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Abstract

A Chu space is a binary relation =| from a set A to an antiset X de-
fined as a set which transforms via converse functions. Chu spaces admit
a great many interpretations by virtue of realizing all small concrete cat-
egories and most large ones arising in mathematical and computational
practice. Of particular interest for computer science is their interpreta-
tion as computational processes, which takes A to be a schedule of events
distributed in time, X to be an automaton of states forming an informa-
tion system in the sense of Scott, and the pairs (a, x) in the =| relation to
be the individual transcriptions of the making of history. The traditional
homogeneous binary relations of transition on X and precedence on A are
recovered as respectively the right and left residuals of the heterogeneous
binary relation =| with itself. The natural algebra of Chu spaces is that
of linear logic, made a process algebra by the process interpretation.

1 Introduction

Two pressing questions for computer science today are, what is concurrency,
and what is an object? The first question is of interest to today’s sibling growth
industries of parallel computing and networks, both of which stretch our ex-
tant models of computation well beyond their sequential origins. The second
is relevant to programming languages, where the definition of object seems to
be based more on whatever software engineering methodologies happen to be
in vogue than on the intuitive sense of “object.”

One recent view of computation [Tra95] classifies the extant models under
the three headings of logic, networks, and automata. But while this perspective
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nicely ties together three long-established computational frameworks, it neglects
more recent developments such as the recent work of Abramsky on interaction
categories as exemplified by the category SProc [GN95], and of Milner on the
π-calculus [MPW92] and more recently action calculi [Mil93]. Moreover its
conception of network is more the channel-connected modules of Kahn [Kah74]
than the alternating places and transitions of Petri [Pet62].

Petri nets express the duality of events and states in terms of a “token game”
played on a bipartite graph. This bipartiteness is the distinguishing feature of
Petri nets, resulting in fine-grained or move-based execution where tokens move
alternately between events or transitions and states or places. This is in contrast
to the coarse-grained or ply-based execution of transition systems where edges
connect states, and schedules where edges connect events.

A popular strategy for controlling the conceptual complexity of large con-
current systems is to decompose them into modules that assemble or com-
pose in mathematically formalizable ways. The basic tool for formalizing the
composition of modules is algebra. This motivates the development of pro-
cess algebras forming a suitable basis for concurrent programming languages.
Noteworthy such algebras include Hoare’s Communicating Sequential Processes
(CSP) [Hoa78], Milner’s Calculus of Communicating Systems (CCS) [Mil89],
and Bergstra and Klop’s Algebra of Concurrent Processes (ACP) [BK84, BK89].

The token game does not lend itself well to algebra, a limitation addressed by
Nielsen et al [NPW81] with the notion of event structure, which they show to be
dual to prime algebraic domains, one kind of Scott domain [Sco76]. This duality
is an instance of Stone duality [Sto36], a subject that has matured considerably
in half a century [Joh82].

We see the essential elements of concurrency as residing in the topics of Petri
nets, event structures, domains, Stone duality, and process algebra.

As the separate chapters of a theory of concurrency, these topics make con-
currency something of a jigsaw puzzle. One is then naturally led to ask whether
the pieces of this puzzle can be arranged in some recognizable order.

In this paper we review the outcome to date of our recent investigations of
Chu spaces as a candidate unifying framework for these aspects of concurrency
[Pra92, Pra93, Gup93, GP93, Gup94, Pra94b, Pra95a]. Their simplicity is de-
ceptive, and two years of experience with them have convinced us that they are
more than adequately equipped for this role.

Chu spaces are simple, useful, and well-organized. With regard to simplic-
ity, a Chu space is merely a matrix that transforms by deleting and copying
columns (antimapping) and identifying and adjoining rows (ordinary mapping).
The next section defines this process more precisely in terms of a converse func-
tion or antifunction g specifying where the surviving columns were copied from
and a forward function f specifying where the resulting rows are to be sent
to. These contravariant column manipulations constitute mental preparation
of states while the covariant row manipulations constitute physical mapping of
points; thus Chu spaces transform by looking before they leap.

With regard to utility, besides the motivating application to concurrent com-
putation, Chu spaces find application in mathematics, where they organize re-
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lational structures, topology, and duality into a unified framework [Pra95b];
physics, where they provide a process interpretation of wavefunctions [Pra94a];
and philosophy, where they offer a solution to Descartes’ problem of the mech-
anism by which the mind interacts with the body [Pra95a]. Common to these
applications is the construction of “everything” in the domain in question in
terms of the interaction of appropriate polar opposites in the domain: in math-
ematics as the interaction of sets and antisets, in physics as the interaction
of particles and waves, in philosophy as the interaction of body and mind. It
is a measure of the robustness of the notion of Chu space that none of these
applications call for any adjustment to its definition.

With regard to organization, Chu spaces and their transforms form a re-
markably well-endowed category, being concrete and coconcrete, self-dual, bi-
complete, and symmetric monoidal closed. These properties are expressible
concretely as operations on the category corresponding to the operations of lin-
ear logic and bringing it as close to being a model of full linear logic as any
comparably simple structure. The process interpretation of Chu spaces makes
this structure a process algebra interpretation of linear logic. This reinforces
the connections previously noticed by Asperti [Asp87] and Gehlot and Gunter
[GG89] between linear logic and concurrency in the Petri net setting (Section
4).

2 Definitions

Definition 1 A Chu space over a set K is a triple A = (A,=|, X) consisting
of sets A and X and a function =| : A×X → K, that is, an A×X matrix whose
elements are drawn from K. We write the entry at (a, x) as either =|(a, x) or
a=|x.

We may view A as being organized either into rows or columns. When
viewing A by row we regard A as the carrier of a structure and the row indexed
by a as the complete description of element a. The description function =̃| :
A→ KX is the function satisfying =̃|(a)(x) = =|(a, x), and assigns to each a its
description. We write ã for the description of a, namely =̃|(a), and Ã for the
set {ã | a ∈ A} of all rows of A. When the description function is injective (no
repeated rows) we say that A is T0 (or coextensional).

When viewing A by column we view A as consisting of locations or variables
with values ranging overK, and the column indexed by x as one of the permitted
assignments to these variables. The extension function |̃= : X → KA satisfies
|̃=(x)(a) = |=(x, a); a state x ∈ X is understood as merely the name of an
assignment or binding of values to variables. The notations x̃ and X̃ are the
evident duals of ã and Ã. When the extension function is injective (no repeated
columns) we call A extensional. In a nonextensional Chu space two states may
name the same assignment.

A Chu space can in this way be seen as a multiset A of rows from KX

and a multiset X of columns from KA, with “multiset” replaced by “set” when
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T0 and extensional. The rows present the physical, concrete, conjunctive, or
yang aspects of the space, while the columns present the mental, coconcrete,
disjunctive, or yin aspects. We may regard rows and columns as characteristic
functions of subsets of respectively X and A, where K is taken to consist of
the degrees of membership, with K = 2 = {0, 1} giving the ordinary notion of
membership, 1 for in and 0 for out.

The Chu space obtained by identifying all pairs x, y of column indices for
which x̃ = ỹ, and likewise for row indices, is called the skeleton of that Chu
space. A normal Chu space is one satisfying x̃ = x for all x ∈ X (whence
X̃ = X), and can be written as simply (A,X), =|(a, x) being definable as x(a).
A normal space is automatically extensional but need not be T0.

The dual of Chu space (A,=|, X) is its transpose, notated (X, |=, A) where
|=(x, a) = =|(a, x). A conormal space is the dual of a normal space, automati-
cally T0 but not necessarily extensional.

Chu transforms. Just as vector spaces transform via linear transformations
and posets via monotone functions, so do Chu spaces transform via Chu trans-
forms, turning the class of Chu spaces into the category Chu(Set,K) or just
ChuK .

Definition 2 Given source and target Chu spaces A = (A,=|, X) and A′ =
(A′,=|′, X ′), a Chu transform (f, g) : A → A′ consists of a pair of functions
f : A→ A′, g : X ′ → X satisfying the following adjointness condition.

∀a∈A ∀x′∈X ′ . f(a)=|′x′ = a=|g(x′).

Chu transforms may be understood operationally as “look before you leap,”
that is, mental preparation followed by physical transformation, with an inter-
mediate Chu space A′′ = (A,=|′′, X ′) representing the result of just the mental
preparation. The columns of A′′ all appear in A while its rows all appear in
A′. Column x′ of A′′ appears as column g(x′) of A and row a of A′′ appears as
row f(a) of A′. Either one of these requirements suffice to determine =|′′(a, x′)
uniquely, as either =|(a, g(x′)) or =|′(f(a), x′). The adjointness condition is the
necessary and sufficient condition for their consistency. This process is illus-
trated by the following example (which incidentally realizes the projection of
the two dimensional vector space over GF (2) onto one axis).

0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0

delete cols 2,3
−→

copy cols 0,1

0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1

send rows 2,3
to rows 0,1

−→
adjoin original
rows 2 and 3

0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0

Columns 2 and 3 are deleted, and a copy made of columns 0 and 1. Then row
0 is identified with 2 and 1 with 3, and two new rows adjoined (which happen
to be rows 2 and 3 of the source but they could have been anything had we
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not cared whether the target was a vector space). (The intermediate space is
not a vector space, but would have been the one-dimensional vector space had
we done the row identifying in the first stage and the column copying in the
second, a reasonable order.)

The “mental preparation” step therefore consists of deleting some columns
and making copies of others. No new columns are introduced, so no structure (in
the form of disallowed states) is lost. If the target has structure absent from the
source, the structure must first be added by deleting columns or the row mapping
will not be possible. This gives Chu transforms the character of structure-
preserving homomorphisms [Pra95b], with continuous functions then falling out
as an obvious special case when analyzed as above. All relational structures are
realizable as Chu spaces [Pra93, Pra95b], as are topological spaces [LS91]. These
representations can be combined to represent topological relational structures
such as topological groups, topological vector spaces (the main *-autonomous
category studied in [Bar79]), ordered Stone spaces [Pri70], and so on. More
recently (note in preparation) we have shown that every small concrete category
C is realizable in ChuK where K is the disjoint union of the underlying sets of
the objects of C.

3 Process

3.1 Interaction of events and states

This section gives the computational or process interpretation of Chu spaces,
in terms of their internal row-and-column structure rather than their external
linear-logic structure, the topic of the next section.

We propose to understand computation in terms of the interaction of a pure
schedule, understood as a set of concurrent events, with a pure automaton,
understood as a set of possible alternative worlds or states, This parallels our
proposed interpretations of other phenomena in terms of the interaction of op-
posites appropriate to those phenomena.

Although computation has a number of facets, a particularly problematic
one is concurrency, the search for whose essence led us to the Chu space model.
We begin by discussing what is problematic about concurrency.

To cater for concurrency we moved in the 1980’s from the traditional state-
oriented view of computation that we had embraced in the 1970’s to a more
event-oriented view. The former understands concurrency in terms of interleav-
ing: concurrent events are those that can happen in either order. The latter
understands concurrency in terms of independence or asynchrony: concurrent
events are those that bear no temporal relationship to each other, happening
without regard for order as distinct from simultaneous or synchronized events.

The main difference here is that the state oriented view cannot distinguish
between mutual exclusion and independence for events that we wish or need to
view as atomic. For example, if two children each wish to ride a pony, they are
much happier when there are two ponies. One pony offers the choice of two
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possible sequential behaviors ab or ba. Two ponies dispense with both choice
and delay by permitting the single concurrent behavior a‖b. Notice that our
discussion of the situation is in terms of the rides as atomic actions; we did not
say what goes on during the ride in drawing this distinction. The traditional
state model cannot draw this distinction because it automatically identifies a‖b
and ab+ ba when the rides a and b are understood as atomic.

By expressing a behavior as a partially ordered set of events, and a process
as a set of possible behaviors, this distinction can now be drawn naturally by
representing a‖b as an unordered set of two events constituting one behavior,
and ab + ba as two possible behaviors, one for each linear ordering of the two
events.

In practice however, people naturally think as much in terms of states as
events. What is really needed is a simple connection between the two viewpoints
facilitating a smooth passage between them.

Chu spaces address concurrency by admitting their interpretation as pro-
cesses. The rows and columns of a Chu space are interpreted as respectively
the events and states of the process, while the entries of the matrix are inter-
preted as the interaction of event and state, more specifically as the recording,
by the state, of information about the event. Events are regarded as points in
time while states are points in information space. Events specify no particular
information, though they are associated with incremental changes to informa-
tion, just as derivatives are associated with no particular position but rather
only with incremental changes to position. Dually, states do not exist at any
particular moment in time, but rather are associated with incremental changes
in time: time passes while one waits in a state, during which (at least for dis-
crete time) no events change status. We distinguish between time as the actual
position of events and information as the knowledge of those positions.

A Chu space as a process may be viewed either imperatively or declaratively
by focusing on the columns or the rows respectively of the representing space.

3.2 Extracting transitions and constraints

The Chu space model of behavior may be usefully contrasted with the tradi-
tional imperative transition-based approach as well as with the declarative ap-
proach involving temporal (precedence, delay, etc.) constraints between events,
as follows (we assume K = 2 for simplicity).

The basic component of the imperative approach is the transition, consisting
of a pair (x, y) of states whose meaning is that it is possible to pass from state
x to state y. An automaton is a set of such transitions, which if acyclic may be
reflexively and transitively closed to partially order the set X of states.

The corresponding basic component in the event-oriented approach is the
precedence constraint, consisting of a pair (a, b) of events whose meaning is
that it is necessary to perform event a before event b. A schedule is a set of such
constraints, acyclic when there is no deadlock and hence transitively closable to
partially order the set A of events.
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Both these views involve ongoing motion between points of the same type,
namely states in an information space in the imperative case and events in time
in the declarative case. These motions differ with regard to the interpretation
of branching, which is understood disjunctively in an automaton (only one path
is taken) but conjunctively in a schedule (all constraints must be observed).

The Chu space view involves not ongoing or connected motion but instead
recording. A recording is a pair (a, x) consisting of an event a and a state x.
A Chu space is a set of such recordings. This makes it a bipartite directed
graph, namely a binary relation from the set A of events to the set X of states,
for which “acyclic” and “transitive” are not usefully definable. In this way
Chu spaces capture the fine-grained move-orientation of Petri nets, as opposed
to the traditional coarse-grained ply-orientation of transitions and precedence
constraints, but with more satisfactory algebra than Petri nets.

What is definable for any two binary relations with a common source A is
their right residual. If R ⊆ A×B and T ⊆ A×C then their right residual R\T ,
as a relation from B to C, is defined as consisting of those pairs (b, c) such that
for all a ∈ A, aRb implies aTc.

Now the right residual =|\=| of the Chu space relation =| with itself yields
a binary relation on X. This relation is the largest possible transition relation
on X having the property that no transition from x to y can “undo” an event
that is recorded in state x as having already happened. It is also the natural
“inclusion” or bitwise order on columns, in which 0 ≤ 1, which of course makes
it clear that it partially orders X.

The left residual of two relations with a common target is defined dually. If
S ⊆ B × C and T ⊆ A × C, then their left residual T/S, as a binary relation
from A to B, is defined as consisting of those pairs (a, b) such that for all c ∈ A,
bSc implies aTc. The left residual =|/=| yields a binary relation on A, namely
the largest possible precedence relation with the property that for every pair
(a, b) in the relation, no state has witnessed b without a. This too is a partial
order.

The residual-based derivations of ongoing state-state and event-event motion
in terms of event-state recording lifts to more general relationships than the all-
or-nothing (K = 2) one of possibility of transition and necessity of precedence,
a mathematically rich and interesting topic that space and time prevent us from
delving into here. To summarize briefly, distances are organized as a quantale
[Ros90] or complete semilattice monoid. This combines our earlier investiga-
tions of purely temporal structures [CCMP91] with our more recent work on
time-information duality and Chu spaces in a way that permits the temporal-
structure results to be lifted directly, via duality, to information structures such
as automata and Scott-style information systems. This generalizes the two-
valued generalized metric associated with partial orders to other metrics such
as causal-accidental order, strict-nonstrict order, and various notions of real
time (op.cit. p.187).
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3.3 Interpretation as Objects

As an unintended bonus, Chu spaces admit a straightforward interpretation as
concurrent objects. Whereas statically sets and antisets are indistinguishable,
dynamically they are distinguished by transforming respectively via functions
and antifunctions. Noting that the set of states of an automaton forms an
antiset, understood as a mental entity, we take an object to be a set, understood
as physical. As a conjunctive set, the points of an object coexist, in contrast to
a disjunctive antiset of states, the sense in which we consider an object to be
concurrent. A collection A1, . . . ,An of objects is concurrent in the sense that its
sum or coproduct

∑
iAi is a concurrent object. In the absence of all constraints

(i.e. the set of states of A is KA), the object is truly concurrent, consisting of
independent events. The imposition of constraints creates interferences between
events such as conflicts and precedence constraints.

Although the methods of a given class are traditionally viewed as functions
performable by objects of that class, in the context of Chu spaces we propose
to take as the methods of a Chu space its states, which are just the permitted
assignments of values from K to the physical points or locations of the space.

4 Algebra

The previous section examined Chu spaces from the inside in terms of their
components. In this section we consider them from the outside, in terms of
their language or algebra. The natural language of Chu spaces is linear logic,
which appears to us to be as fundamental as any other process language, with
Chu spaces giving it a sensible and useful interpretation.

4.1 Chu space interpretation of linear logic

As with Boolean logic there are various choices of basis for the set of all linear
logic operations (though none as small as Boolean logic’s single NAND opera-
tion!). A particularly natural basis, both in its own right and for our process
interpretation, consists of four operations and two constants: the additive dis-
junction plus, A ⊕ B, the multiplicative conjunction (tensor product) times,
A⊗ B, linear negation A⊥, and the exponential or modality of-course, !A. As-
sociated with plus and times are their respective units or zeroary operations 0
and 1.

When negation is omitted from this list, and !A is interpreted as A, the laws
of linear logic expressible in the remaining language are merely those of ordinary
number theory. Larry Moss has pointed out to us that this remains true when
A‡ = (!A)⊥ is taken as basic in place of !A and interpreted numerically as 2A

(motivations: the axiom (A⊕B)‡ = A‡⊗B‡ can be expressed without negation
[Pra93], and the 2A offers a rationale for Girard’s “exponential”).

The presence of negation adds a completely new dimension to number theory.
To begin with, plus and times and of-course each has its own De Morgan dual,
respectively the additive conjunction with, A&B, the multiplicative disjunction
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par, A...................................................
..............
.............................. B, and the dual exponential why-not ?A, with the first two having

respective units > and ⊥. Linear implication A−◦B is defined as (A ⊗ B⊥)⊥

or A⊥...................................................
..............
.............................. B, while intuitionistic implication A⇒B is defined as !A−◦B. None of

these operations has a number-theoretic interpretation.
With negation present, the basic operations may be interpreted as acting on

Chu spaces as follows. A⊥ is just the dual or transpose of A, !A is the carrier
A of A as a Chu space, namely the normal Chu space (A,KA).

A ⊕ B for A = (A,=|A, X), B = (B,=|B , Y ) is (A + B,=|, X × Y ) where =|
is defined by a=|(x, y) = a=|Ax, b=|(x, y) = b=|By. Its unit is (0, !, 1).

With the same A and B, A ⊗ B is (A × B,=|, |A−◦B⊥|) whose states are
all Chu transforms (f, g) from A to B⊥ (so f : A → Y and g : B → X)
and where (a, b)=|(f, g) is defined equivalently (by the adjointness condition) as
either b=|Bf(a) or a=|Ag(b). Its unit is the 1×K normal Chu space whose one
row is the identity function on K.

This completes the Chu space interpretation of the basic operations and
constants. The interpretations of the derived operations are obtained from their
definitions.

4.2 Process interpretation of linear logic

The computational significance of the operations is as follows; we leave negation
to the end.

A⊕ B is the asynchronous (noncommunicating or parallel play) concurrent
composition of A and B. If A is the process of my eating dinner and I take
47 bites, and B is you taking 53 bites, then A⊕ B is us eating dinner together
taking 100 bites in silence, that is, with no interaction. Our possible joint states
form the set X ×Y of all possible pairs of our individual states. The associated
unit 0 has no events and 1 state, and is as unconstrained as a zero-event process
gets.

A⊗ B is the orthocurrence [Pra85, Pra86] or interaction or flow-through of
A and B, as with three trains passing through two stations to yield six train-
station events. Each event is of the form (a, b) pairing a train with a station.
Each state is of the form (f, g) where f : A→ Y specifies for each train a what
state the stations collectively appear to be in as seen from that train, while
g : B → X does the same for the trains collectively as seen from each station.
The associated unit 1 has one event and is completely unconstrained in that it
has all states possible for a one-event process, namely K. When A and B realize
posets, A⊗B realizes the poset that is their direct product (same as their tensor
product since Pos is cartesian closed).

!A consists of the events of A less their constraints, making it a pure set of
independent events.

With the operations and constants covered so far (including A‡), it is impos-
sible to introduce constraints starting from only unconstrained processes. The
only processes are then in effect cardinals, from which follows the complete-
ness of number theory as an axiomatization of the basic operations without
negation—any number theoretic counterexample to a nontheorem of number
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theory becomes a process counterexample making it also a nontheorem of pro-
cess algebra. (The only awkward part with A‡ is to show completeness for
number theory of the axiomatization (A+ B)‡ = A‡ ×B‡, 0‡ = 1, 1‡ = 1 + 1.)

Negation merely dualizes our point of view, interchanging the qualities of
event and state. States become physical entities and events mental, as in an
automaton or a computer program where the locations in the text are real and
the runtime events must be imagined. Actually running the program undoes the
negation; the program itself disappears from physical view, at least in principle,
and the runtime events become physical.

Linear implication A−◦B can be understood as B observing A, a point of
view we first developed in [CCMP91]. The definition reveals observation to be
equivalent to the interaction A⊗ B⊥ of the events of the observed A with the
states of the observer B, namely where B records the observations, with the
individual recordings of event a of A in state y of B as the recording events of
A⊗B⊥. Taking the dual of this then turns the recording events into the states
of A−◦B, which is how the recording events should appear to an observer of B
observing A.

5 Universality

The previous sections emphasized the computational or information-processing
and behavioral or scheduling interpretation of Chu spaces, our original motiva-
tion bringing us to them. In this section we review more briefly three other areas
in which Chu spaces seem to offer fundamental insights, namely mathematics,
physics, and philosophy.

Mathematics. We have argued elsewhere [Pra95a, Pra95b] that the mathe-
matical universe is constructed from the interaction of polar opposites, specifi-
cally sets and “antisets” or Boolean algebras (of the complete and atomic kind
when that question arises), in varying proportions.

Chu spaces are in a certain sense the dual of categories. This may be
seen from the perspective of universal algebra, which organizes mathematics
into three levels of abstraction, elements (numbers, points), structures (groups,
topological spaces), and categories of structures (Grp, Top). This last may be
organized as the (superlarge) category ConCAT of large concrete categories
(C,UC) where UC : C → Set is a faithful functor assigning a set or carrier to
every object of the large category C.

Category theory reduces this organization to two levels by suppressing the
elements of structures and calling the latter merely objects. Elements of objects
x of C are recovered when needed as morphisms from > to x for a suitable object
> of C, typically C’s tensor unit.

Chu spaces also reduce the universal algebra picture to two levels, by sup-
pressing not the elements but instead the boundaries between categories. This
viewpoint applies to any category C that concretely and fully embeds a given
class of categories; C contains all the objects of all categories in that class, and
at least for pairs of objects of C realizing objects from the same category D,
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the morphisms between those objects in C are exactly those between them in
D, in the sense that they consist of the same underlying functions acting on the
same underlying sets, by fullness and concreteness.

In addition to this mathematical universality, Chu spaces also have more spe-
cialized mathematical uses. For example they permit a more uniform treatment
[Pra95b] of the gamut of categories treated by Johnstone under the heading of
Stone spaces [Joh82]. Stone duality is poorly understood in computer science,
yet is of crucial importance to understanding the relationships between impera-
tive and declarative programming, denotational and operational semantics, and
algebra and logic. By simplifying Stone duality to mere matrix transposition,
Chu spaces make that subject more accessible.

Physics. The physical universe appears to be constructed from the interac-
tion of particles and waves, an interaction described by quantum mechanics that
makes everything a mixture of the two, again in varying proportions. Associat-
ing the points of Hilbert space with states and the dimensions (for a given choice
of basis) with outcomes of measurements (events) associated to that basis as
usual, a wavefunction as a pure state encodes correlations decoded with 〈ψ|ϕ〉
and |ψ〉〈ϕ|, the notation in quantum mechanics for the respective residuals ψ\ϕ
and ψ/ϕ. A mixed state, or mixture of wavefunctions described by a probability
density matrix, may be understood as corresponding to a whole Chu space.

Philosophy. Yet another subject amenable to this perspective is the mind-
body problem. Descartes proposed in 1637 that the mind interacted with the
body. This proposal generated much literature all denying the causal interaction
of mind and body and explaining their apparent interaction via various forms of
deus ex machina (Malebranche, Spinoza, Leibniz), or denial of body (Berkeley)
or mind (Hobbes), or the assertion of their equivalence (Russell). Elsewhere
[Pra95a] we have applied Chu spaces to an implementation of Descartes’ pro-
posal, by taking the causal interaction of mind and body as basic instead of
derived and obtaining as its consequences the basic interactions within each of
body and mind. We do not see how to obtain the other direction, mind-body
interaction from the separate behavior of mind and body, any better than did
Descartes’ contemporaries.

Viewed at the object level, Chu spaces formalize Russell’s solution mathe-
matically by offering dual views of the same Chu space merely by transposition
of viewpoint. Viewed at the level of individual interactions within an object
however, the solution takes on a new and deeper meaning: mind-body inter-
action turns out to be the only real interaction, body-body and mind-mind
interaction are secondary interactions, derivable by residuation, that can be
considered mere figments of our imagination as to how the universe interacts
with itself.

6 Conclusion

Reflections. Our own interest in linear logic is as a process algebra. But linear
logic was developed by a proof theorist, purportedly to tidy up proofs. Why
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should such different goals lead to the same logic?
Linear logic is a resource sensitive logic in the sense that it disallows weak-

ening (unused premises) and contraction (multiply used premises). Some have
taken this to mean that it is a logic for reasoning about resources such as time
and space in computation. It seems to us however that resource sensitivity in
the logic is a dual side effect of resource neglect arising from reasoning inside
the model, as results with equational logic and categorical reasoning. Exter-
nal reasoning in contrast takes place in the combinatorial world of sets, whose
cartesian closed structure renders weakening and contraction sound, and where
cardinality tracks resources [Pra95b, §7].

Resource sensitivity is merely a symptom, linear logic is more properly un-
derstood as a logic of interaction of polar opposites, with A⊗B as the interaction
operator, A⊥ as the duality “mirror” interchanging opposites, and !A and ?A as
projecting the domain onto its respective poles. The remaining operator A⊕B
and constant 0 then provide finite coproducts, with duality then yielding finite
products (but why not coequalizers etc.?). We have argued [Pra95b] that Set
and Setop suffice as poles in mathematical practice, but we acknowledge that
there remains considerable room for debate here.

History. The Chu construction takes a symmetric monoidal closed category
V with pullbacks and an object k of V and “completes” V to a self-dual category
Chu(V, k). The details of the construction appear in P.-H. Chu’s master thesis,
published as the appendix to his advisor M. Barr’s book introducing the notion
of *-autonomous category [Bar79].

The intimate connection between linear logic and *-autonomous categories
was first noticed by Seely [See89], furnishing Girard’s linear logic [Gir87] with
a natural constructive semantics. Barr then proposed the Chu construction as
a source of constructive models of linear logic [Bar91].

The case V = Set is important for its combination of simplicity and general-
ity. This case was first treated explicitly by Lafont and Streicher [LS91], where
they treated its connections with von Neumann-Morgenstern games and linear
logic, observing in passing that vector spaces, topological spaces, and coherent
spaces were realizable as games, giving a small early hint of their universality.

Our own interest in Chu spaces was a consequence of attempts to formalize
a suitable notion of partial distributive lattice. After arriving at such a notion
based on the interaction of ordered Stone spaces and distributive lattices, we
found that the resulting category was equivalent to both Chu(Set, 2) and a full
subcategory of Chu(Pos, 2) for which the description and extension monotone
functions of a Chu space were both full, i.e. isometries.

The name “Chu space” (over K) was suggested to the author by Barr in 1993
as a suitable name for the objects of Chu(Set,K) reifying “Chu construction,”
which predated Lafont and Streicher’s “game.” An advantage of “Chu space”
is that it requires no disambiguating qualification to uniquely identify it, unlike
“game.” By analogy with categories enriched in V [Kel82] one might refer to the
objects of the general Chu construction Chu(V, k) as V -enriched Chu spaces.
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