and verification of specifications, provides a constraint mechanism in loose 
specifications and can be used as a junction between high level axiomatic and lower level 
algorithmic or constructive approaches. 

The concept of canonical term functor has already been exploited extensively in design 
and implementation of the specification development language ASPIK which together 
with its support environment SPESY is a core component of the ISDV system, an 
integrated software development and verification system [BV 85], [BOV 86]. 

This paper is organized as follows." Section 2 contains some preliminaries about algebraic 



321 

specifications and fixes our notation, In section 3 we recall the definition of canonical 
term algebra and show how it can be generalized to canonical term functors. Additionaly, 
we define strict versions of both concepts, supporting partial operations and a simple 
error handling mechanism, Composability of canonical term functors and other properties 
are proved. In section 4 various applications are described, section 5 briefly discusses 
ASPIK and its support in SPESY, and section 6 contains concluding remarks. 

Acknowledgements: This work was performed at the Universit~t Kaiserslautern and 
was supported in part by the Bundesministerium for Forschung und Technologie (IT 
8302363) and the Deutsche Forschungsgemeinschaft (SFB 314). 

2. Preliminaries: Algebraic specifications 

A signature ~- = < S, Op > consists of a set S of sorts or types and an S* x S - sorted set Op 
of typed operation names, For op ~ Op the notation op: sj.,s n -)s means that op has 

argument sorts sv,,s n and target sort s. 

A ~.-algebra A = < {A s I s ~ S}, {oPA: Asl ×.,  x Asn-~ A s I op: si,.s n -) s ~ Op} > provides a 

data set or carrier A s for each sort s and an operation op A for each operation symbol op in 

Op. A ~.-homomorphism h: A -) A' is an S-sorted family of functions {hs: A s -) As'l s ~ S} 

such that h commutes with the algebra operations in A and A'. Alg(~.) denotes the 
category of all E-algebras together with all ~-homomorphisms. 
A specification SP = < ~., E > consists of a signature ~ and a set E of sentences over ~. This 
defines the class of < ~, E >-algebras which are all E-algebras satisfying the sentences E. 
According to the ADJ approach the isomorphism class of the initial < ~., E >-algebra is the 
abstract data type specified by SP, 

The initial approach of the ADJ-group is an example of a so-called fixed approach where a 
specification has only isomorphic models. Fixed approaches were generalized to so-called 
loose approaches where a specification SP = < ~, E> may also have non-isomorphic 
models) for example, the class of all E-algebras satisfying E is considered, not just the 
initial ones. Whereas the initial as well as the terminal approach (e,g, [Wa 79], [Kam 80]) 
have to restrict the types of admissible sentences in order to guarantee the existence of 
an initial (resp. terminal) model, there is no such need in a loose approach, Equations are 
considered in [GTW 78], positive conditional equations in [TWW 82], and universal Horn 
sentences in [EKTWW 80], whereas in the loose approach of [CIP 85] arbitrary first order 
formulas are allowed, Other loose approaches are e,g. [BG 77, 80, 81], [HKR 80], [SW 82], 
[ZLT82] and [EWT82]. Beside logical formulas, these approaches need so-called 
constraints as another type of sentences in order to exclude unreachable elements or 
non-standard interpretations. In sections 4.3 and 4.4 we will show how algorithmic 
definitions may be used for this purpose. 

3. Canonical term functors 

We introduce canonical term functors as generialization of canonical term algebras in 
section 3,1. In section 3,2 we specialize the definition to strict canonical term functors 



322 

that are better suited as semantics of algebraic definitions. Properties of both types of 
canonical term functors are given in section 3.3. 

3.1 Definition 

In the initial approach of the ADJ-group, an abstract data type is defined as the 
isomorphism class of the initial algebra of an equational specification SP = < ~., E >. Such an 
initial algebra can be obtained by taking the free ~.-term algebra T~ and imposing the 

congruence generated by E on the carriers. The resulting quotient algebra T~/E has 

equivalence classes as its carrier elements. This definition in terms of equivalence classes 
is rather abstract. Sometimes, a more concrete definition is preferable, for example in 
order to compute terms over initial specifications. This role of a concrete initial algebra 
can be played especially by a canonical term algebra (cta), which exists for every 
equational specification. Unfortunately, the existence proof is non-constructive [GTW 78], 
and in general there is no algorithm to generate an initial cta from a specification. 

A cta is obtained from the quotient term algebra T~I E by choosing a representative out of 

each equivalence class. Two restrictions are imposed on this selection: The first 
guarantees that the carriers are closed under subterm formation (subterm property), the 
second guarantees that the carriers are operation-generated. We call this the constructor 
property since the generating operations are often called constructors. 

Definition 3. I [canonical term algebra, eta] 

Let ~. = <S,0p> be a signature and A ~ Alg(~.} an algebra. A is a canonical ~.-term algebra 
( ~. eta, or just eta) iff 

(I) V s ~ S. A s ~ T ~,s (term property) 

(2) V op: s l_.s n ~ s E Op. 

op(t I ,..,t n) c A s 

t l~As l  &. . .&t  n~Asn  

& oPA(t I ,...,t n) = op(t I ,...,t n} 

(subterm property) 

(constructor property). 

The initial approach to ADTs was extended to parameterized ADTs ([TWW 78], 
[EKTWW 80]). A parameterized specification PSP = < FSP, E, E > consists of a formal 
parameter specification FSP = < F~, FE >, a signature E extending F~ (l~L c Z) and equations 
E extending FE (FE~ E). The formal parameter specification denotes the class of all 
FSP-algebras to be parameter algebras. The parameterized specification PSP denotes the 
free functor freepsp: Alg (FSP) -) Alg (< E, E >) that maps every parameter algebra A to its 

free extension free~p(A), which can again be defined very abstractly in terms of 

equivalence classes over the free term algebra Tr(A) generated from A, 

Therefore the same reasons that led to consider a cta instead of a quotient term algebra 
also apply in the parameterized case.. Sometimes it is preferable to have a more concrete 



323 

definition than just the implicit definition of a f ree  functor by  equivalence classes. This 
role can be played by  the so-called canonical t e rm functor (ctf), which we define by a 
s t ra ightforward generalization of the cta definition: Since the pa ramete r  algebras must 
not be affected, a ctf should be strongly persistent,  and the term- ,  subterm- ,  and 
constructor propert ies  must  now be restr icted to the new sorts. In order to ease the 
precise definition of these ideas we  first  introduce some auxiliary notions for expressing 
the c ta - requ i rements  relat ive to a pa ramete r  algebra A. 

Definition 3.2 [ term-,  subterm- ,  constructor proper ty]  
Let ~., Y. " be signatures such that  ~ ~ 7. ". Let A ¢ Alg(~-) and B ~ Alg(~-'). 

(1) B has the (~.'- ~ ) - t e rm proper ty  w.r.t. A iff 

V s~Y- "- Y.. Bs~ T ~.._ E (A)s 

(2) B has the (~- "- ~.)-subterm proper ty  iff 
V s¢ ~. "- ~- .V op: s 1 ... Sn-,  s ~ ~ - " - E .  

op(t I ,...,t n) ~ B s 

t I ¢ Bsl &... & t n~  Bsn 

(3) A' has the (E "- E)-constructor p roper ty  iff 
V s E E - E .  V o p : s  l . . . s n ~ s ~ : - ~ - .  

op(t  I ,...,t n) ¢ B s 

OPB(t I ,...,t n) = op(t I ,...,t n) 

Definition 3.3 [canonical t e rm functor, ctf] 
Let ~: ~. ~ ~-" be a s ignature inclusion, and let C ~ AIg(Z) and C" • Alg(~.') be 
subcategories. A functor g, C -) C" is a canonical ( Z, ~- ')-term functor ((~., ~.')-ctf, or just 
ctf iff 

( I )  g is strongly persistent,  
AIg(L) ° g = id C 

(2) For eve ry  A ~ C, (2.1) - (2.3) hold, 
(2.1) g(A) has the (~. "- ~:)-term proper ty  w.r.t. A 
(2.2) g(A) has the (7. "- ~-)-subterm proper ty  
(2.3) g(A) has the (~. "- ~.)-constructor p roper ty  

As an example,  let ELEM = < < (elem}, O >, O > specify all one-sor ted algebras as 
parameters .  Let F.LIST = < {elem, list}, (nil, cons, car, cdr} > be the signature of linear lists 
wi th  e lements  of sort elem. Define g as a functor g, Alg(ELEM) -, Alg(Y-LIST) whose object 
par t  extends eve ry  pa ramete r  algebra A ~ AIg(ELEM) by  the list carr ier  {nil, cons(e t, nil), 

cons(e 2, cons(e I, nil)) ... [ e I, e 2 .... E Ael m} and by  the usual list operat ions such that  e.g. 

consg(A)(e 2, cons(e I , nil)) = cons(e 2, cons(e I , nil)) 

carg(A)(cons(e 2, cons(e l, nil))) = e 2 

cdrg(A)(cons(e 2, cons(e I , nil))) = cons(e l, nil). 

Then g is a ctf for the following reasons, 
I. g is s trongly persis tent  since the pa rame te r  algebra A is not modified. 



324 

2. g(A) has the term property because the list objects are term generated by the 
new operations nil and cons over the elements of A. 

3. g(A) has the subterm property since for every list carrier element cons(ei,t) t is 

also in the list carrier. 
4. g(A) has the constructor property since for the constructor operations nil and cons 

we have nilg(A ) = nil and consg(A)(ei,t) = cons(ej,t) for every term cons(ei,t) in the 

list carrier. 

3.2 Strict canonical term functors 

So far we have considered all total algebras as models. But there are many reasons to 
consider also partial algebras, e. g. partially defined operations or non-terminating 
recursion) c. f. [CIP 85] among others. A particular method to deal with partial algebras is 
to extend the operation domains by a new element ('undefined'), and to extend the 
operations such that they are strict w. r. t, the new element. We say that a strict algebra 
has carriers with a minimal element, called the error element, and strict operations 
propagating the error elements. Whereas AIg(Z) denotes the class of all Z-algebras, we 
use EAIg(~.) to denote the class of all strict algebras. To make the error elements 
addressable in our specifications we introduce error constants error-s for each sort s in a 
signature Z yielding the signature Err(Z). Thus, a strict Y--algebra in particular is an 
ordinary Err(Y-)-algebra. 

Now we can replace Y. by Err(E) and Alg(Z) by EAIg(Z) in the definition of cta. 
Additionally we require that in every carrier the error element is represented by the 
error constant. The latter requirement is not necessary, but convenient since it allows to 
define the error constants implicitly. 

Definition 3.4 [strict cta] 
Let ~. = <S,Op> be a signature and A ~ EAIg(~-) a strict 7. -algebra. A is a 
strict ~'--cta iff 

( I ) A is an (ordinary) Err(Z)-cta 
(2)V s¢ S. error-s~ A s . 

Just as we obtained the definition of a strict cta from the definition of cta by adding the 
implicit error constants and the error requirement (2), we define a strict ctf to be a ctf 
between two categories of strict algebras and add the error requirement w.r.t, the new 
carriers, 

Definition 3.5 [strict ctf] 

Let ~: ~. -+ Y." be a signature inclusion, and let C c_ EAIg(Z) and C" ~ EAIg(7.') 
be subcategories. A functor g: C -~ C" is a strict (Z~')-ctf iff 

(I)  g is an (Err(Y-), Err(~-'))-ctf 
(2) V s ~ Y.'-Y.. V A ~ C. error-s ~ g(A)s, 



325 

As an example consider again the ctf g defining lists over arbitrary elements from section 
3.1. Supplementing the missing operation definitions we would have difficulties to define 
care(A) (nil) in a total algebra approach. Assuming g as a strict ctf that extends strict 

ELEM-algebras A, we can define cargfA ) (nil) ,= error-elem A to yield the error element of 

sort elem in algebra A. This corresponds exactly to a partial algebra approach (as in the 
CIP project [CIP 85]) when we forget the error elements and analogously restrict the 
algebra operations to partial operations. Thus carg(A)(nil) = error-elem A means that 

Carg(A)(nil) is undefined if g(A) was a partial algebra, and the fact that 

consg(A)(Carg(A)(nil), nil) would also be undefined in a partial algebra g(A) is reflected in 

the strictness of the operations in a strict algebra g(A). However, taking the approach of 
strict algebras we can stay within the simpler framework of total algebras, 

3.3 Properties 

We motivated the concept of ctfs as concrete counterparts of free functors defined by 
equivalence classes in the semantics of parameterized specifications, just like ctas are 
concrete counterparts of initial quotient term algebras in the semantics of 
non-parameterized specifications. Therefore, we would like to have the following 
correspondences between ctfs and free functors, 

(i) 

(2) 

(3) 

Since a constant free functor defines an initial algebra, a constant ctf should yield 
a cta. 
Since the composition of free functors yields again a free functor, the 
composition of ctfs should yield again a ctf. 
Since the application of a free functor to an initial algebra yields again an initial 
algebra, the application of a ctf to a cta should yield again a cta. 

These properties hold both for ordinary and for strict ctfs due to the following three facts, 

Fact 3.6 [constant ctfs are ctas] 
Let E be a signature, A G AIg(E) [resp. A ¢ EAIg(E)] and 

1 A, Alg(<~>) -) AIg(Z) 

[resp. IA: EAIg(<H~>) -) EAIg(Z)] 

be the constant functor yielding A. Then we have: 
A is a [strict] Z-cta ~, 1A is a [strict] (<O~>~)-ctf. 

proof 

I A is strongly persistent since the only object in Alg(<O~>) [resp. EAIg(<O~>)] is the 

empty algebra with no sorts and no operations, and for E - <.0.0> = Z [resp. Err(Z) - 
Err(<0,0>) = Err(~-)], the [strict] E-term, [strict] ~--subterm, and [strict] E-constructor 
properties w. r. t. the empty algebra coincide with the conditions for a [strict] Z-cta. 

The next two facts state that ctfs are closed under composition and that a ctf applied to a 
cta yields again a cta. 



326 

Fact 3.7 [ctfs are closed under composition] 
Let gl: CI -~ C2 be a [strict] (Y. 17.2)-ctf and g2:C2 -) C3 be a [strict] (~.27-3)-ctf. Then 

g2 ' g1: CI -~C 3 

is a [strict] (~. 1,Y3)-ctf, 

Proof 
g2 ' gl is strongly persistent since both gl and g2 are strongly persistent. For A ~ C I, 

g2(gI(A)) has the [strict] (7. 3- ~-2)-term property w. r. t. gI(A) since g2 is a [strict] 

(~.2,Z3)-ctf, and g1(A) has the [strict] (~2-~.1)=term property w. r. t. A since glis a 

[strict] (~.1~2)-ctf, Thus, g2(g1(A)) has the [strict] (E3-~.1)-term property w. r. t. A 

since g2 is strongly persistent. A similar argument shows that g2(gl(A)) has the 

[strict] (~-3-~- I )=subterm and [strict] (~.3-~. I )-constructor properties. 

Fact 3,8 [application of ctfs to ctas] 
Let g: C -, C" be a [strict] (E~')-ctf, and A a [strict] ~--cta with A ¢ C. Then g(A) is a 
[strict] E'-cta. 

Proof 
According to Fact 3.6, A can be identified with the constant functor I A, and 1A can be 

corestricted to C since A ~ C. The composition gol A is a [strict] ctf due to Fact 3.7. Since 

gol A is ~ constant functor from the category containing just the empty algebra, its 

value g(a) is a [strict] E'-cta according to Fact 3.6. 

4. Applications 

4.1. Proofs and stepwise verification 

The power of the cta concept is demonstrated in [GTW 78] by showing that for every 
equational specification an initial cta exists. Similarly, we can prove an analogous result 
for the parameterized case. 

Fact 4,1 [existence of a ctf] 
Let PSP= <FSP,~-,E> be a parameterized 
parameter specification FSP = < FZ, FE > such 
is persistent. Then there exists a free functor 

ctf~p, Alg (FSP) -) Alg (~., E) 

which is a ctf. 

equational specification with 
that the induced free functor 

As in the non-parameterized cta case the proof of this fact which is given in the appendix 
is non-constructive, but similarly as for ctas there is often a natural choice for selecting 
the canonical representatives for a ctf. 

Knowing that ctfs exist, we can use them like ctas instead of quotient term algebras with 
the advantage that one can exploit the term structure in induction proofs (c.f. [GTW 78], 
[Pad 79], [KI 83] and - for a variant of ctas - [EM 85]). Moreover, if one has a system of 



327 

equational parameterized specifications of say sets over lists over some elements and 
corresponding ctfs one can verify them w.r.t, given properties in a stepwise manner by 
considering first the set ctf and then the list ctf, or the other way around. This 
modularization also allows us to do the set verification part only once (e.g. showing that 
the union operation is commutative) and to use it for other instances like sets over arrays 
as well. Such a modularization is used extensively in our ISDV system [BV 85, BOV 86]. 

4.2 Constraints 

Whereas in a fixed approach to abstract data type specifications like the initial or 
terminal one there is no need for a constraint mechanism, such a mechanism is needed in 
a loose approach where all models of a specification are considered. The reason is that at 
least for some substructures one wants to allow only a standard interpretation, For 
example, a specification of the natural numbers should not allow for a model with 
additional elements like oo that cannot be generated by the usual natural numbers 
operations. The loose approaches of [HKR 80], [BG 80] and [EWT 83] use a constraint 
mechanism involving a free functor. The hierarchy constraints proposed in [SW 82] are 
weaker in the sense that - apart from requiring true * false - they only exclude 
unreachable elements ("no-junk" condition) while the other approaches also require that 
generated elements must be distinct ("no-confusion" condition). 

The functor involved in these constraint mechanisms is the free functor defined by 
equational theories. In [GB 83] the more general case of data constraints in so-called 
liberal institutions is considered where an institution is liberal if each of its theory 
morphisms gives rise to a free functor. While the equational institution is liberal, many 
other institutions like the institution of first order predicate logic are not. Therefore, we 
propose to allow as definition of the desired functor not only a theory morphism with its 
induced free functor but any other functors and functor definition methods as well. We 
illustrate this idea first by introducing a general concept of functor constraints and then 
by describing a constructive ctf definition method in the next subsection. 

Definition 4.2 [functor constraints and their satisfaction] 
Let f: Alg (~-, E) -) Alg (~. u ~new' E) be a functor, let t: E -~ ~- u 7.n~ be the signature 

inclusion, and let 6.. ~. u En~-+ E' be a signature morphism Then the pair (f, o) 

constitutes a ~.'-functor constraint. 
An arbitrary ~.'-algebra A satisfies (f, o) exactly if its (E u Zn~)-reduct along o is 

generated - up to isomorphisms - from its ~-reduct by the functor f, i.e. 
A satisfies (f, o) 

Alg (t) (Alg (o) (A)) ~ Alg (E, E) & 
Alg (o) (A) TM f(Alg (t) (Alg (o) (A))) 

where Alg (o) is the forgetful functor corresponding to the signature morphism o. 
(For the ~trim version replace Alg by EAIg.) 

As an example, consider the ctf g: Alg (ELEM) -~ Alg (Y.LIST) from section 3 and an algebra 
A of lists over the natural numbers, Then A satisfies the functor constraint (g, idXLlS T) if 



328 

the list part of A corresponds exactly to the standard lists over the natural numbers. But 
an algebra A' obtained from A by adding terms like "default-list" or "cons(overflow, nil)" 
as new elements of sort list does not satisfy the constraint. 

Note that like in the data constraints of [GB 83], the signature component o, ~ u ~,ew ~ T.' 

in a functor constraint (f, 6) serves as a means for translating such a ~' constraint by a 
signature morphism o' : ~-' -~ ~" to a ~"-constraint (g, o' o 6 ~ ~. u ~-n~ -) ~'')" 

This allows us to derive the satisfaction condition for functor constraints) the proof is 
analogous to the case of data constraint in [GB 83]. 

Fact 4.3 [satisfaction condition for functor constraints] 
Let (g, o) and o' be as above, and let A"~ Alg (~.") be an algebra. Then Alg (6') (A") 
satisfies (g, 6) iff A" satisfies (g, 6' o 6). (For the strict version replace Alg by EAIg.) 

Proof 
A" satisfies (g, O'o o) iff Alg(t)(Alg(o' o o))(A") ~ AIg(~,E) and Alg(o' ° o)(A") = g(Alg(1) 
(Alg(o) o o) (A"))) due to Definition 4,2. Since the functor Alg respects composition this 
is equivalent to Alg(6 o t) (AIg(G)(A")) ~ AIg(~-,E) and Alg(o)(Alg(o' )(A")) -- g(Alg(6 o ~) 
(AIg(6')(A"))), which in turn is equivalent to AIg(6')(A") satisfies (g~) according to 
Definition 4,2. (For the strict version replace Alg by EAIg.) 

Since the satisfaction condition holds we can extend the types of admissible sentences in a 
specification (c.f. section 2) by functor constraints and in particular by ctf constraints. 

4.3 Parameterized algorithmic definitions 

Whereas so far only free functor constraints defined by theory morphisms have been 
considered in the literature, we now describe a definition method for ctf constraints. 

While the implicit definition method for free functors via equational theories or more 
generally via theory morphisms represents a very  high level of abstraction we think that 
for the more concrete ctfs a more constructive definition method is appropriate. 
Constructive or algorithmic definition techniques in the framework of abstract data types 
have been proposed in [Cart 80], [KI 84], and [Lo 84], but none of them exploits the 
specific advantages of ctas nor do they support a rigorous parameterized approach. On the 
other hand, for the definition of ctf domains we would like to allow a broad range of 
different specification techniques since our ctf concept does not make any specific 
assumptions about the parameter algebras. Therefore, we distinguish the following two 
components of our ctf definition method: 

( I ) definition of the class of parameter algebras 
(2) definition of the new carriers and the new operations. 

For (I) we can assume an arbitrary loose specification < ~, E > denoting the class Alg(~, E) 
(resp. EAIg(~, E) in the strict case) as the domain of the ctf. E may contain just equations, 
or formulas in first order predicate logic, or constraints, etc. For (2) we will describe a 
definition method for strict ctfs that can be modified to yield a method for the definition 



329 

of ordinary ctfs. 

Since our constructive definition method for strict ctfs has been realized in the 
specification development language ASPIK [BV 85], we will illustrate it by working 
through the ASPIK specification LIMITED-STACK as shown in figure 4.4) (this figure was 
produced by the ASPIK support environment SPESY). The dashed lines in figure 4.4 
indicate parts that obey certain syntactic conditions to be discussed in the sequel w.r.t. 
the individual clauses. These conditions guarantee that every ASPIK specification has a 
well defined ctf semantics. 

I. The us____~e clause contains the two specification names ELEM and LIMIT where ELEM 
contains just the single sort ELEM and LIMIT extends a specification NAT of the natural 
numbers by a constant limit of sort nat to be used as the maximal size of the stacks. 
Semantically, the use clause defines the class of parameter algebras for a ctf which in this 
case is the class of all one-sorted algebras combined with the natural numbers with an 
additional natural number constant. As pointed out above, ELEM and LIMIT could have 
been specified by any suitable specification method. 

2. The sorts and ops clauses introduce the names and arities of the new sorts and 
operations. 

3. In the spec-body clause, the new carriers and operations are defined separately 

3.1 Definition of new carriers= 
The operation symbols empty and push in the constructors clause generate the Herbrand 
universe of terms over these operation symbols. Prefixing the terms with the symbol" • ", 

it is the set {.empty, .push(empty, el), .push(push(empty, el), e 2) .... [ e i e Aelem} u 

(error-stack) of all terms built from empty, push and elem- objects in the parameter 
algebra A (without error-elemA)) the stack error constant is added separately. Thus, the 

term property is satisfied. Note that the prefix • is used to distinguish data objects from 
operation applications. Thus, .push(st,e) is an element of the Herbrand universe, while 

push(st,e) is a term that may evaluate to .push(st,e) or to error-stack depending on the 

depth of st. The auxiliary function depth is introduced and defined in order to be used in 
the definition of the characteristic predicate is-stack in the define-carriers clause. This 
characteristic predicate restricts the term-generated Herbrand universe to stack terms 
that do not exceed the given limit, yielding the carrier for sort stack. Note that is-stack 
must respect subterms so that the restricted carrier is still closed under subterms 
(subterm property). This semantic property is guaranteed by a simple syntactic condition 
that requires the explicit subterm test in the definition of is-stack, (see figure 4.4). 

3.2 Definition of new operations.. 
In the define-constructor-oDs clause the constructors empty and push are defined so as to 
satisfy the constructor property, which requires empty ..= .empty and 
push(st,e) ;= .push(st, e) for all stack terms st below the limit. To satisfy this requirement 
the characteristic predicate's definition can be transformed into definitions of the 



3 3 0  

s p e c  L I M I  TED-S TA CK 
I *  STANDARD ALGORITHMIC DEFINITZON OF A L IM ITED-STACK.  PUSH ON A FULL 
/ *  STACK.. POP OR TOP OF AN EMPTY STACK RESULT IN  ERRORS * /  

L I M I T  ; 
$-OF~s~ S TA CK ; 
~ - 3 E ~ P T Y :  - ->  STACK 

EMPTY? .FULL? : STACK - - >  BOOL 
PUSH: STACK ELEM - - >  STACK 
POP: STACK --> STACK 
TOP: STACK --> ELEM:. 

s p e c - b o d y  L -- - -  -~ 
c o n s t r u c t o r s  EMPTY . . . . . . .  LJ 

PUSH; 
~C~I'~?I-~DEPT.: STACK --> NAT; 
i d e f  1 n e - ~ u z  ) 1 I at"  I e~; 

DEPTH(ST) = c a s e  ST 

2 ~--U~H-(~TOT[L ~)- ~ SUC(~EP TH(S TO) ) 
. . . . . . . .  ~ C ; J  . . . . . . . .  

, ~ e f i n e - c a r r i e r ~  - - 
IS -STACK(ST)  = E ~ ' - s F ~  n 

| * PUSH(STS.ELD) : i f  NOT( IS-STACK(STO))  t 
I ~he~ FALSE I 

_ ~ - , L . - ~ ' - - ' ' - ' - - - ' - - - -  MIT) 
o t  h ~ r w i  s_.~ TRUE 

L d e f  ~ n e - c o n s t r u c t ° r - ° p s  L 
- - T u ~ E ~ ; ' E E ~  --T~T--~DE-fT.(STO),__ LT L'Z~Z-f)~ 

: t h e , q  * PUSH(STO~,ELO) J 

E~PTY = ~ ~ . r - ~ g -  - 

EMPTY?(ST> = ca'se ST 

j"~-'P-US'-HES-TO,)'--ECOT ~ FALSE 
~ , _ - ~ _ 2  . . . . . . . .  

FULL?(ST)  = NO?(-(DEPTH(ST) LT L I M Z T ) )  
POP(ST) = q a s e  ST 

c-~--E-HP'-T~7 ~ ERROR-STACK 
1-j.--p'USH(STO.ELO) ~. ~ J  ., sro 

TOP(ST) = c a s e  ST i j  
"-EMP?Y" :-ILERROR-EL EM 

~* PUSH(STD.ELO) ELO 

: , .~ -p ,o  ;s~TF) ' 
J 

* /  

Figure 4.4 The ASPIK specification LIMITED-STACK 

constructor operations by replacing every true-branch by the .-prefixed constructor 
term. For every false-branch an arbitrary term may be supplemented. By requiring that 
it must not contain any .-prefixed constructors it is guaranteed to lie in the restricted 
carrier. In our example, .push(st, e) is not accepted by is-stack when st is full to the limit. 
In this case push(st, e) is defined to yield the error element of sort stack. The remaining 
operations are defined in the define-ops clause using the constructor operations, but 
again no .-prefixed constructors. As a consequence, these operations are also guaranteed 
to be closed on the carriers. 
Auxiliary operations like depth need not be redefined as new operations) they are closed 
on the carriers because they, too, must not be defined using the .-prefixed constructors. 

All operations may be defined via if-then-else schemes, case-schemes w.r.t, new sorts, 
and recursion. To explain the semantics of the recursive definitions by a least fixpoint 
construction we use strict algebras: Their carriers are flat cpos with the error element as 



331 

bottom. As a consequence the ctfs defined by our language are strict ctfs. Besides, strict 
algebras provide a simple built-in error handling mechanism that propagates errors via 
strict operations. 

The syntactic clauses discussed above do not contain an explicit definition of the 
morphism part of a ctf, because it can be derived from the information already given. For 
example, if h: A -~ A" is a morphism in EAIg(ELEM) the corresponding LIMITED-STACK 
extension of h maps a stack carrier object ,push(push(empty, a2), a I) with a i ~ Aelem to 

*push(push (empty, h(a2)), h(a I )). 

In this section we could only indicate the conditions that guarantee that every 
constructive ctf definition denotes a well defined ctf. [BV 85] contains a denotational 
semantic definition with a complete set or context sensitive conditions and correctness 
proofs. The algorithmic approach of [Lo 84] also uses term sets as carriers but in principle 
there is no syntactic correspondence to the algebra operations like in a cta approach. In 
[Lo 84] the carriers may be restricted by a characteristic predicate and additionally an 
algorithmically defined equivalence relation generates congruence classes on the 
restricted carriers. We think the latter may be better suited for a high level axiomatic 
approach than for a lower level constructive one. 
[Lo 84] does not provide any ~ntact.ic conditions for a well-defined semantics~ in 
general, rather complex and difficult proofs may be necessary to ensure that  the 
operations are restrictable to the restricted, carriers, that .the equivalence operation is 
reflexive, symmetric, and transitive and that it defines a congruence relation (i.e. it must 
be compatible with all operations). [KI 84] allows only primitive recursive definitions 
which makes a least fixpoint semantics superfluous. If we restrict our ctf definition 
method to primitive recursive definitions and additionally exclude error elements and 
constants we obtain a definition method for ordinary ctfs where the same context 
conditions can be used. 

4.4 Integration of axiomatic and constructive techniques 

The parameterized constructive ctf definition technique described in the previous 
subsection can be .used as a constraint mechanism according to section 4.2. Since it is 
independent of the sentences used to specify the parameter class of the ctfs, it can extend 
many different approaches. In particular, extending axiomatic techniques based on 
equational logic or first order predicate calculus by ctf constraints, axiomatic and 
constructive methods presenting different levels of abstraction are integrated in a 
uniform framework. In such a framework the stepwise development scenario can be 
realized by moving gradually from high level, purely axiomatic definitions through 
intermediate forms to completely constructive definitions representing executable 
prototypes ([BV 85], [BOV 86]). 

5. ASPlI~ and SPESY 

ASPIK is a specification development language for the stepwise development of 
hierarchical, loose specifications, their refinements and implementations. A specification 



332 

may contain two types of sentences: arbitrary first order formulas and ctf constraints that 
are defined in the constructive technique described in section 4.3. 

The constructive ctf definition technique is highly supported by the ASPlK support 
environment SPESY: 
- Context-sensitive conditions guarantee that every ctf definition has a well 

defined semantics. SPESY checks these conditions and additionally exploits them to 
generate parts of a ctf definition automatically. In figure 4.4 these parts are indicated 
by dashed lines. 

- Being constructive, cff definitions are amenable to interpretation: SPESY provides an 
interpreter for terms built from constructively defined operations. 

Due to the integration of axiomatic and constructive techniques stepwise specification 
development as sketched in section 4.4 can be carried out within ASPIK. All development 
steps can be verified formally, e.g. refining an axiomatically specified subpart A by a 
constructive ctf definition C requires a proof that C satisfies the properties given in A. 
Such proofs are done stepwise along the hierarchical structure as suggested in section 4.1. 
The corresponding proof tasks are formulated by SPESY, and passed to one of its 
associated automatic theorem provers ([Karl 84], [Tho 84]). SPESY processes the results of 
the provers and a reason maintenance component surveys the validity of proved 
assertions after any manipulations like editing in the specification hierarchy ([BV 85], 
[Boy 861). 

6. Conclusions 

We introduced the notion of canonical term functor as a generalization of canonical term 
algebra and defined strict versions for both concepts. After proving some properties of 
ctfs, we addressed their applications in a constraint mechanism, an integration of 
axiomatic and constructive techniques, and in the specification development language 
ASPIK and its support environment SPESY. 

Appendix: Proof of Fact 4. I 

The free functor freepsp: AIg(FSP) ~ Alg (~-, E) can be defined by sending every A ¢ 

AIg(FSP) to Tr(A)/~. (c. f. Theorem 7 in [TWW 82]). From Tr(A}/~ we will construct an 

isomorphic algebra C(A) by selecting a single representative for each equivalence class. 
Then sending A to C(A) still yields a free functor. By showing that the F~-reduct of C(A) is 
A and that C(A) has the (Z - F~)-term, -subterm, and -constructor properties w. r. t. A we 
conclude that this functor is also a ctf. 

The rest of this proof generalizes the one for the cta case given in [GTW 78]: We define a 
family < Cnl n z 0 > of subsets of T~.(A) such that C = U  {C n I n z 0} is the set of 

representatives. The sets C n are defined inductively on the depth of terms so that= 

(I) t ~ C n implies depth(t) < n 



333 

(2) if t ~ Tx(A) such that the =-equivalence class of t has a representative of depth 

n, then there is a unique representative t* G T~._ Fx(A) 

(3) for any op.. s I ._ s m -) s ~ ~. with s ~ ~- FZ op(t I .... t m) ~ C n implies {t I ..... t m} 

Cn-! 

In the following the elements of F~ are called old, the elements of ~ - FZ are called new. 

For any old sort s c FI we observe that A s _= Tx(A)I=,s since the free functor is persistent. 

Therefore, the elements of A can be taken as unique representatives for all eqivalence 

classes in TE(A)/s,s with s ~ FI. For the set T O ..= (op, -) s c l  - FI I s ~Z - F~} of constants 

of a new sort s we choose a subset C" 0 ~ T O such that for each op ~ T O there exists a 

unique op* ~ C" 0 with op ~ op* (which obviously can be done). Since the elements of A are 

treated as constants having depth 0 in the definition of Tz(A), C O := A u C" 0 satisfies 

conditons ( i )  - (3). 

Now assume that C n satisfies (I)  - (3). Let Tn+ I be the set of equivalence classes having a 

representative of depth n + I, but no representative of depth • n. Cn+ I is given by C n 

together with a single representative op(t1*,..,tm*) of depth n +I for each class in Tn+ 1 

which can be chosen so that ti* ~ C n since C n contains representatiaves for all terms of 

depth <= n. Furthermore, both the target sort s of op; s I ..s m -) s and op itself must be in Y~ 

- FI since for all old sorts there are representatives of depth 0 due to the peristency of 
the free functor. Thus Cn+ I also satisfies ( I )  -(3). 

C is the carrier of our desired algebra C(A). The operations of C(A) are obtained by 

restricting the operations in T~(A)/~ to the representatives, i.e. OPC(A)(tl*,...,tm*) ~= 

(op(t1,_.,tm))*. The definition of C immediatly guarantees that the FZ-reduct of C(A) has 

the (I  - FI) - term and subterm properties w.r.t.A. For s ~ I  - FI, op: sl..Sm-) s ~Z - F I ,  

and op(t l,_.,t m) c C(A) we have oPC(A)(t I ..... t m) = (op(tl,...,tm))* = op(ti, . . , t  m) since the 

representatives in C(A) are unique. Thus, C(A) also has the (Z - FZ) - constructor property 
which completes the proof. 

B e f e r e n c e s  

[BG 77] Burstall, R.M., Goguen, J.A.: Putting Theories together to Make 
Specifications. Proc. 5th IJCAI, 1977, pp. 1045-1058. 

[BG 80] Burstall, R.M., Goguen, J.A.: The semantics of Clear, a specification 
language. Proc. of Advanced Course on Abstract Software Specifications, 
Copenhagen. LNCS Vol.86, pp. 292-332. 

[BG 811 Burstall, R.M., Goguen, J.A.: An informal introduction to specifications 
using Clear. in: The Correctness problem in Computer Science (Eds. R.S. 
Boyer, J.S. Moore). Academic Press 1981. 

[BOV 86] Beierle, C., Olthoff, W., VoW, A.: Towards a formalization of the software 
~evelopment process. Proc. Software Engineering B6, Southampton, U.K. 
(Eds. D. Barnes, P. Brown). Peter Peregrinus Ltd., pp. 130-144, ~986. 



334 

i.~v 85] 

[Cart 80] 

[CIP 85] 

[EKTWW 80] 

[EM 85 ] 

[EWT 82] 

[EWT 83 ] 

[GB 83 ] 

[GGM 76! 

[GTW 781 

[HKR 80 ] 

[Kam 8O ] 

[Karl 84] 

LKI 83 ] 
[KI 84] 

[Lo 84] 

[Pad 79] 

[Pad 83] 

[sw 82 ] 

[Tho 84 ] 

[wa 79] 

[ZLT 82] 

Beierle, C., VoW, A.: Algebraic Specifications and Implementations in an 
Integrated Software Development and ~erifieation System. Memo SEKI-85-12, 
FB Informatik, Univ. Kaiserslautsrn, (joint SEKI-Mem 9 containing the Ph.D. 
thesis by Ch. Beierle and the Ph.D. thesis by A. VoS), Dec. 1985. 

Cartwright, R.: A constructive alternative to abstract data t;ype 
definitions. Proc. 1980 LISP Conf., Stanford University, pp. 46-55, 198~. 

CIP Language Group: The Munich Project CIP, Vol. I: The Wide Spectrum 
Language CIP-L. L~CS, Vol. 183, 1985. 

Ehrig, H., Kreowski, H.-J., Thatcher, J., Wagner, E., Wright, J.: 
Parameterized data types in algebraic specification languages, Proc. 7th 
ICALP, LNCS Vol. 85, 1980, pp. 157-168. 

Ehrig, R., Mahr, B.: fundamentals of Algebraic Specificiations I - 
Equations and Initial Semantics, Springer Verlag, 1985. 

Ehrig, H., Wagner, E., Thatcher, J.: Algebraic Constraints for 
specifications and canonical form results. Draft version, TU Berlin, June 
1982. 
Ehrig, H., Wagner, E., Thatcher, J.: Algebraic specifications with 
generating cons%taints, Proc. ICALP 83, LNCS 154, 198% pp. 188-202. 

Goguen, J.A. F Burstall, R.N.: Institutions: Abstract Model Theory for 
Program Speclfication. Draft version. SRI International and University o~ 
Edinburgh, January 1983, revised 1985. 

Giarratana, V., Gimona, F., Montanari, V.: 0bservability concepts in 
abstract data type specifications. 5th MFCS, LNCS 45, 1976, pp. 576-587. 

Goguen, J.A., Thatcher, J.W., Wagner, E.G.: An initial algebra approach to 
the specificatio~ correctness, and implementation of abstract data types, 
in: Current Trends in Programming Methodology, Vol.4, Data Structuring 
{ed. R. Yeh), Prentice-Hall, 1978, pp. 80-144. also: IBM Research Report 
RC 6487, 1976. 

Hupbach, U.L., Kaphengst, H., Reichel, H.: Initial algebraic 
specifications of data types, parameterized data types, and algorithms. 
VEB Robotron, Zentrum fur Forschung und Technik, Dresden, 1980. 

Kamin S.: Final data type specifications: a new data type specification 
method. 7th POPL, [as Vegas, 1979. 

Karl Mark GRaph: The ~arkgraf Karl Refutation Procedure. SEKI- 
Projekt, Memo SEKI-MK-34-01, Univ. Kaiserslautern, 1984. 

Klaeren, H.: Algebraische Spezifikation. Springer Verlag, 1983. 

Klaeren, H.: A constructive method for abstract algebraic software 
specification. TCS, Vol.30, No. 2, pp. 139 - 204, Aug. 1984. 

Loeckx, J.: Algorithmic specifications: A constructive specification 
method for abstract data types. Bericht A 84/03, Fachrichtung Informatik, 
Universit~t des Saarlandes, April 1984. (to appear in TOPLAS) 

Padawitz, P.: Proving the correctness of implementations by exclusive use 
of term algebras. Bericht Mr. 79-8, TU Berlin, Fachbereich Informatik, 
1979. 

Padawitz, P.: Correctness, Completeness, and Consistency of Equational 
Data Type Specifications. Dissertation, TU Berlin, Fachbereich Informatik, 
Bericht Mr. 83-15, 1983. 

Sannella, D.T., Wirsing, M.: Implementation of parameterized 
specifications, Proc. 9th ICALP 1982, LNC8 Vol. 140, pp 473 - 488. 

Thomas, Ch.: RRLab - Rewrite Rule Labor. Entwurf, Spezifikation und 
Implementierung sines Software-werkzeuges zur Erzeugung und 
Vervollst~ndigung yon Rewrite-Rule Systemen. SEKI-Projekt, Memo SEKI-84- 
01, Univ. Kaiserslautern, FB InformatiK, 1984. 

Thatcher, J.W., Wagner, E.G., Wright, J.B.: Data Type Specification: 
Parameterization and the Power of Specification Techniques. ACM TOPLA8 
Vol. 4, No. 4, Oct. 1982, pp. 711-732-. 

Wand, M.: Final algebra semantics and data type extensions. J. Comp. Syst. 
Sci. 19, 1979. 

Zilles, S.N., Lucas, P., Thatcher, J.W.: A Look at Algebraic 
Specifications. RJ 3568 (41985), IBM Research Division Yorktown ~eights, 
New York, 1982. 


