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Abstract. We present an extension of the usual projective geometric framework 
for computer vision which can nicely take into account an information that was 
previously not used, i.e. the fact that the pixels in an image correspond to points 
which lie in front of the camera. This framework, called the oriented projective 
geometry, retains all the advantages of the unoriented projective geometry, namely 
its simplicity for expressing the viewing geometry of a system of cameras, while 
extending its adequation to model realistic situations. 
We discuss the mathematical and practical issues raised by this new framework for 
a number of computer vision algorithms. We present different experiments where 
this new tool clearly helps. 

1 Introduction 
Projective geometry is now established as the correct and most convenient way to de- 
scribe the geometry of  systems of  cameras and the geometry of  the scene they record. 
The reason for this is that a pinhole camera, a very reasonable model for most cameras, 
is really a projective (in the sense of  projective geometry) engine projecting (in the usual 
sense) the real world onto the retinal plane. Therefore we gain a lot in simplicity if we 
represent the real world as a part of  a projective 3-D space and the retina as a part of  a 
projective 2-D space. 

But in using such a representation, we apparently loose information: we are used 
to think of  the applications of  computer vision as requiring a Euclidean space and this 
notion is lacking in the projective space. We are thus led to explore two interesting av- 
enues. The first is the understanding of  the relationship between the projective structure 
of, say, the environment and the usual affine and Euclidean structures, of  what kind of  
measurements are possible within each of  these three contexts and how can we use im- 
age measurements and/or a priori information to move from one structure to the next. 
This has been addressed in recent papers [7, 2]. The second is the exploration of  the re- 
quirements of  specific applications in terms of  geometry. A typical question is, can this 
application be solved with projective information only, affine, or Euclidean. Answers to 
some of  these questions for specific examples in robotics, image synthesis, and scene 
modelling are described in [11, 3, 4], respectively. 

In this article we propose to add a significant feature to the projective framework, 
namely the possibility to take into account the fact that for a pinhole camera, both sides 
of the retinal plane are very different: one side corresponds to what is in front of  the 
camera, one side to what is behind! The idea of  visible points, i.e. o f  points located in 
front of  the camera, is central in vision and the problem of  enforcing the visibility of  
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reconstructed points in stereo, motion or shape from X has not received a satisfactory 
answer as of today. A very interesting step in the direction of a possible solution has been 
taken by Harfley [6] with the idea of Cheirality invariants. We believe that our way of 
extending the framework of projective geometry goes significantly further. 

Thus the key idea developed in this article is that even though a pinhole camera is 
indeed a projective engine, it is slightly more than that in the sense that we know for sure 
that all 3-D points whose images are recorded by the camera are in front of the camera. 
Hence the imaging process provides a way to tell apart both sides of the retinal plane. 
Our observation is that the mathematical framework for elaborating this idea already 
exists, it is the oriented projective geometry which has recently been proposed by Stolfi 
in his book [13]. 

2 A short introduction to oriented projective geometry 
An n-dimensional projective space, 7 9'* can be thought of as arising from an n + 1 dimen- 
sional vector space in which we define the following relation between non zero vectors. 
To help guide the reader's intuition, it is useful to think of a non zero vector as defining a 
line through the origin. We say that two such vectors x and y are equivalent if and only 
if they define the same line. It is easily verified that this defines an equivalence relation 
on the vector space minus the zero vector. It is sometimes also useful to picture the pro- 
jective space as the set of points of the unit sphere S n of l~ '*+: with antipodal points 
identified. A point in that space is called a projective point; it is an equivalence class of  
vectors and can therefore be represented by any vector in the class. If x is such a vector, 
then ),x, )~ ~ 0 is also in the class and represents the same projective point. 

In order to go from projective geometry to oriented projective geometry we only 
have to change the definition of the equivalence relation slightly: 

3)~ > 0 such that y = )~x (1) 

where we now impose that the scalar )~ be positive. The equivalence class of a vector 
now becomes the half-line defined by this vector. The set of equivalence classes is the 
oriented projective space T '~ which can also be thought of as S n but without the iden- 
tification of antipodal points. A more useful representation, perhaps, is Stolfi's straight 
model [13] which describes 7 TM as two copies of •'*, and an infinity point for every di- 
rection of R n+:, i.e. a sphere of  points at infinity, each copy of R'* being the central 
projection of half of S n onto the hyperplane of R '*+: of equation X l  = 1. These two 
halves are referred to as the front range (x: > 0) and the back range (x: < 0) and we 
can think of the front half as the set of "real" points and the hack half as the set of "phan- 
tom" points, or vice versa. Thus, given a point x of T'* of coordinate vector x,  the point 
represented by - x  is different from x, it is called its antipode and noted ~x. 

The nice thing about T '~ is that because it is homeomorphic to S n (as opposed to 
T"* which is homeomorphic to S'* where the antipodal points have been identified), it 
is orientable. It is then possible to define a coherent orientation over the whole of T '~: 
if we imagine moving a direct basis of the front range across the sphere at infinity into 
the back range and then back to the starting point of the front range, the final basis will 
have the same orientation as the initial one which is the definition of orientability. Note 
that this is not possible for ~P'* for even values of n. 
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3 Oriented projective geometry for computer vision 
We now use the previous formalism to solve the problem of determining "front" from 
"back" for an arbitrary number of weakly calibrated pinhole cameras, i.e. cameras for 
which only image correspondences are known. We know that in this case only the pro- 
jective structure of the scene can be recovered in general [1, 5]. We show that in fact a 
lot more can be recovered. 

As usual, a camera is modeled as a linear mapping from 793 to 792 defined by a ma- 
trix P called the perspective projection matrix.The relation between a 3-D point M and 
its image m is m _ P M  where _~ denotes projective equality. By modeling the envi- 
ronment as T 3, instead of 793, and by using the fact that the imaged points are in front 
of the retinal p lane / /y  of the camera, we can orient that retinal plane in a natural way. 
In the case of two cameras, we can perform this orientation coherently and in fact ex- 
tend it to the epipolar lines and the fundamental matrix. This applies also to any number 
of cameras. We call the process of orienting the focal plane of a camera orienting the 
camera. 

3.1 Or i en t ing  the  c a m e r a  

The orienting of a camera is a relatively simple operation. It is enough to know the pro- 
jective coordinates of a visible point. We say that this point is in the front range of the 
camera. By choosing one of the two points of T 3 associated with this point of 793, we 
identify the front and the back range relatively to the focal plane of the camera. 

The existence of such an information (the coordinates of a point in space and in the 
image) is verified in all practical cases. If  the scene is a calibration grid, its space and im- 
age coordinates are known. In the case of weak calibration, a projective reconstruction 
is easily obtained by triangulation. 

In order to define the orientation of the camera, we also need the assumption that the 
points we are considering do not project onto the line at infinity in the image plane. This 
is also verified in all practical cases, because no camera can see points on its focal plane. 

Let us write the perspective projection matrix P as 

where li, i = 1, 2, 3 are 4 • 1 vectors defined up to scale. We know that the optical 
center is the point C verifying P C  = 0 and that 13 represents the focal plane 1If of the 
camera . / / f  is a plane of T 3 which we can orient by defining its positive side as being 
the front range of the camera and its negative side as being the back range of the camera. 
This is equivalent to choosing 13 such that, for example, the image of the points in front 
of the camera have their last coordinate positive, and negative for the points behind the 
camera. Again, this is just a convention, not a restriction. 

The last coordinate of m is simply 13.M. According to our conventions, this expres- 
sion must be positive when M (M E T 3) is in front of the focal plane. This determines 
the sign of 13 and consequently the sign of P.  P is then defined up to a positive scale 
factor. 

Hence we have a clear example of the application of the oriented projective geometry 
framework: the retinal plane is a plane of T 3 represented by two copies of R 2 its front 
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and hack ranges in the terminology of section 1, which are two affine planes, and a circle 
of  points at infinity. The front range "sees" the points in the front range of the camera, 
the back range "sees" the points in the hack range of the camera. 

The sign of P determines the orientation of the camera without ambiguity. A camera 
with an opposite orientation will look in the exact opposite direction, with the same pro- 
jection characteristics. It is reassuring that these two different cameras are represented 
by two different mathematical objects. For clarity, in the Figure 1, consider that we are 
working in a plane containing M and C. The scene is then T 2 that we represent as a 
sphere, whereas the focal plane appears as a great circle. We know that the scene point 
will be between C and --,C. 

Fig. 1. A plane passing through M and C is represented as S 2. The trace of the focal plane is an 
oriented line. It is oriented so that the front appears on the left when moving along the line. 

3.2 Orienting the e p i p o l a r  g e o m e t r y  

In this section, we consider a pair of cameras whose perspective projection ma~ces  are 
P1 and P2. The epipoles are noted e12 and e21. 

The orienting of the cameras is not without having an incidence on the other at- 
tributes the stereo rig. The epipoles which are defined as the projections of  the optical 
centers are oriented in the same fashion as the other points: if the optical center of the 
second camera is in front of (resp. behind) the focal plane of the first camera, the epipole 
has a positive (resp. negative) orientation, that is to say, a positive (resp. negative) last 
coordinate. This is achieved from the oriented pair of perspective projection matrices. 
The projective coordinates of the optical center C2 are computed from P2 by solving 
P2 C2 = 0. From this information only we cannot decide which of the T 3 objects corre- 
sponding to our projective points am the optical centers. Geometrically, this means that 
both C2 and ~C~ are possible representations of the optical center. Of  course, only one 
of them is correct. This is shown in Figure 2. If  we choose the wrong optical center, the 
only incidence is that the orientation of all the epipoles and epipolar lines is going to be 
reversed. 

The epipoles are then computed as images of  the optical centers. In our case, e = 
P C ' .  The epipolar lines can then be computed using Ira, = e x m.  As we can see, there 
am only two possible orientations for the set of epipolar lines. Setting the orientation of 
one of them imposes the orientation of all epipolar lines in the image. This ambiguity 
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also goes away if we know the af-fine structure of  the scene. The plane at infinity splits 
the sphere in two halves. We can choose its orientation so that M is on the positive side. 
Because C1 and C2 are real points, they also are on the positive side of  the plane at 
infinity. This will discriminate between C2 and -~C2. 
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Fig. 2. The epipolar plane of M represented as the T 2 sphere. 11 and 12 represent the intersection 
of the focal planes with the epipolar plane. The cameras are oriented so that M is in front of the 
cameras. 

4 Applicat ions  
In this section, we show some applications of  the oriented projective geometry in prob- 
lems in computer vision involving weakly calibrated cameras. 

4.1 Possible and impossible reconstructions in stereo 
In this section, in order to keep the demonstrations clear and concise, we consider only 
two cameras. The extension to any given number of  cameras is easy. It is a fact that for 
a stereo system, all reconstructed points must be in front of  both cameras. This allows 
us to eliminate false matches which generate impossible reconstructions. This will be 
characterized by a scene crossing the focal plane of  one or several cameras. The focal 
planes of  the two cameras divide the space into four zones as shown in Figure 3. The 
reconstruction must lie in zone ++ only. 

When we reconstruct the points from the images, we obtain 3-D points in 793 which 
are pairs of  points in T a. We have no way of  deciding which of  the antipodal points is 
a real point. Therefore, we choose the point in ~r-3 tO be in front of  the first camera. We 
are then left with points possibly lying in ++ and + - .  The points in + -  are impossible 
points. 

From this we see that we do not have a way to discriminate against points which 
are in the - - zone. These points can be real (i.e. in the front range of  T3), but they 
will always have an antipodal point in ++. On the other hand, points in - +  have their 
antipodal point in + -  and can always be removed. 

We can eliminate the points in - - only if we know where is the front range of  T a. 
This is equivalent to knowing the plane at infinty ant its orientation or equivalently the 
affine structure. Once we know the plane at infinity, we also know its orientation since 
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Fig. 3. Division of T a in 4 zones. 

our first point of  reference used to orient the cameras must be in front. We can now con- 
strain every reconstructed point to be in the front range of T 3. This enables us to choose 
which point in T 3 corresponds to the point in 7 ~3. The points appearing in - - can be 
removed, their antipodal point being an impossible reconsU'uction also. 

We are not implying that we can detect this way all of the false matches, but only 
that this inexpensive step 1 can improve the results at very little additional expense. It 
should be used in conjunction with other outlier detection methods like [14] and [15]. 

The method is simple. From our correspondences, we compute a fundamental matrix 
as in [8] for example. From this fundamental matrix, we obtain two perspective projec- 
tion matrices [1, 5], up to an unknown projective transformation. We then orient, per- 
haps arbitrarily, each of the two cameras. The reconstruction of the image points yields 
a cloud of pairs of points which can lie in the four zones. 

In general one of the zones contains the majority of  points because it corresponds to 
the real scene s . The points which are reconstructed in the other zones are then marked 
as incorrect and the cameras can be properly oriented so that the scene lies in front of  
them. 

The pair of images in figure 4 has been taken with a conventional CCD camera. The 
correspondences were computed using correlation, then relaxation. An outlier rejection 
method was used to get rid of the matches which did not fulfill the epipolar constraints. 
Most outliers were detected using the techniques described in [14] and [15]. Still, these 
methods are unable to detect false matches which are consistent with the epipolar ge- 
ometry. Using orientation, we discovered two other false matches which are marked as 
points 41 and 251. This is not a great improvement because most outliers have already 
been detected at previous steps, but these particular false matches could not have been 
detected using any other method. 

4.2 H i d d e n  su r f ace  r e m o v a l  

The problem is the following: given two points M a and M b in a scene which are both 
visible in image 1 but project to the same image point in image 2, we want to be able 

1 A projective reconstruction can be shown to be equivalent to a least-squares problem, that is to 
say a singular value decomposition. 

2 We are making the (usually) safe assumption that the correct matches oumumber the incorrect 
o n e s .  
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Fig. 4. Outliers detected with orientation only. 

to decide from the two images only and their epipolar geometry which of the two scene 
points is actually visible in image 2 (see Figure 5). This problem is central in view trans- 
fer and image compression [3, 9]. 

It is not possible to identify the point using the epipolar geometry alone, because 
both points belong to the same epipolar line. We must identify the closest 3-D point to 
the optical center on the optical ray. It is of course the first object point when the ray is 
followed from the optical center towards infinity in the front range of the camera. It is a 
false assumption that it will necessarily be the closest point to the epipole in the image, 
In fact, the situation changes whenever the optical center of one camera crosses the focal 
plane of the other camera. This can be seen in the top part of Figure 5 where the closest 
point to the epipole switches from m r to rr~ when C2 crosses Hfl and becomes C~ with 
the effect that e12 becomes e~ .  

We can use oriented projective geometry in order to solve this problem in a simple 
and elegant fashion. We have seen in the previous section that every point of the physical 
space projects onto the images with a sign describing its position with respect to the 
focal plane. We have also seen that the epipolar lines were oriented in a coherent fashion, 
namely from the epipole to the point. When the epipole is in the front range of the retinal 
plane as for e12 (right part of the bottom part of Figure 5), when we start from ex2 and 
follow the orientation of the epipolar line, the first point we meet is m~ which is correct. 
When the epipole is in the back range of the retinal plane as for e ~ 2 (left part of the bottom 
part of Figure 5), when we start from e~2 and follow the orientation of the epipolar line, 
we first go out to infinity and come back on the other side to meet m~ which is again 
correct! 

Hence we have a way of detecting occlusion even if we use only projective infor- 
mation. The choice of which representant of C2 we use will determine a possible ori- 
entation. But what happens when the chosen orientation is incorrect? In order to under- 
stand the problem better, we synthesized two views of the same object, using the same 
projection matrices, but with two different orientations. This is shown in Figure 6. The 
erroneous left view appears as seen "from the other side". The geometric interpretation 
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Fig. 5. Change of orientation when C2 crosses the focal plane of the first camera. 

is simple: The wrongly oriented camera looks in the opposite direction, but far enough 
to go through the sphere at infinity and come back to the other side of the object. Please 
note that without the use of oriented projective geometry, we would have a very large 
number of images, namely two possible orientations for each pixel. 

4.3 Convex  hul ls  

Another application of oriented projective geomelry is the ability to build convex hulls 
of  objects from at least two images. A method for computing the 3-D convex hull of an 
object from two views has been proposod before by Robert and Faugeras [12]. However, 
it is clear that the method fails if any point or optical center crosses any focal plane, as 
noted by the authors. Their approach is based on the homographies relating points in 
the images when their correspondents lie on a plane. Our approach makes full use of 
the oriented projective geometry framework to deal with the cases where their method 
fails. It consists in using once again the fact that the physical space is modelled as T a 
and that in order to compute the convex hull of a set of 3-D points we only need to be 
able to compare the relative positions of these points with respect to any plane, i.e. to 
decide whether two points are or are not on the same side of  a plane. 

This is possible in the framework of oriented projective geometry. Let H be a plane 
represented by the vector u which we do not assume to be oriented. Given two scene 
points represented by the vectors iV[ and M '  in the same zone (++ for example), com- 
paring the signs of the dot products u �9 M and u �9 M '  allows us to decide whether the 
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Fig. 6. Two synthesized images with cameras differing only in orientation. The image is incom- 
plete because the source images did not cover the object entirely. The left image presents anoma- 
lies on the side due to the fact that the left breast of the mannequin is seen from the back. Hence, 
we see the back part of the breast first and there is a discontinuity line visible at the edge of the 
object in the source images. What we are seeing first are the last points on the ray. If the object was 
a head modelled completely, only the hair would be seen in one image, whereas the face would 
appear in the other. One image would appear seen from the back, and one from the front. 

two points are on the same side of  H or not. 

The usual algorithms for convex hull building can then be applied. There are of  sev- 
eral sorts, a good reference being [10]. The results are of  course identical to those of  the 
method of  Robert  and Faugeras.  The interested reader  is then referred to [12] for details 
and results. 

5 Conclusion 
We have presented an extension of  the usual projective geometric framework which can 
nicely take into account an information that was previously not used, i.e. the fact that 
we know that the pixels in an image correspond to points which lie in front of  the cam- 
era. This framework, called the oriented projective geometry, retains all the advantages 
of  the unoriented projective geometry, namely its simplicity for expressing the viewing 
geometry of  a system of  cameras,  while extending its adequation to model  realistic sit- 
uations. 

References 
1. Olivier Faugeras. What can be seen in three dimensions with an uncalibrated stereo rig. In 

G. Sandini, editor, Proceedings of the 2nd European Conference on Computer Vision, volume 
588 of Lecture Notes in Computer Science, pages 563-578, Santa Margherita Ligure, Italy, 
May 1992. Springer-Verlag. 

2. Olivier Faugeras. Stratification of 3-d vision: projective, affine, and metric representations. 
Journal of the Optical Society of America A, 12(3):465-484, March 1995. 

3. Olivier Faugeras and St6phane Laveau. Representing three-dimensional data as a collection 
of images and fundamental matrices for image synthesis. In Proceedings of the International 
Conference on Pattern Recognition, pages 689-691, Jerusalem, Israel, October 1994. Com- 
puter Society Press. 



156 

4. Olivier Faugeras, St6phane Laveau, Luc Robert, Cyril Zeller, and Gabriella Csurka. 3-d 
reconstaaiction of urban scenes from sequences of images. In A. Gruen, O. Kuebler, and 
P. Agouris, editors, Automatic Extraction of Man-Made Objects from Aerial and Space Im- 
ages, pages 145-168, Ascona, Switzerland, April 1995. ETH, Birkhauser Verlag. also INRIA 
Technical Report 2572. 

5. Richard Hartley, Rajiv Gupta, and Tom Chang. Stereo from uncalibrated cameras. In Pro- 
ceedings of the International Conference on Computer Vision and Pattern Recognition, pages 
761-764, Urbana Champaign, IL, June 1992. II~.F.I~. 

6. Richard I. Hartley. Cheirality invariants. In Proceedings of the ARPA Image Understand- 
ing Workshop, pages 745-753, Washington, DC, April 1993. Defense Advanced Research 
Projects Agency, Morgan Kaufmann Publishers, Inc. 

7. Q.-T. Luong and T. Vi6ville. Canonical representations for the geometries of multiple pro- 
jective views. Technical Report UCB/CSD 93-772, Berkeley, 1993. Oct. 1993, revised July 
1994. 

8. Quang-Tuan Luong. Matrice Fondamentale et Calibration Visuelle sur l'Environnement- 
Vers une plus grande autonomie des systdmes robotiques. PhD thesis, Universit6 de Paris- 
Sud, Centre d'Orsay, December 1992. 

9. Leonard McMillan and Gary Bishop. Plenoptic modeling: An image-based rendering system. 
In SIGGRAPH, Los Angeles, CA, August 1995. 

10. E Preparata and M. Shamos. Computational Geometry. Springer-Verlag, New-York, 1985. 
11. L. Robert, C. Zeller, O. Fangeras, and M. H6bert. Applications of non-metric vision to some 

visually-guided robotics tasks. In Y. Aloimonos, editor, Visual Navigation: From Biological 
Systems to Unmanned Ground Vehicles, chapter ? Lawrence Erlbanm Associates, 1996. to 
appear, also INRIA Technical Report 2584. 

12. Luc Robert and Olivier Fangeras. Relative 3-D positioning and 3-D convex hull computation 
from a weakly calibrated stereo pair. Image and Vision Computing, 13(3):189-197, 1995. 
also INRIA Technical Report 2349. 

13. Jorge Stolfi. Oriented Projective Geometry, A Framework for Geometric Computations. 
Academic Press, Inc., 1250 Sixth Avenue, San Diego, CA, 1991. 

14. Philip Torr. Motion Segmentation and Outlier Detection. PhD thesis, Department of Engi- 
neering Science, University of Oxford, 1995. 

15. Zhengyou Zhang, Rachid Deriche, Olivier Faugeras, and Quang-Tuan Luong. A robust tech- 
nique for matching two uncalibrated images through the recovery of the unknown epipolar 
geometry. Artificial Intelligence Journal, 1994. to appear, also INRIA Research Report 
No.2273, May 1994. 


