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Abst rac t .  This paper investigates the problem of computing the fun- 
damental matrix for a class of active stereo vision system, namely with 
common elevation platform. The fundamental matrix is derived for such 
a system, and a number of methods are proposed to simplify its compu- 
tation. Experimental results validate the feasibility of the different meth- 
ods. These methods are then used in a real application to validate the 
correctness of the fundamental matrix form for an active stereo system. 
We demonstrate that typical variations in camera intrinsic parameters 
do not inuch affect the epipolar geometry in the image. This motivates 
us to calibrate the camera intrinsic parameters approximately and then 
to use the calibration results to compute the epipolar geometry directly 
in real time. 

1 I n t r o d u c t i o n  

Active stereo vision systems based on a common elevation platform have been 
widely used for research on the visual control and navigation of mobile robots [1]. 
Usually, this kind of vision system has four degrees of freedom. The two cameras 
have independent vergence joints and use a common elevation platform. A pan 
joint is used to increase the field of view of the system. There is a platform for 
each of the cameras so that their optical centres can be adjusted to a position 
near the intersection of the elevation axis and the vergence axes to ensure that 
the elevation and vergence of the head approximately causes a pure rotation of 
the cameras. Let P be the fixation point of the two cameras, 0e the elevation 
angle of the system, and t~l and 0~ the two camera angles. Clearly, the epipolar 
geometry depends only on the two vergence joint angles. When the cameras 
verge, the epipolar geometry changes dynamically. 

Such a stereo head has been mounted on the mobile robot at Oxford Univer- 
sity to provide visual information for navigation. With the LICA(Locally Intel- 
ligent Control Agent)J3] based distributed architecture, parallel implementation 
of a number of algorithms using on-board transputers makes real-time visual 
guidance practical. Using such a robot head, the vision system is able to actively 
change its geometry to adapt to the task requirements and to plan and execute 
accurate camera motions. We have demonstrated real-time target tracking and 
following using this method[l]. 

In order to solve the feature-based correspondence problem in real time, a 
fast method must be employed to compute the epipolar geometry, hence to limit 
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the search from two dimensions to one for correspondence. Furthermore, during 
the active verging process, all camera-related parameters are unchanged apart 
from the camera verge angles, which are available from the head state feedback. 

In this paper, we investigate specific forms of the fundamental matrix, the 
algebraic representation of the epipolar geometry, for this important  kind of 
stereo system. As a result, a number of methods are proposed to compute the 
fundamental matrix quickly and reliably. From extensive experimental results of 
applying these methods, epipolar geometry related camera intrinsic parameters 
are calibrated approximately. We demonstrate with these calibration results and 
the head state feedback, it is possible to update the epipolar geometry directly 
with sufficient accuracy. This will be applied to revisit the parallel implemen- 
tation of PMF[5] in the near future and the result used to actively control the 
head. 

2 T h e  C o m m o n  E l e v a t i o n  F u n d a m e n t a l  M a t r i x  

A stereo head with common elevation platform can be regarded as two cameras 
related by a translation T along the baseline and a rotation R about the Y axis. 
The fundamental matrix[8] is: 

F = c ' T R [ T l x C  -1  = c ' - T R c T [ C T ] x ,  

where 

C = - f k ~  , T = 0 , R = 1 , 
0 - B c o s S t  L - s i nO~  0 cosO. J 

The matrix C'  is similar to C. C and C'  are the c a m e r a  ca l ib ra t ion  m a t r i c e s  

for the left and right cameras respectively, and represent the transformation from 
camera coordinates to image coordinates. B is the length of the stereo baseline; 
Or, Or are the left and right camera angles respectively; and Ov = Or - 0t is called 
the camera vergence angle. 

We find that in this case F can be written in the following form: 

where 

[Oca 
F =  0 d , 

b~c e b'd + be 
(1) 

f k ~  ~ b' f k v  
a = - ~ 7 - c o s v r ,  b = -v0,  = -V~o, c - -:7:..cosOI, 

f k  u J-Ic~ 

fk,, fk~ , 
d = e = -(fk  inO  -4- 

pc,, J #," 

We will call this the common elevation fundamental matr ix in the remainder 
of the paper. 
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t t T The epipoles e = (e . ,ey)  T in the left image and e' = (e=,ey) in the right 
image are: 

d 
e .  - - f k , . t a n O t  + uo,  ey = - b = v 0 ,  

C 

' ' = - b '  v ;  e~' ae f k ~ t a n O r  + Ulo, ey = . 

Of the entries of the common elevation fundamental  matrix: 

f k v  2 
d = -] -s  + u~)cos(01 - r 

where t a n r  = f k u / u o .  
For d to be zero, cos(O~ - r = 0. This implies 0z = r + 2~2-~--7r; but r r 0 

and 0 ~ < 01 < 90 ~ so d is highly unlikely to be zero. 
Since the fundamental  matr ix  is only significant up to scale, using the prop- 

erty that  d is unlikely to be zero, we set d = 1 in the following to simplify 
computations.  

3 C o m p u t a t i o n  

From equation 1, it can be seen that  the main difference between the general 
fundamental  matr ix  and that  for a stereo head is that  the latter has two zero 
entries which reflect the constraint of common elevation�9 Tha t  means we can 
compute the other entries with a simplified algorithm that  is bet ter  conditioned 
and that  can easily operate in real time. 

8 - p o i n t  a l g o r i t h m :  Generally, each correspondence point pair generates 
one constraint on the fundamental  matr ix  F: 

[x~ y~ 1] f 4 f h f 6  = 0 .  
fT Y8 f9 

This can be rearranged as M f  = 0 where M is a n x 9 measurement matrix,  
and f is the fundamental  matr ix  represented as a 9-vector: 

x l x l  x l Y l  x l  Y l z l  YlYl  Yl x l  Yl 1 f l  

�9 " " : . . . .  = 0 .  
l x l  l l l l 

XnXn nYn Xn ynxn  YnYn Yn Xn yn 1 

If the correspondence point pairs are reliable, 7 pairs suffice to solve F up to 
scale. To solve the problem linearly, it is customary to use 8 points to estimate fi, 
i = 1 , . . . ,  9, first and then enforce the zero determinant constraint afterwards[2]. 

6 - p o i n t  a l g o r i t h m  ( l i nea r  m e t h o d ) :  After reparameterising the common 
elevation fundamental  matr ix  from equation 1, we get 

[~:y:l]  h o =o .  
f7 f8 fgJ 
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This can be rewritten and solved using Singular Value Decomposition(SVD): 

j7 = �9 (2)  

L 'y- L - y ' J  
Y9 

However, this does not ensure detF = O, and we have to enforce this con- 
straint subsequently. 

A convenient way to do this is to correct the matrix F found by equation 2. F 
is replaced by the matrix F'  that minimises the Frobenius norm I IF-F ' ] I  subject 
to the condition detF' = 0. This method was suggested by Tsai and Huang [7], 
adopted by Hartley [2], and has been proven to minimise the Frobenius norm 
I I F -  F']I, as required. Please consult [4] for details. 

This kind of linear algorithm is normally not stable and is sensitive to noisy 
data. As Hartley argued in [2], normalising the data  improves the performance 
of the eight point algorithm, which is used to compute the general form funda- 
mental matrix. Our experimental results support this argument. 

5 -po in t  a l g o r i t h m  (non l inea r  m e t h o d ) :  Equation 1 can be written as: 

F =  [ Oc ab'cOe b I+ab = [i0i]b'l [iai]0e [i0!]01 . 

then 

ie. 

Let 

[iai] [!0!] [!0!] F l =  0 , T l =  1 , T =  1 , 
e 0 0 

x 'TFx  = x ' T T ' T F ' T x  = ( T ' x ' ) T F ' T x  = O, 

I , b ' l ]  0 b 0. [ xi y, + Yi = 
e 

Now we have five free parameters. In theory, given five correspondence point 
pairs, we should be able to solve for them. However this is a nonlinear problem. 

If b and b' are unknown, the problem can be formed as a nonlinear optimi- 
sation problem to find b and b ~ to minimise 

X t Z (  i(Yi + b)a + xi(y~ + b')c + (Yl + b)e + (y~ + b')) 2, 

where a, c, e are computed to produce the sum of squares using SVD, given a 
set of b and b', as follows: 

x~(yi + b)a + xi(y~ + b')c + (Yi + b)e = -(y~ + b'). 



161 

3 -po in t  a l g o r i t h m  A ( l inear  m e t h o d  w i t h  k n o w n  b a n d  b'): If the 
cameras are partially calibrated, ie. b and b ~ are known, then from the previous 
section, we can omit the nonlinear process and use SVD to solve a, c, e directly 
as follows: 

[xl(y~ + b) z,(y~+ b') (y, + b)] = -- (yf + b') 

4 - p o i n t  a l g o r i t h m :  If (as is often reasonable in practice) we assume that 
the two cameras forming the stereo head have approximately the same intrinsic 
parameters, the fundamental matrix can be further simplified: 

0 CO80r - -VoCOSOr ] 

F = -cosO,  0 f kus inOl  + uocosOl 1 'vocosO~ - ( f k , s i n O ~  + uocosO~} uovo(cosOr - c0s0~) + f k , v o ( s i n O ~  - sinOz) 

c 0 

bc e b(d+e)J  

where 

a ~ c o s O r ,  b ~ - - Y O ,  C ~ - - c o s O l ~  

d = f k ~ s i n O l  + uocosO1, e = - f k u s i n O r  - uocosOr.  

As before, we can set d -- 1. 
If we further set r = a, the fundamental matrix becomes: 

F = 0 1 . ( 3 )  

bc e b( l+e )  

There are four free parameters b, c, e and r. In theory, with four correspon- 
dence point pairs, we should be able to solve for them. This is also a nonlinear 
problem. Compared to the situation when the two cameras have different in- 
trinsic parameters, the nonlinearity is caused by just one parameter b. We can 
derive the nonlinear equation of b given four correspondence point pairs, then a 
regression method can be used to solve for b. Please consult [4] for details. 

3 - po in t  a l g o r i t h m  B ( c a m e r a  angles  a re  k n o w n ) :  For an active vision 
system, we can usually acquire the head state, hence the camera angles 0z and 

a cos{Or) . . . 0r. In this case, r - ~ = _ ~  Is Known since it relies only on the camera 

angles whatever scale the fundamental matrix uses. We can then further simplify 
the 4-point algorithm to be the 3-point algorithm B. 

Given three correspondence point pairs, we can derive a quadratic equation 
for b from the definition of the fundamental matrix. It is very easy to determine 
its closed form solution and then compute parameters c, e and a. Please consult 
[4] for details. 

From the formula for the fundamental matrix, we can see that although we 
set d = 1, which scales the parameters which form the fundamental matrix, this 
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does not affect the value of b, so b remains equal to -Vo. We can guess its initial 
value, and this can be used to select one of the two solutions of the quadratic. 

Random sampling [6] is used to choose the best three point pairs to compute 
the fundamental matrix with the above algorithm. Another benefit of using the 
4-point algorithm and 3-point algorithm B discussed in this section is they can 
be used to distinguish inliers and outliers of correspondence pairs. 

4 R e s u l t s  

We have performed extensive experiments on synthetic and real data, [4] gives 
details. We present results here for a typical experiment on real data. 

An image pair of a calibration grid standing in our laboratory was taken from 
our active stereo head with camera angles 01 = 75 ~ and 8r = 105 ~ The camera 
vergence angle is 30 ~ which is usually the maximum value in real applications. 

The number of the inliers among the point pairs used in the computation is 
one of the criteria to evaluate the quality of the computed fundamental matrix. 

' d If di = d(pi'FP')+ (P"F-rP~) 2 < dr, we say that the computed fundamental matr ix 
fits for the point pair (Pi,P~), and point pair (Pi,P~) is a inlier. Here (pi, p~), i = 
1 , . . . , n ,  are the n correspondence point pairs and d(.,.) is the point-to-line 
Euclidean distance expressed in pixels, dt is the threshold value which reflects 
the quality of the computed fundamental matrix as another criterion. 

The fundamental matrices computed by the different algorithms are listed in 
Table 1, and we give the numbers of inliers in the table explicitly, given dt < 1. 
We do not compute results using the 3-point A algorithm, since we do not know 
the true values of b and b ~. 

The results show that the first two diagonal elements are indeed close to 
zero when the 8-point and 6-point algorithms are used. The small difference 
from zero in these elements may be due to small manufacturing errors and slight 
misalignment in the common elevation geometry. However, we observe that  the 
epipolar geometry computed by the 8-point and 6-point algorithms (see Figure 1) 
is in fact consistent with the plane to plane homography of the grid in the 
foreground of the scene. We conclude that,  in this example, the point set used to 
compute the epipolar geometry must be close to approximating a plane and hence 
the computation of epipolar geometry with the 8-point and 6-point algorithms is 
underconstrained, resulting in a number of equally valid geometries close to that  
computed above. The 5-point algorithm enforces the leading diagonal elements 
to equal zero and hence limits the epipolar geometry to a unique solution. In 
fact the epipolar geometry computed with the 5-point algorithm more acurately 
approximates the true epipolar geometry of the stereo rig. 

The results for the 4-point and 3-point B algorithms are poor, suggesting 
that  the assumption of identical intrinsic parameters is not valid in this case 
(thus we do not show their epipolar lines in Figure 1). 

Note that although the epipoles computed by the different algorithms are 
quite different, the large variation in b and b I does not significantly affect the 
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Table 1. The results of the epipolar geometry computed by different algorithms ]or a 
stereo image pair. The first column is the algorithm used, the second the computed F 
matrix, the third the epipoles, and the fourth the number of inliers and total number of 
points considered. The corresponding epipolar lines are shown in Figure 1. 

8 - p t  

6 - p t  

5 - p t  

4-pt  

3 -p t  B 

0 .000049  - -0 .000707  0 .058852 ] 
F =  - 0 . 0 0 0 7 2 0  - 0 . 0 0 0 0 4 5  1 .000000 

0 . I~2004  --0.809891 - -23 ,999954  

- -0 .000043  - -0 .000241 0 .063241 ] 
F ~  - -0 .001126  - -0 .000000  1.000000 

0 ,129292  - -0 .879739  - -23 .914293  

[ o -ooooo~ooo?~.] 
F = - -0 .000804  0 

0 ,108096  - -0 .830002  ~ 2 6 , ~ 0 0 8  

[ 0 -00021~8 0.91707] 
F : 0 .002209  0 

- -0 ,954708  - -0 ,717975  - -121 .866  

[ 0 _000078001~#810] 
F = --0.000766 0 

0.128619 --0.786932 --35.7733 

1389.71 - -1148 .06  
e =  [83 07,] [ 17038  ] 

e = [~as:~], e' = [-~1~.~'~ 8 ] 

1242.7  e = [13009, ]  e ,  = [ - 1 3 3 , 0 1 ]  331 

- -452 .60982  --337.85787 e=[  432.1o9 ] e , = [  4 21oo ] 

1305.3757 i --1027.2419 18 800 ] e  =[ 18,.890 ] 

20/20 

20120 

2 o / 2 o  

12120 

9 / 2 o  

epipolar lines in the image (since they are far from the image center). We discuss 
this further in section 5, 

The analysis presented above assumes that  the common elevation stereo head 
has been manufactured perfectly; but in practice this is never the case. The up- 
shot of this is that intrinsic parameters that  should be identical are measured 
to be different, and even though manufacturing errors may be slight the cor- 
responding errors in the intrinsic parameters can be huge, In related work [4], 
we have shown how the fundamental matrix can be used to identify (small) 
manufacturing errors and correct for them in software automatically. Here, for 
purposes of clarity in exposition, we assume that slight manufacturing errors 
have been identified and corrected for. Please consult [4] for details. 

5 C a l i b r a t i o n  

Our experiments show that the variation of b and b' does not much affect the 
epipolar lines in the image. If this is true for all the intrinsic parameters, we 
can then calibrate them using algorithms for computing the common elevation 
fundamental matr ix and use the calibration results to compute the fundamental  
matr ix  directly according to its theoretical form. 

We have studied the effects of intrinsic parameter variation on the epipolar 
geometry. Table 2 shows a typical result, corresponding to variations in the 
estimation of u0. Here (ex, ey) x is the epipole in the left image, (e ' ,  ey) x is the 
epipole in the right image, dcz represents the corner-to-epipolar line distance in 



164 

Fig. 1. Epipolar lines computed by various algorithms for an image pair. The corre- 
sponding fundamental matrices are shown in Table 1. 

the left image, d~d represents the corner-to-epipolar line distance in the right 
image, s represents the slope of the epipolar line in the left image, s ~ represents 
the slope of the epipolar line in the right image, E and ~ represents the mean 
value and the standard deviation of the correspondence variable on the table. 500 
randomly selected stereo match pairs are used for the statistical computation. 

Table 2. The error mean and covariance about epipolar geometry when uo changes. 

V ~ r i ~ i o n  1 0 ~  3 0 ~  
V e r ~ e n c e  10 ~ 30  ~ 10 ~ 30  ~ 

E ~ 2  E ~ 2  ~ ~ E ~ 2  
e x 12 0 12  0 36  0 36  0 
e ~  0 0 0 0 0 0 O 0 

12 0 I ~  0 30  0 36  0 o~ 0 0 v 0 0 0 0 0 :~i 0 . 4 0 1 .  0 . 0 0 ~  1 0 1 7 7 6  0 0 . 9 9 ~  ~ 0 ~ . 1  0 . 2 ~ 1  ~ . 0 , 1  ~ . 0 4 ,  

0 . 4 6 0 1 9 9  0 . 1 1 8 7 4  1 . 0 2 7 2 7  0 . 5 1 0 7 7 6  1 . 0 4 6 0 3  0 . 6 4 6 7 6 1  2 . 9 6 3 6 4  3 . 9 4 4 1 6  

s 0 . 2 2 9 1 9 3  1 , 1 1 5 5 2  0 . 4 7 9 1 1 6  8 . 4 4 2 3 4  0 . 7 4 7 6 7 6  1 . 9 8 9 6 8  1 . 3 7 2 0 8  1 1 . 4 5 1 8  

s I - 0 . 0 3 0 5 5 1 8  0 . 7 8 8 0 7 4  - 0 . 3 1 3 3 2 3  6 . 9 2 0 4 1  0 , 0 8 9 ~ 0 4 3  0 . 9 1 7 0 0 1  - 0 . 6 5 5 5 6 8  7 , 1 1 4 3 6  
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I t  is clear that  when the vergence angle is less than 30 ~ the epipoles are 
far from the image planes, so that  the epipolar lines change very little when the 
camera intrinsic parameters  change slightly. In particular, the corner-to-epipolar 
line distance, which is used to measure the accuracy of the epipolar geometry, 
changes very little. This enables us to approximate calibration to compute the 
epipolar geometry efficiently. 

We are able to get the nearly constant b and b', which represent the image 
centre's vertical coordinate in each image, for the left and right images of different 
frames using the algorithms for computing the common elevation fundamental  
matr ix  proposed in this paper. If we can obtain the other camera intrinsic pa- 
rameters based on which the epipolar geometry can be computed, we can update  
the epipolar geometry using the stereo head state feedback in real time. 

If  we assume that  the remaining intrinsic parameters  are indeed equal be- 
tween the two cameras such that  f k ,  = f k "  and u0 = u~, then we can compute 
them given the camera angles 01 and G.  The theoretical form of the common el- 
evation fundamental  matr ix  when the two cameras have the same value between 
f k~  and f k ' ,  uo and u~ but different value between v0 and v~ is: 

F = . . . .  o o , k = , , . o ,  + ~ o c o . o ,  . ( 4 )  
~locosO l - - ( ] k u s i n O  r + uOCOSOv ) v o ( J k u s l n S r  + uoCOSOr) -- V/O(.fkusirtO ! + uOCOSOl) 

Given the camera angles and v0, v~ approximately, we can use SVD to compute 
f k u  and u0 according to known stereo match pairs: 

[ sin(8t)(y' -- v~) -- sin(8,)(y -- vo) cos(Ot)(y' -- v~) -- cos(8,)(y -- vO) ] I f : : ]  

= (y'  - v~)x * COS(el) - -  ( y  - -  V0)X'COS(Or). 

The more the camera verges, the more accurate the intrinsic parameters  we can 
compute from the fundamental  matr ix  according to the stereo match pairs. We 
use stereo match pairs from the image pair with vergence angle 30 ~ 

The calibration results are then used to compute the fundamental  matr ix  ac- 
cording to equation 4 for real image pairs taken from our active stereo head with 
different vergence angles. The computed fundamental  matrices are sufficiently 
accurate for stereo correspondence search. [4] gives details of these results. This 
means that  using this approximate calibration results, we can then compute the 
fundamental  matr ix  in real t ime with the head state feedback. The calibration 
algorithm is listed in Figure 2, and a typical result is shown in Table 3. 
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I n p u t  I |  (O),I r (0) : Image  pa i r  wi th  para l le l  geometry ;  
I |  (30) , I  r (30) : Image  p~ir verged 300 ;  

O u t p u t  f k u ,  UO, vo, v~ : C a m e r ~  in t r ins ic  p ~ r a m e t e r s .  

1. O b t a i n  the  stereo m a t c h  pairs  for each image  pair us ing  the  8 -po int  a lgo r i t hm,  

F = J4 15 Ye ; 
I 7  18 ] 9  

2. Ident i fy  and  co r rec t  smal l  m ~ n u f a c t u r i n g  errors[4] so t h a t  bo th  f u n d a m e n t a l  ma t r i ce s  have t h e  form: 

b t c  e b ! -I- be  

where  b t ~- b "t" $ b .  ab  is o b t a i n e d  in th i s  s tep  by ident i fy  smal l  m ~ n u f a c t u r i n $  errors[4];  
3. C o m p u t e  v 0 ---- --b and  v~  = - - b  t -~ - - ( b  "Jr $ b )  using t h e  5-po int  ~ lgor i thm from: 

[" ] 
b ; c  e b I "1" be 

4. C o m p u t e  f k u  ~nd u 0 using SVI9 from: 

[.io(0,,(.,_ ~ , _  . ( 0 ~ , ( . _  .o, o0.0,,(.,_ ~,o, . . . .  ( . ) ( , _  ~o, ] [ ,::  ] 
= ( ~  - ~ ) ~  �9 ~ o , ( e ~ )  - ( y  - ~ o ) ~ % o ~ ( a ~ ) ,  

here Ol = 75 ~  O r = 105 ~  v 0 and  v~ are c o m p u t e d  from t h e  above atep.  

Fig. 2. The algorithm of calibrating the camera intrinsic parameters for computing the 
epipolar geometry. 

Table 3. The results of the epipolar geometry for different image pairs using the cal- 
ibration parameters and camera angles. The first column is the vergence angle, the 
second the computed F matrix, the third the epipoles, and the fourth the number of 
fullers and total number of points considered. 
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F = --0.000479 0.000011 I*000000 

0 . 0 5 8 8 8 6  - - 0 . 8 7 9 1 4 6  - - 2 1 . 2 0 7 2 2 0  
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