
LNCS-1000 © Springer-Verlag 1995

Multimedia Authoring Tools:
State of the Art and Research Challenges

Dick C.A. Bulterman and Lynda Hardman

CWI: Centrum voor Wiskunde en Informatica, Kruislaan 413, 1098 SJ Amsterdam
E-Mail: {Dick.Bulterman, Lynda.Hardman}@cwi.nl

Abstract: The integration of audio, video, graphics and text on the desk-
top promises to fundamentally challenge the centuries-old model of the
printed document as the basis for information exchange. Before this
potential can be realized, however, systems must be devised that enable
the production and presentation of complex, inter-related media objects.
These systems are generically called multimedia authoring tools. In this
article, we consider the development of multimedia authoring tools,
examine the current state of the art, and then discuss a set of research
challenges that need to be addressed before the full potential of multime-
dia output technology can be effectively utilized to share information.

1  Introduction

The encoding and distribution of information has been a problem that has kept much of
mankind busy since its beginnings. Perhaps the most significant milestone in this activ-
ity was the development of the written word, which allowed spoken communication to
be reliably reproduced and distributed under a measure of control of its originator. The
technology available for producing written documents remained relatively constant
until a few hundred years ago, when significant refinements in the means for creating
and distributing documents began to take place. Fig. 1 summarizes some of these
refinements, including the printing press, the postal service, the development of news-
papers (the catalyst for current wide-scale literacy), the xerographic copier and, more
recently, the combination of computer-based page composition systems with the com-

xerographic copier: user-directed reproduction/redistribution

written word: reproducible, originator-controlled content

printing press: large-scale, reliable reproduction

newspapers: edited collection of diverse sources

text processor & laser printer: personalized production

file xfer & e-mail: personalized high-speed distribution

postal service: individualized direct distribution

Figure 1. Significant developments in text processing and distribution.

spoken word: basic communication



LNCS-1000 2

puter network and laser printer. Each of these developments addressed specific user
needs to make text-based information processing more effective, reliable, reproducible
and broadly-available.

During the past five years, an enormous increase in computer processing speed and
a dramatic reduction in the cost of intelligent peripheral devices have created the
potential to augment and even replace text as the standard form of information
exchange. These developments have been grouped under the generic name of multime-
dia. Unlike the user-driven development of text processing facilities, much of the
growth of multimedia has resulted from the relatively independent development of the
underlying output technology. This has led to a gap between a computer’s ability to
process and present information and the user’s ability to create and manage documents
that exploit the power of the technology available.

The problem of creating and managing multimedia information is not trivial. Con-
sider the introduction of audio to the desktop: in spite of a lifetime of experience in
producing and processing spoken information, ‘audio e-mail’ has not developed as a
natural alternative to text-based electronic mail. The major drawback is not the lack of
familiarity with the medium, but rather the lack of integrated authoring and editing
tools that enable a broad class of users to access the technology and to create messages
that can be easily shared with others. The creation and editing problems include the
ability to visualize, rearrange and refine documents. These problems are compounded
when several media must be manipulated together and when media are used that
require specialized training before they can be used for general information exchange.

In the following paragraphs, we review the development of applications that sup-
port the construction and presentation of multimedia documents. Section 2 reviews the
building blocks used by authoring systems, including media object creation and docu-
ment distribution technologies. Section 3 discusses the current state of the art for sup-
porting multimedia authoring, including authoring paradigms and an extended
example. Section 4 concludes with a discussion of topics that need to be addressed in
the development of next-generation authoring systems.

2  Media Objects and Multimedia Data Distribution

A multimedia document can be viewed as an activity specification that can be used to
coordinate the runtime presentation of a collection of media objects, where each media
object can contain one or more media items, of one or more types. Multimedia author-
ing systems provide a mechanism for defining a multimedia document based on an
underlying multimedia information model. The development of multimedia authoring
systems encompasses many of the problems and challenges of generalized multimedia
data manipulation: data objects must be created, often using special-purpose tools; they
must be integrated into a coherent presentation, usually requiring some form of media
synchronization; the presentation must be defined in a form that allows distribution to
various types of target environments; and the presentation must be ‘maintainable’ over
its commercial or intellectual life-time.

The structure of media objects determines the level of information combination,
placement and presentation granularity available to the document author. Consider the
abstraction of a document fragment in Fig. 2. Here two choices of object organization



LNCS-1000 3

are illustrated. On the left side we see a pointer from the document to a composite
media object that contains a video sequence, a static illustration, a text overlay and an
accompanying soundtrack. The composite object, with dependencies resolved at its
source, is fetched and delivered to the processor hosting the presentation. (We ignore
for the moment issues of network vs. local access, or encoding in particular formats for
particular storage media.) On the right side of the illustration the document references
four separate media objects, each of which is individually fetched and sent to the pro-
cessor. Clearly, the use of composite media objects reduces the burden on the docu-
ment specification: it only needs to identify the object and provide high-level access
control, since the relationships among the items are captured within the object defini-
tion. The use of a collection of separate object provides extra flexibility—for example,
we can choose run-time substitution of objects to tailor the presentation for, say, a
multi-lingual audience—at the expense of extra complexity within the document and
document presentation system.

2.1 Individual Media Object Definition and Manipulation

Current multimedia data object creation tools are the result of the historical develop-
ment of a number of separate tools and systems to develop and manipulate separate and
distinct types of data. Low-cost graphics adapters have allowed high-resolution bit-
mapped displays to become commonplace; low-cost signal processing chips have
allowed stereo audio adapters to be integrated into many low- and medium-cost com-
puters; digital cameras and integrated video processing chips have brought full-motion
video to the desktop; and inexpensive high-density storage devices such as the CD-
ROM have enabled the efficient distribution of the massive amounts of digital data that
are generated for and by the above devices.

Where text and drawing systems can usually integrate data creation and editing,
data for most other types of media are first created using a capture tool and then refined
using an editing tool. Capture and editing are typically done outside the scope of the
authoring tool, although some degree of interaction between editing and authoring is
often required. Created media objects can be stored as totally separate entities (like

document-integrated

Figure 2. Media objects and documents

• • •
generic

source-integrated
object object

document



LNCS-1000 4

user files) or they can be integrated into multimedia databases or file servers. The tem-
poral access constraints of multimedia data usually require special-purpose file- or
database-servers to manage storage and delivery of media objects.

Representative capture/editing tools are: [2S] and [2] for video, [9S] and [29] for
audio and [1S] and [4S] for image data. A survey of multimedia data servers is given in
[15]. A general overview of encoding and delivery aspects of networked multimedia is
given in earlier publications in the LNCS series (614, 712 and 846).

2.2 Integrating Separate Objects into a Common Document

Authoring multimedia documents—whether static in structure or dynamically created
at runtime—essentially consists of collecting and presenting media objects in a author-
desired order, with some degree of navigation control available to the end user. While
the degree of composition of each media object will influence the complexity of the
authoring/presentation environment, the user-level management of the authoring pro-
cess remains the most critical element in applying multimedia technology.

Authoring systems are programs that assist the user in managing the creative task
of specifying the placement and relative order of media object events. The develop-
ment of authoring systems can be broadly classified into three generations, each of
which are discussed below. Note that the migration of multimedia technology from
high-end to low-end systems has had the result that each of the generations are not
defined in terms of a time period, but rather in terms of a collected body of facilities
available to users at different times on different classes of computing systems.

In identifying breaks in generations, three types of evolutionary change can be
identified: changes in the portability/distributability of documents, changes in basic
multimedia technology supported within documents and changes in user facilities to
access documents. (These parallel the evolutionary forces supporting change in text-
based system development.) Performance changes—such as more video frames per
second or high audio quality—are not considered to indicate fundamental changes in
authoring system functionality.

G0: First generation authoring systems. The distinguishing characteristics of G0
include authoring systems that are highly processor-architecture dependent, relying on
a high-degree of sophistication of special-purpose graphics and/or audio hardware,
with minimal user support for general document browsing. While multimedia is often
seen as a new field within computer science, examples of G0 authoring systems have
been present on high-end computing systems and workstations for decades. Represen-
tative examples include programs that support air traffic control systems, where real-
time graphics and alpha-numeric data are displayed together with static background
images, or text formatting systems, where pictures and text integrated into a single
print file. More recently, systems like [5S] and [21] provided authoring support that is
typical of G0. Some of these systems provide experimental hypertext navigation sup-
port.

G1: Second generation authoring systems. In G1, the first evidence of portability of
multimedia documents—albeit to a limited degree—is available, often within family
members of a particular hardware/software architecture. Support for representation-



LNCS-1000 5

based document navigation and browsing facilities (that is, navigation/browsing based
on the implementation of an object rather than its content) are also included, such as
document fast-forward/rewind. In some systems, commercial support for content-
based navigation (hyper-links) is also provided, but almost always limited to text data
or static images. In G1 systems, media objects are usually ‘leaf nodes’: they are treated
as self-contained entities with little support for document-level object embedding. The
presentation metaphor remains based on a page-by-page model rather than on a single
continuous presentation. User input facilities are usually limited to coarse navigation
control. Representative examples of G1 systems are [3S], [10S], and [28].

G2: Third generation authoring systems. These systems represent the current gener-
ation of commercially-available multimedia authoring systems. They have some
degree of multi-platform presentation support, enabling basic sharing of documents
between Apple Macintosh and IBM PC (compatible) computers. (Support is also avail-
able for UNIX workstations, although typically only in research prototype systems.) A
limited amount of client-server networking is supported, although most systems rely on
local copies of data to provide the required levels of presentation performance. Broad
support is available for de facto standard output devices, although only rudimentary
support is available for emerging standard document and object formats. Representa-
tion-based browsing is widely supported, and some systems allow support for content-
based searching for dynamic media as well as text/images. Examples and properties of
G2 systems are described in more detail in the next section. In section 4, we consider
the needs of characteristics of future generation authoring support.

3  Multimedia Authoring: The State of the Art

This section discusses the major characteristics of current-generation (G2) authoring
systems. We begin with a discussion of development paradigms for authoring and then
give an example of the facilities available in an advanced G2 system.

3.1 Approaches To Authoring Multimedia Documents

Four general paradigms exist for multimedia authoring systems:
• graph-based authoring, describing a presentation’s control flow;
• timeline-based authoring, describing a presentation’s data flow relative to a com-

mon time axis;
• program-based authoring, using a text-based specification to describe the positions

and timings of individual objects; and
• structure-based authoring, which groups objects based on presentation content.

We outline the basic properties and describe representative systems using each para-
digm in the following sections. (Note that many authoring environments provide a
mixture of paradigms; in our discussion, we classify systems under the dominant para-
digm used.)

Graph-based authoring systems. This approach uses a schematic diagram of the con-
trol flow interactions among multimedia objects, as illustrated in Fig. 3. Graphs can be
informal or formal. Informal graphs are used to give a global illustration of the order-



LNCS-1000 6

ing of relatively coarse object interactions. Formal graphs also illustrate object interac-
tions, but they additionally provide a mechanism for “proving” or determining
properties of the presentation based on the semantics of the graph.

Graph-based authoring can provide very powerful presentation descriptions. For all
but the simplest documents, however, both informal and formal graphs suffer from a
‘complexity explosion’ once the size of the presentation grows beyond that found in a
simple document. In order to manage this complexity, sophisticated user interface sys-
tems are required that allow the user to zoom-in or zoom-out of a presentation. This
limits the utility of the approach, especially in the case of informal graphs: here, there
is typically no added value of the graph itself aside from an ordering mechanism; once
the presentation becomes so complex that it fills multiple physical or screen pages, the
integrated view of a presentation is lost. For formal graphs, this added complexity is
offset by the results generated from the graph formalism, but even here, the complexity
of the description typically limits the use of such models to special-purpose authoring
needs such as synchronization analysis.

Graph-based mechanisms also have the disadvantage that detailed interactions
among data objects are difficult to describe. For example, in Fig. 3(a), an audio and
picture object are shown occurring “at the same time”. Suppose that we instead want
the audio to start first and then, after a lead-in period, have the picture presented. At
one level, the audio and picture are presented in parallel (as shown), but at a more
detailed level, the interaction among the items becomes quite complex. Such as rela-
tionship can be modelled by the fragment of Fig. 3(b) that is enclosed in the dotted-line
box: the bottom node represents the audio fragment, with above it a period of delay fol-
lowed by the picture. (Note that a similar approach could have been used in the flow-
chart, at the expense of more detail). In both cases, however, it would be difficult to
describe even more detailed relationships, such as: display the picture when a phrase
‘pretty picture’ is spoken in the audio object. It is also difficult to model hyper-naviga-
tion behavior in this type of system.

Examples of flowchart-based authoring paradigms are reviewed in [24]. An exam-
ple of a recent Petri-net-based authoring system is [5]. An example of a hybrid system
is Eventor [13], which uses CCS (Calculus of Communicating Systems) as an underly-
ing formal specification mechanism, while providing a flowchart-like user interface.
(Eventor also incorporates timeline graphs, as discussed in the following section.)

(a) Flowchart

?

Place pic1Play sound1

Introduction to Amsterdam

(a) Petri Net

delay

Figure 3. Examples of graph-based authoring paradigms.



LNCS-1000 7

Timeline-based Authoring Systems. These systems provide a schematic diagram of the
dataflow interactions among multimedia objects. A generic timeline is illustrated in
Fig. 4. Unlike control flow graphs discussed previously, most of the timeline-based
authoring environments use only informal descriptions.

The nature of the timeline is similar to that of a musical score: a number of events
are shown in parallel relative to a common axis. This metaphor is especially appropri-
ate to multimedia presentations, with their inherent use of parallel, time-based events.
Authoring is carried out by placing icons representing the media items on one of the
tracks at a specific time. Items can be stretched across several time frames (either by
hand or automatically, depending on the authoring system). Some timeline-based sys-
tems allow transition effects (such as fading, blurring, or spatial transposing of objects)
to be specified as timeline properties. The granularity of the timeline can be tied to the
granularity of the system clock or it can be a user-scalable logical time reference. (Log-
ical clocks ease problems of porting systems, but they do not guarantee that a particular
presentation will be able to be presented on all systems.)

The primary advantage of the timeline is that it provides an intuitive ordering of
object events. The potential disadvantages with timeline-based authoring systems
include the side effects of object editing, run-time control, and presentation navigation.
Object editing can be a problem if changes made to individual objects are not correctly
integrated back to the presentation timeline. For example, if the start time or duration
of a media item is changed (e.g. by editing the data belonging to the item) then the rel-
ative positions of other objects on the same or related timelines may also need to
change. Such changes are rarely automatic (that is, the ‘correct’ choice depends on the
semantics of the presentation rather than the structure of the timeline); this can require
substantial changes in a document. Presentation control involves the imposition of a
higher-level control structure on a document (such as a pause facility or the ability to
integrate user feedback into the presentation). The control problem of timeline author-
ing is often solved by introducing a special control track; such a track can be used to
define meta-operations such as grouping common presentation elements or indicating
when pauses should be inserted in a presentation.

A third problem is presentation navigation. By adjusting a logical time pointer,
most timeline systems allow an end-user to jump to specific parts of a presentation.
While this type of ‘fast-fowarding’ or ‘fast rewind’ in intuitively obvious, the resulting

Text

Image

Image

Text

Video

Sound

Script

Text1 Text2

Image1 Image2

Image4 Image4

Text3

Video1 Video2

0 2 4 6 8 10

Music1 Music2

control information

Figure 4. Example of a timeline-based authoring paradigm.



LNCS-1000 8

behavior is not: if the time pointer in Fig. 4 is moved to time ‘2’, it is not clear if all
objects defined at that time are activated, or only new objects starting at or after the
new time. (If one views a video tape as a multi-channel timeline, then an ‘activate all’
model is used. For computer-based presentations, this is much more difficult since each
of the composite items need to be independently started and run up to the time indi-
cated by the time pointer.) Navigation problems in timeline result from the use and
manipulation of data representations rather than information object contents.

Three example timeline-based systems are Director [8S], Integrator [31] and MAE-
stro [12]. Of these, perhaps the most widely-used is Director, which was designed for
creating animation-based presentations. Graphics, text and video objects can be placed
on a timeline, or score as it is termed in the system. The timeline is divided into sepa-
rate frames, whose speed of playing is determined by the current tempo, where the
tempo can be changed at any frame. An object has a position in each frame, and the
author can describe a path for the object to follow through a series of frames.

Programming-based authoring systems. Both graph- and timeline-based authoring
paradigms make use of illustrations to describe the interaction among media items in a
presentation. While this is appropriate for high-level interaction, it is less appropriate
for detailed descriptions of complex system behavior. As is illustrated in Fig. 5, a pro-
gramming-based system gives an author low-level facilities for specifying the compo-
nents, their timing, layout and interactions within a presentation. The programming
effort can range from rapid prototype languages (typically referred to as scripts),
through object-based library models, to detailed, low-level extensions to—or replace-
ments of—existing programming languages.

Programming-based approaches can be used to model and manipulate individual
media objects or they can be used to coordinate/orchestrate previously created (or
dynamic) objects, or both. This has the advantage that rich interaction facilities can
often be provided and that at least rudimentary content-based decisions can be made at
runtime to guide the presentation of the document. This flexibility comes at a signifi-
cant price: the definition of the document can be tedious, the portability of a particular
document may be limited and the expressive power of the programming interface will
be limited by the underlying operating or transport mechanism to provide the control
primitives required by the programming interface.

While the programming model appeals to specialists, it is unclear if this model will
be accepted by the general multimedia community. Just as there is a trend away from

set win=main_win
set cursor=wait
clear win
put background “pastel.pic”
put text “heading1.txt” at 10,0
put picture “gables.pic” at 20,0
put picture “logo.pic” at 40, 10
put text ”contents.txt” at 20,10
set cursor=active

Figure 5. Example of a programming-based authoring paradigm.



LNCS-1000 9

programming-based text formatters (such as troff and TeX) to more WYSIWYG text and
drawing systems (such as [6S] or [10S]), it may be that programming-based authoring
will be reserved for special-purpose documents with critical performance constraints
[7S]. Although authoring and object editing systems will be implemented using a hier-
archy of programming languages, the user interface to these tools will not be based on
the programming paradigm.

Structure-based authoring systems. The three types of authoring paradigms dis-
cussed up to this point share a common characteristic: they define documents in terms
of the placement and activation of groups of media objects. As is illustrated in Fig. 6,
another approach is to separate the definition of the logical structure of a presentation
and the media objects associated with a document. In a structure-based document view,
the advantages of structured/composite design approaches used in software engineer-
ing can be transferred to the multimedia domain. This approach delays the binding of
data to documents, allowing an author to develop (and also edit) a presentation outline.

Text-based documents are often developed in terms of a beginning-middle-end
model, in which the document and often individual sections are constructed in terms of
an introduction, the main text body and a summary. Entire documents can then be cre-
ated in a top-down or bottom-up fashion (or some mixture of the two). Navigation
within a document is typically related to its logical structure; detailed reference or con-
tent associations can be found locally while more general references are often found
further away from a particular point in the document. In multimedia documents, there
is usually also a locality of interaction between media objects: synchronization con-
straints are defined among items that are structurally related more often than items that
are farther apart in the document structure.

The definition of a document in terms of an explicit logical structure can be used to
partition tasks among several clusters of authors and assist in resource allocation dur-
ing presentation. The ease with which a document can be edited and maintained also is
increased when the author has a good view of the logical relationships between items.
Unfortunately, a single structure-based view is typically not sufficient to describe all of
the timing and interactions requirements of detailed sections of a presentation. As a
result, structure-based authoring is usually combined with other techniques to produce
an entire document [20]. We give an example of this in the following section.

Figure 6. Example of a structure-based authoring paradigm.

composite

Video1

composite composite

composite

Image2Image1Text1 Text2

composite

Image2 Text3



LNCS-1000 10

3.2 An Example Hybrid Authoring Environment: CMIFed

Several hybrid systems exist that combine the features of graph-, timeline-, program-
ming- and structure-based editing. Three examples are CMIFed [30], Mbuild [17] and
MET++ [1]. Of these, we look at CMIFed—which forms the core of the ESPRIT-IV
authoring environment CHAMELEON [10]—in more detail to demonstrate the integra-
tion of techniques into a full-scale authoring environment.

CMIFed was designed to provide authors with a rich environment for structured
viewing and manipulation of a presentation. The authoring tasks are split into three
separate but closely communicating views of the presentation: the hierarchy view, the
channel view and the runtime (or player) view. The hierarchy view gives the author
structure-based control of the presentation. This structure can be created top down or
bottom up, allowing the author to group existing media items together, or to define
completely empty structure to be filled in later. The channel view is a modified timeline
presentation, which describes timing information and logical resource usage. Control
flow information is overlaid directly onto the channel view by using a series of syn-
chronization constraint descriptors (called synchronization arcs.) The player allows the
runtime view of the document to be presented, and allows user navigation using the
link structure of the Amsterdam Hypermedia Model [18]. Note that no explicit pro-
gramming-based view is used with CMIFed.

A presentation is composed by defining the structure of the presentation, and
assigning the appropriate media items to the structure. At present, media items are of
four basic types: text, still images, audio and video. Media items are created using
external editor(s), available directly from within the authoring environment.

The hierarchy view for structure-based editing. The hierarchy view (Fig. 7) is the
primary authoring window, providing a means of displaying and manipulating the doc-
ument structure. The document has a hierarchical structure whose leaf nodes are the
media items which are played in the presentation, and whose non-leaf nodes are com-
posite nodes containing a collection of other composite nodes and/or media items. The
hierarchical structure is represented in the hierarchy view as an embedded block struc-
ture. During the authoring phase, each media item in the structure diagram is assigned
to a channel, a logical output device which is mapped by the player at runtime to a
physical output device—i.e. an area on the screen or a loudspeaker.

In order to allow the author to specify timing constraints in a convenient manner,
two types of composition are supported—parallel and sequential. This enables the
author to group media items together to be played either at the same time or one after
the other. The author does not need to specify any timing information at this point,
since this is deduced from the hierarchical structure and the durations of the nodes
within the structure. (Timing constraints can be added later—see the description of the
channel view below). In Fig. 7(b) the two boxes Places, and contents button are played
in parallel; the three smaller boxes nested inside the Places box are played one after the
other. The duration of a composite node is derived by the system. The duration of a
serial composite node is the sum of the durations of its children; that of a parallel com-
posite node is the duration of the longest child. When a node has no explicit duration,
for example a textual title, it is presented for the duration of its parent.



LNCS-1000 11

The channel view for timeline-based logical resource allocation. While the hierar-
chy view provides a means of organizing the structure of a presentation, it provides
only an indirect way of specifying logical resource use. To provide the author with an
explicit time representation of the document and control of the available resources the
channel view illustrates the media items mapped onto the available logical resources
(channels). A representation of the channel view is shown in Fig. 8. By supplying this
extra layer above the physical resources the author is able to describe the presentation
in a system-independent way. It is up to the player software, optimized for a particular
hardware configuration, to interpret the logical channels and assign the media items to
the available physical output devices. A single document can be played on heteroge-
neous environments by adapting the players, not the document itself.

The channel view shows the timing relations derived from the structure defined in
the hierarchy view. The media items making up the presentation (the leaves of the hier-
archical structure) are shown with their precise durations and timing relationships. If
the author changes the timing in any part of the presentation, via either the hierarchy or
channel views, a new channel view is derived to reflect the change.

As well as providing a device-independent description of a media item’s display
characteristics, channels allow the author to include, for example, multiple languages
(spoken or written) within one presentation rather than having to recreate the complete
presentation for each language. The player allows the reader to dynamically select
which language to listen to, by selectively turning channels on or off.

Creating hyperlinks. Presentations can be made interactive by providing choice
points. This can be done via the use of scripts, but this leads to a navigation structure

(a) The large boxes indicate different levels of structure of the presentation. The Table of
contents part is played before Walking route. The small white box next to a
component’s name indicates that the node containing it has embedded structure not
currently being shown.

(b) A zoomed-in view of the Walking route scene. The Places node contains three children
each with nested structure. The right-hand box represents a text media item (a leaf node
of the hierarchical structure).

Figure 7. CMIFed hierarchy view, showing top level structure of the Amsterdam tour.

root

Table of contents

Walking route

(a) (b)

Playing
order of
nodes

root

Walking route

contents

Canal

Gables

Music

Places

button



LNCS-1000 12

that is difficult to maintain. In order to give the author better control over the naviga-
tion structure, the contexts facility of the Amsterdam Hypermedia Model is used for
anchor and link object grouping [19]. Creating links in a multimedia presentation is not
just a matter of creating a link to a single object, but also requires support for linking to
collections of items incorporating timing relations.

The CMIFed player. The player interprets the system-independent specification of the
multimedia presentation (in terms of the presentation’s structure, logical resource allo-
cation and timing constraints) and plays the presentation on the available hardware.
This process is described in detail in [30]. The player provides facilities, such as start,
pause and stop, for the author or end-user to control the playing of the presentation.

From the authoring perspective, the player is closely integrated with the hierarchy
and channel views. The player also allows users to select which channels should be
played, for example to select one of a number of voice-overs in different languages.

At a low level of operation, the player converts data formats of the different media
types at runtime, saving the author from having to go through tedious conversion pro-
cedures. Similarly, re-scaling the window size for the presentation is a simple opera-
tion. The window containing the channels can be scaled and the channels within will
scale automatically.

Canal1

Canal2

Music1

Music2

SubtitlesSpeech
UKUK

Speech
NL

Contents
button

Canal
Canal

Gables Gables

Music Music

Next

next

button

contents
button

Time

Canal

Gables

next

Gables1

Gables2

item with derived
timing information

item with defined
timing information

synchronization arc paused item

Picture

Canal

Gables

Music
Music1

Music2

Subtitles
NL

Canal2

Canal1

Gables1

Gables2

The diamonds at the top of the figure show the channel names (inactive channels are
shaded). The media items assigned to the channels are represented as boxes beneath the
diamonds. The height of a box represents its duration. A fully-shaded box has its duration
explicitly defined, either through its data type, for sound and video, or through the author
assigning a specific duration. A box with a shaded triangle has inherited its duration from
its parent in the presentation’s structure.

Figure 8. Channel View for the Walking route sequence.

0

10

20

Channel
name



LNCS-1000 13

4  Research Challenges for Future Generations

Within the research community, several projects are underway that expand and aug-
ment present G2 commercial approaches to providing multimedia authoring support.
As with other advancements, the primary challenges that exist include improved distri-
bution support (making documents more portable to create an attractive return on
authoring investment), improved hyper-media information associations within a docu-
ment (allowing full-function content-based navigation to be provided for generic
media), improved media object support (allowing data to be dynamically tailored to the
capabilities of the presentation environment), and support for automatic generation of
document structure. We highlight a representative sample of projects that address these
challenges in the following paragraphs.

4.1 Author-Once Model

Text documents (and, to a lessor degree, drawings and illustrations) benefit from using
the printed page as a common model upon which to base generic authoring. Once a
document is created, it can be mechanically transformed for presentation on computer
screens, loose sheets of paper, books, overhead transparencies, etc., with little extra
effort. Unfortunately, there is no such unifying model for multimedia. Still, the basis of
multimedia authoring should be to produce a single representation of a document that
can be shared among various types of presentation environments. In the multimedia
case, this variety can be restricted to electronic documents, but it should span high-end
to low-end computers, from fully-equipped engineering workstations to relatively sim-
ple portable computers. In supporting this heterogeneity, the guiding philosophy
should be to transform a single document to fit the available presentation environment
rather than creating separate versions of a document for each environment. We call this
an author-once approach.

One approach to supporting this model is to define a ‘standard’ intermediate form,
such as HyTime [22], [27] or MHEG [23], [26]. A player/program to interpret/execute
standard formats on all types of platforms could then be defined. Several research
projects currently exist to produce such players, although to date they have been devel-
oped in isolation from integrated authoring systems. Another approach is to define a
rich document model, with explicit object resolution priorities and synchronization
models that allow an author to express constraints on media object presentation. Such a
model—which would encode author intentions in addition to object dependencies—
could then be used to guide the instantiation of a general document on a particular
hardware platform. This approach has been used in the design of CMIFed and is used
implicitly in the development of document synchronization and navigation architec-
tures ([6], [14]).

4.2 Hyper-Everything

One of the primary advantages of electronic documents (whether mono- or multime-
dia) is an ability to rapidly search through the information and to provide content-
based, non-linear means of information navigation. In current multimedia systems,
conventional hypertext facilities have been expanded to incorporate keyword-based



LNCS-1000 14

references to audio, video and picture data. In future systems, the ability to search and
‘link’ pieces of information will need to become significantly more universal. While
the models that support hyper-information are reasonably well understood [16], [18],
methods for physically creating links and then activating them need to be improved to
non-text media. The associations that are created will need to span collections of
related data items and provide support for conditional activation based on the runtime
state of a complex document [4], [9].

4.3 Finding and Integrating Adaptive Media Objects

Where the author-once model advocates reuse and tailoring of documents, the develop-
ment of adaptive media objects supports reuse and tailoring of data items. Given the
high cost of producing quality audio, video, graphic and even text data—plus the need
to protect owner copyright as an incentive to increasing the number of data objects
available—three aspects of object integration into documents needs to be supported:
locating a particular object from an object store, extracting the relevant portion of the
object for use in a particular document and transforming the representation of the frag-
ment to meet the dynamic needs of the runtime presentation environment. The first two
aspects are being addressed by research projects rooted in database systems and con-
tent-based information modelling [11], [32], [33].

Once integrated into a document, object adaptability can allow an object to be pre-
sented on a variety of systems, under a variety of hardware and performance con-
straints by being able to transparently transform its presentation format to the needs of
the system and the users to which it is being presented. For example, a picture might be
replaced by a text description depending on network resources or presentation hard-
ware limitations; this is done to a limited degree in the Netscape Navigator World-
Wide Web browser [11S]. Another type of translation may be to select one of several
natural or artificial language encodings, such as substituting Dutch audio for English
audio for users in the Netherlands, or for substituting computer-generation audio for

text1 [8].

4.4 Automated Document Structure Generation

Along with support for the selection and integration of media objects, further authoring
support can be provided by (partially) automating the process of structural definition of
the document itself. Examples of this from the intelligent interface community include
[3] and [25]. A major extension to this effort is the incorporation of temporal con-
straints among the media objects included in the document. An approach we are inves-
tigating is to specify the subject matter to be conveyed to an end-user along with
knowledge of the user’s task as input to a structure generation system. Based on these
constraint specifications, a document structure is generated for combining appropriate
media items into coherent groups with derived temporal and layout presentation speci-
fications.

1. An extreme example of this for the CMIFed environment was the development of a transla-
tion routine that mapped text to Morse code.



LNCS-1000 15

5  Conclusions

To date, the integration of multimedia capabilities on the desktop has been made possi-
ble by technological advances in processor and peripheral architectures. At some point,
the emphasis will need to shift to new application and systems support tools to give the
user real control over the flow of information to and through computers. We anticipate
that the user requirements for more effective control over electronic information flow
through local systems and across international networks will ultimately motivate new
languages where fundamental support will exist for parallel, time-constrained data
interaction and new operating systems will need to be defined that allow content-based,
multi-stream I/O coordination, both in the context of a distributed information model
that allows data to be shared and author/publisher rights to be protected.

It is difficult to predict the impact of improved electronic communication on future
societies; in the short term, however, it is clear that unless grade schools integrate
required drawing, video production and public speaking as adjuncts to reading and
writing into the standard curriculum, creating multimedia documents will remain the
domain of specialists. While there is an increase of using multimedia in teaching,
teaching the skills required for effectively producing multimedia documents for gen-
eral communication is in its infancy.

The capabilities of current architectures and the needs of current users should serve
as a starting point in the development of authoring systems and media manipulation
tools. In a sense, we are only at the stage of developing quill pens and indelible ink—
and then only pens and ink that write on very limited types of paper. The emphasis for
new generations of multimedia authoring systems should be geared to defining reliable
means of encoding and saving information for future use. Reflecting back on the devel-
opment of text-based communication, it is clear that a number of developments are still
required to improve the quality, reliability, availability and cost-effectiveness of multi-
media documents.

6  References

6.1 Articles

1 P. Ackermann, “Direct Manipulation of Temporal Structures in a Multimedia Application
Framework,” in Proceedings Multimedia ’94, San Francisco, pp. 51 - 58, Oct 1994.

2 T. G. Aguierre Smith, “Parsing Movies in Context,” in Proc. Summer USENIX Confer-
ence, Nashville, TN, pp. 157 - 167, 1991.

3 E. André and T. Rist, “The Design of Illustrated Documents as a Planning Task,” in Intelli-
gent Multimedia Interfaces, ed. Mark T Maybury, AAAI Press/MIT Press, ISBN 0-262-
63150-4, pp. 94-116, 1993.

4 B. Arons, “Hyperspeech: Navigating in Speech-Only Hypermedia,” in Proceedings Hyper-
text ’91 (Third ACM Conf. on Hypertext), San Antonio TX, pp. 133-146, Dec. 1991.

5 R. Botafogo and D. Mossé, “The MORENA Model for Hypermedia Authoring and Brows-
ing,” Proc. IEEE Int. Conf. on Multimedia Computing and Systems, Washington, D.C., pp.
40-49, May 1995,

6 M. C. Buchanan and P. T. Zellweger, “Automatic temporal layout mechanisms,” in Pro-
ceedings ACM Multimedia ’93, Anaheim CA, pp. 341-350, Aug 1993.



LNCS-1000 16

7 D.C.A. Bulterman, G. van Rossum and R. van Liere, “A Structure for Transportable,
Dynamic Multimedia Documents,” in Proc. Summer USENIX Conference, Nashville, Ten-
nessee, pp. 137-155, 1991.

8 D.C.A. Bulterman, “Specification and Support of Adaptable Network Multimedia,” ACM/
Springer Multimedia Systems, 1(2), pp. 68-76, September 1993.

9 V.A. Burrill, T. Kirste & J.M. Weiss, “Time-Varying Sensitive Regions in Dynamic Multi-
media Objects: A Pragmatic Approach to Content-Based Retrieval from Video,” Informa-
tion and Software Technology, 36(4), Butterworth-Heinemann, pp. 213-224, April 1994.

10 CHAMELEON: An Authoring Environment for Adaptive Multimedia Documents, CEC
ESPRIT-IV Project 20597, 1995.

11 M. Davis, “Media Streams: An Iconic Language for Video Annotation,” Cyberspace,
84(9), (Norwegian Telecom Research), pp. 49-71, 1993.

12 G.D. Drapeau and H. Greenfield, “MAEstro — A Distributed Multimedia Authoring Envi-
ronment,” in Proc. Summer 1991 USENIX Conference, Nashville, TN, pp. 315-328. 1991.

13 S. Eun, E.S. No, H.C. Kim, H. Yoon and S.R. Maeng, “Eventor: An Authoring System for
Interactive Multimedia Applications,” Multimedia Systems 2(2), pp.129 - 140, 1994.

14 K. Fujikawa, S. Shimojo, T. Matsuura, S. Nishio and H. Miyahara, “Multimedia Presenta-
tion System ‘Harmony’ with Temporal and Active Media,” in Proc. Summer 1991
USENIX Conference, Nashville, TN, pp. 75-93, 1991.

15 D. J. Gemmell, H.A. Vin, D.D. Kandlur, P.V. Rangan and L.Rowe, “Multimedia Storage
Servers: A Tutorial,” IEEE Computer, 28(5), pp. 40-49, May 1995.

16 Frank Halasz and Mayer Schwartz, “The Dexter Hypertext Reference Model,” Communi-
cations of the ACM, 37 (2), pp. 30 - 39, Feb. 1994 (Also NIST Hypertext Standardization
Workshop, Gaithersburg, MD, January 16-18 1990.)

17 R. Hamakawa and J. Rekimoto, “Object Composition and Playback Models for Handling
Multimedia Data,” Multimedia Systems 2(1), pp. 26-35, 1994.

18 L. Hardman, D.C.A. Bulterman and G. van Rossum, “The Amsterdam Hypermedia
Model: Adding Time and Context to the Dexter Model,” Communications of the ACM, 37
(2), pp. 50 - 62, Feb. 1994.

19 L. Hardman, D.C.A. Bulterman and G. van Rossum, “Links in Hypermedia: The Require-
ment for Context,” in Proceedings ACM Hypertext ’93, Seattle WA, pp. 183-191, 1993.

20 L. Hardman, G. van Rossum and D.C.A. Bulterman, “Structured Multimedia Authoring,”
in Proceedings ACM Multimedia ’93, Anaheim CA, pp. 283 - 289, Aug. 1993.

21 M.E. Hodges, R.M. Sasnett and M.S. Ackerman, “A Construction Set for Multimedia
Applications,” IEEE Software, 6(1), pp. 37-43, Jan. 1989.

22 ISO, “HyTime. Hypermedia/Time-Based Structuring Language,” ISO/IEC 10744:1992.
23 ISO, “MHEG. Information Technology Coded Representation of Multimedia and Hyper-

media Information Objects (MHEG) Part 1: Base Notation (ASN.1), ISO/IEC CD 13552-
1:1993, Oct 15 1994.

24 J.F. Koegel and J.M. Heines, “Improving Visual Programming Languages for Multimedia
Authoring,” ED-MEDIA ’93, World Conference on Educational Multimedia and Hyper-
media, Charlottsville, Virginia, pp. 286-293, June 1993.

25 R. Macneil, “Generating Multimedia Presentations Automatically Using TYRO, The Con-
straint, Case-Based Designer’s Apprentice,” in Proceedings: IEEE 1991 Visual Language
Workshop, pp. 74-79, 1991

26 T. Meyer-Boudnik and W. Effelsberg, “MHEG Explained,” IEEE MultiMedia, 1(4), pp.
26-38, Spring 1995.

27 S.R. Newcomb, N.A. Kipp and V.T. Newcomb, “HyTime: The Hypermedia/Time-Based
Document Structuring Language,” Communications of the ACM, 34(11), pp. 67-83, 1991.



LNCS-1000 17

28 R. Ogawa, H. Harada and A. Kaneko, “Scenario-Based Hypermedia: A Model and a Sys-
tem,” in Proceedings: ECHT ’90 (First European Conference on Hypertext), INRIA
France, pp. 38-51, Nov. 1990.

29 S. Travis Pope and G. van Rossum, “Machine Tongues XVIII: A Child’s Garden of Sound
File Formats.” Computer Music, 19(2), pp. 25-63, 1995.

30 G. van Rossum, J. Jansen, K.S. Mullender and D.C.A. Bulterman, “CMIFed: A Presenta-
tion Environment for Portable Hypermedia Documents,” in Proceedings ACM Multimedia
’93, Anaheim CA, pp. 183-188, Aug. 1993.

31 A. Siochi, E.A. Fox, D. Hix, E.E. Schwartz, A. Narasimhan, W. Wake, “The Integrator: A
Prototype for Flexible Development of Interactive Digital Multimedia Applications,”
Interactive Multimedia, 2(3), pp. 5-26, 1993.

32 H. Wittig and C. Griwodz, “Intelligent Media Agents in Interactive Television Systems,”
Proc. IEEE Int. Conf. on Multimedia Computing and Systems, Washington, D.C., pp. 182-
189, May 1995.

33 H. Zhang, Y. Gong, S. Smoliar, “Automatic Parsing of News Video,” Proc. First IEEE
ICMS, Boston, 1994.

6.2 Software

1S Adobe Systems, Inc., “Adobe Photoshop 3.0.” URL:http://www.adobe.com/
2S Adobe Systems, Inc., “Adobe Premiere.” URL:http://www.adobe.com/
3S Apple Computer Corp., “HyperCard.” URL:http://www.apple.com/
4S J. Bradley, “XV,” University of Pennsylvania. Available via anonymous ftp:

ftp.cis.upenn.edu:pub/xv
5S IBM Corp., “AVC: Audio Visual Connection,” User’s Guide, 1990.
6S Frame Technology Corp, “FrameMaker 5.0.” URL:http://www.frame.com/
7S Kaleida Labs, Inc., “ScriptX.” URL:http://www.kaleida.com/
8S Macromedia, Inc., “Macromedia Director 4.0 for Windows.” 1994.

URL:http://www.macromedia.com/
9S Macromedia, Inc., “Macromedia SoundEdit 16.” 1993

URL:http://www.macromedia.com/
10S Microsoft Corp., “Microsoft Word 6.0.” 1994. URL:http://www.microsoft.com/
11S Netscape Comm. Corp, “Navigator 1.1,” 1995. URL:http://home.mcom.com/


