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Abstrac t .  We present a class of PDE-based algorithms suitable for a 
wide range of image processing applications. The techniques are appli- 
cable to both salt-and-pepper grey-scale noise and full-image continuous 
noise present in black and white images, grey-scale images, texture im- 
ages and color images. At the core, the techniques rely on a level set 
formulation of evolving curves and surfaces and the viscosity in pro- 
file evolution. Essentially, the method consists of moving the isointensity 
contours in a image under curvature dependent speed laws to achieve en- 
hancement. Compared to existing techniques, our approach has several 
distinct advantages. First, it contains only one enhancement parameter, 
which in most cases is automatically chosen. Second, the scheme auto- 
matically stops smoothing at some optimal point; continued application 
of the scheme produces no further change. Third, the method is one of 
the fastest possible schemes based on a curvature-controlled approach. 

1 I N T R O D U C T I O N  

The essential idea in image smoothing is to filter noise present in the image signal 
without sacrificing the useful detail. In contrast, image enhancement focuses on 
preferentially highlighting certain image features. Together, they are precursors 
to many low level vision procedures such as edge finding [11, 2], shape segmen- 
tation, and shape representation [9, 10, 7]. In this paper, we present a method 
for image smoothing and enhancement which is a variant of the geometric heat 
equation. This technique is based on a min/max switch which controls the form 
of the application of the geometric heat equation, selecting either flow by the 
positive part of the curvature or the negative part, based on a local decision. 
This approach has several key virtues. First, it contains only one enhancement 
parameter, which it most cases is automatically chosen. Second, the scheme 
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automatically picks the stopping criteria; continued application of the scheme 
produces no further change. Third, the method is one of the fastest possible 
schemes based on a curvature-controlled approach. 

Traditionally, both 1-D and 2-D signals are smoothed by convolving them 
with a Gaussian kernel; the degree of blurring is controlled by the characteristic 
width of the Gaussian filter. Since the Gaussian kernel is an isotropic opera- 
tor, it smooths across the region boundaries thereby compromising their spatial 
position. As an alternative, Perona and Malik [13] have used an anisotropic dif- 
fusion process which performs intraregion smoothing in preference to interregion 
smoothing. A significant advancement was made by Alvarez, Lions, and Morel 
(ALM) [1], who presented a comprehensive model for image smoothing. 

The ALM model consists of solving an equation of the form 

It=g(IVG*II) alVIh with I(x,y,t=O)=Io(x,y), (1) 

where G * I denotes the image convolved with a Ganssian filter. The geometric 
interpretation of the above diffusion equation is that the isointensity contours 

. V I  of the image move with speed g(IVG �9 II)~, where ~ = dlv~-TT is the local cur- 
vature. One variation of this scheme comes from replacing the curvature term 
with its affine invariant version (see Sapiro and Tannenbaum [15]). By flowing 
the isointensity contours normal to themselves, smoothing is performed perpen- 
dicular to edges thereby retaining edge definition. At the core of both numerical 
techniques is the Osher-Sethian level set algorithm for flowing the isointensity 
contours; this technique was also used in related work by Rudin, Osher and 
Fatemi [14]. 

In this work, we return to the original curvature flow equation, namely 
Is = F(tr I VI  I, and Osher-Sethian [12, 17] level set algorithm and build a 
numerical scheme for image enhancement based on a automatic switch func- 
tion that controls the motion of the level sets in the following way. Diffusion 
is controlled by flowing under max(t~, 0) and min(~, 0). The selection between 
these two types of flows is based on local intensity and gradient. The resulting 
technique is an automatic, extremely robust, computationally efficient, and a 
straightforward scheme. 

To motivate this approach, we begin by discussing curvature motion, and 
then develop the complete model which includes image enhancement as well. 
The crucial ideas on min/max flows upon which this paper is based have been 
reported earlier by the authors in [5]; more details and applications in textured 
and color image denoising may be found in Malladi and Sethian [6]. The outline 
of this paper is as follows. First, in Section II, we study the motion of a curve 
moving under its curvature, and develop an automatic stopping criteria. Next, in 
Section III, we apply this technique to enhancing binary and grey-scale images 
that are corrupted with various kinds of noise. 
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2 M O T I O N  OF CURVE S U N D E R  C U R V A T U R E  

Consider a closed, nonintersecting curve in the plane moving with speed F (n )  
normal to itself. More precisely, let "y(0) be a smooth, closed initial curve in 
R 2, and let ~/(t) be the one-parameter family of curves generated by moving 
"y(0) along its normal vector field with speed F(n) .  Here, F(n)  is a given scalar 
function of the curvature n. Thus, n �9 x, = F(n) ,  where x is the position vector 
of the curve, t is time, and n is the unit normal to the curve. For a specific speed 
function, namely F(n)  = - n ,  it can be shown that an arbitrary closed curve 
(see Gage, [3] Grayson [4]) collapses to a single point. 

2.1 The Min/Max flow 

We now modify the above flow. Motivated by work on level set methods applied 
to grid generation [18] and shape recognition [7], we consider two flows, namely 
F(n)  -= min(n, 0.0) and F(n)  = max(n, 0.0). As shown in Figure 1, the effect 
of flow under F(n)  =- rain(n, 0.0) is to allow the inward concave fingers to grow 
outwards, while suppressing the motion of the outward convex regions. Thus, 
the motion halts as soon as the convex hull is obtained. Conversely, the effect of 
flow under F(n)  = max(n, 0.0) is to allow the outward regions to grow inwards 
while suppressing the motion of the inward concave regions. However, once the 
shape becomes fully convex, the curvature is always positive and hence the flow 
becomes the same as regular curvature flow; hence the shape collapses to a 
point. We can summarize the above by saying that,  for the above case, flow 
under F = min(n, 0.0) preserves some of the structure of the curve, while flow 
under F = max(n, 0.0) completely diffuses away all of the information. 

F = m i n ( ~ , 0 . 0 )  F = max(n, 0.0) 

Fig.  1. Motion of a curve under Min/Max flow 

Here, we have evolved the curve using the Osher-Sethian level set method,  see 
[12], which grew out of earlier by Sethian [16] on the mathematical formulation 
of curve and surface motion. Briefly, this technique works as follows. Given a 
moving closed hypersurface F(t) ,  that  is, F(t = 0) : [0, c~) --~ R N, we wish to 
produce an Eulerian formulation for the motion of the hypersurface propagating 
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along its normal  direction with speed F ,  where F can be a function of various 
arguments,  including the curvature, normal direction, e.t.c. The main idea is to 
embed this propagating interface as the zero level set of a higher dimensional 
function r Let r  = 0), where x E R N is defined by 

r t = 0) -- •  (2) 

where d is the distance from x to F( t  = 0), and the plus (minus) sign is chosen 
if the point x is outside (inside) the initial hypersurface F(t  = 0). Thus, we have 
an initial function r t = 0) : R N -* R with the proper ty  tha t  

r ( t  = 0) = t = 0) = 0) (3) 

I t  can easily be shown that  the equation of motion given by 

Ct + F I v e ]  = 0 (4) 

= 0) given (5) 

is such that  the evolution of the zero level set of r always corresponds to the 
motion of the initial hypersurface under the given speed function F.  

Consider now the square with notches on each side shown in Figure 2a. We let 
the color black correspond to the "inside" where r < 0 and the white correspond 
to the "outside" where r > 0. We imagine that  the notches are one unit wide, 
where a unit most typically will correspond to a pixel width. Our goal is to use 
the above flow to somehow remove the notches which protrude out from the 
sides. In Figure 2b, we see the effect of curvature flow; the notches are removed, 
but the shape is fully diffused. In Figure 2c, we see the effect of flow with speed 
F -- min(n, 0.0); here, one set of notches are removed, but  the other set have 
been replaced by their convex hull. If  we run this flow forever, the figure will not 
change since the convex hull has been obtained, which does not move under this 
flow. Conversely, as shown in Figure 2d, obtained with speed F -- max(n,  0.0), 
the inner notches stay fixed and the front moves in around them, while the outer 
notches are diffused. Continual application of this flow causes the shape to shrink 
and collapse. If  the roles of black and white in the figure are reversed, so are the 
effects of min and the max  flow. 

The problem is that  in some places, the notch is "outwards",  and in others, 
the notch is "inwards". Our goal is a flow which somehow chooses the correct 
choice of flows between F = max(n,  0.0) and F = min(n, 0.0). The solution lies 
in a switch function which determines the nature  of the notch. 

2.2 T h e  s w i t c h  

In this section, we present the switch function to flow the above shape. Our 
construction of a switch is motivated by the idea of comparing the value of a 
function with its value in a ball around the function. Thus, imagine the sim- 
plest case, namely that  of a black and white image, in which black is given the 
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Fig. 2. Motion of notched region under various flows 

value r --= - 1  and white given the value r = 1. We select between the two 
flows based on the sign of the deviation from the mean value theorem. Define 
Average(x,y) as the average value of the image intensity I(x, y) in a square 
centered around the point (x, y) with sidelength (2 . .  StencilWidth + 1), where, 
for now SteneilWidth = 0. Then, at any point (x, y), define the flow by 

f min(a, 0) if Average(x, y) < 0 
Fm~/ma~ = [ max(R, 0) otherwise (6) 

Here, we view 0 as the "threshold" value Tthreshold; since it is halfway be- 
tween the black value of - 1  and the white value of 1. This flow can be seen 
to thus choose the "correct" flow between the min flow and the max flow. As 
a demonstration, in Figure 2e, we show the result of using the min /max  flow 
given in Eqn. 6 on Figure 2a. To verify that our scheme is independent of the 
positioning of the colors, we reverse the initial colors and show the results of the 
same ra in /max flow in Figure 2f. What  happens is that  the small-scale "noise" 
is removed; once this happens, the boundary achieves a final state which does 
not change and preserves structures larger than the one-pixel wide noise. 

We note that the level of noise removed is a function of the size of the stencil 
used in computing the switch in the rain/max speed. What  remains are structures 
than are not detected by our threshold stencil. Thus, the stencil size is the single 
parameter that  determines the flow and hence the noise removal capabilities. We 
view this as a natural  and automatic choice of the stencil, since it is given by 
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the pixel refinement of the image. However, for a given pixel size, one can choose 
a larger stencil to exact noise removal on a larger scale; that  is, we can choose 
to remove the next larger level of noise structures by increasing the size of our 
threshold stencil by computing the average Average(x, y) over a larger square. 
We then use this larger stencil and continue the process by running the min /max  
flow. We have done this in Figure 3; we start with an initial shape in Figure 3a 
which has "noise" on the boundary. We then perform the min /max  flow until 
steady-state is achieved with stencil size zero in Figure 3b; that  is, the "average" 
consists only of the value of r at the point (x, y) itself. We note that when we 
choose a stencil size of zero, nothing happens; see Malladi and Sethian [6] for 
details. In Figure 3c, we perform the min /max  flow until steady-state is achieved 
with a stencil size of 1, and the continue min /max  flow with a larger stencil until 
steady-state is again achieved in Figure 3d. As the stencil size is increased, larger 
and larger structures are removed. We can summarize our results as follows: 

1. The single min /max  flow selects the correct motion to diffuse the small-scale 
pixel notches into the boundary. 

2. The larger, global properties of the shape are maintained. 

3. Furthermore, and equally importantly, the flow stops once these notches are 
diffused into the main structure. 

4. Edge definition is maintained, and, in some global sense, the area inside the 
boundary is roughly preserved up to the order of the smoothing. 

5. The noise removal capabilities of the min /max  flow is scale-dependent, and 
can be hierarchically adjusted. 

6. The scheme requires only a nearest neighbor stencil evaluation. 

The above min /max  flow switch is, in fact, remarkably subtle in what it does. 
It works because of three reasons: 

- First, the embedding of a front as a level set allows us to use information 
about neighboring level sets to determine whether to use the min flow or the 
max flow. 

- Second, the level set method allows the construction of barrier masks to 
thwart motion of the level sets. 

- Third, the discretization of the problem onto a grid allows one to select a 
natural scale to the problem. 

Interested reader is referred to Malladi and Sethian [6] for a detailed explanation 
of the above issues. 
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Fig.  3. Motion of a StarShaped region with noise under Min/Max flow at various 
stencil levels 

3 A P P L I C A T I O N S  

3.1 Application of M i n / M a x  flows to binary images 

We now apply our scheme given by Eqn. 6 to the problem of binary images with 
noise. Since we are looking at black and white images, where 0 corresponds to 
black and 255 to white, the threshold value Tthreshol d is taken as 127.5 rather 
than 0. In Figures 5a & c, we add noise to a black and white image of a hand- 
written character. The noise is added as follows; 50% noise means that  at 50% 
of the pixels, we replace the given value with a number chosen with uniform 
distribution between 0 and 255. Thus, a full spectrum of gray noise is added 
to the original binary image. In Figures 5b & d, we show the reconstructed 
images and stress that the results have converged and continued application of 
the scheme does not change anything. 

3.2 Grey-scale images: M i n / M a x  flows and scale-dependent noise 
removal 

Imagine a grey-scale image; for example, two concentric rings of differing grey 
values. Choosing a threshold value of 127.5 is clearly inappropriate, since the 
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value "between" the two rings may not straddle the value of 127.5, as it would it 
an original binary image. Instead, our goal is to locally construct an appropriate 
thresholding value. We follow the philosophy of the algorithm for binary images. 

Imagine a grey scale image, such as the two concentric rings, in which the 
inner ring is slightly darker then the exterior ring; here, we interpret this as r 
being more negative in the interior ring than the exterior. Furthermore, imagine 
a slight notch protruding outwards into the lighter ring, (see Figure 4). Our goal 
is to decide whether the area within the notch belongs to the lighter region, that  
is, whether it is a perturbation that should be suppressed and "reabsorbed" in 
to the appropriate background color. We determine this by first computing the 
average value of the intensity r in the neighborhood around the point. We then 
must determine a comparison value which indicates the "background" value. 
We do so by computing a threshold Tthreahold, defined as the average value of 
the intensity obtained in the direction perpendicular to the gradient direction. 
Note that since the direction perpendicular to the gradient is tangent to the 
isointensity contour through (x, y), the two points used to compute are either in 
the same region, or the point (x, y) is an inflection point, in which the curvature 
is in fact zero and the min/max flow will always yield zero. 

Formally then, 

{ max(a, 0) if Average(x, y) < Tthreshold 
Fm,,~/m~= min(~, 0) otherwise (7) 

This has the following effect. Imagine again our case of a grey disk on a 
lighter grey background, where the darker grey corresponds to a smaller value 
of r than the lighter grey. When the threshold is larger than the average, the 
max is selected, and the level curves move in. However, as soon as the average 
becomes larger, the min switch takes over, and the flow stops. The arguments 
are similar to the ones given in the binary case. 

Average(x,y) = Average Value of r \ 
In Disk 

N . ~  Region 2 

r Region 1 

Fig. 4. Threshold test for Min/Max flow 

Now we use this scheme to remove salt-and-pepper gray-scale noise from a 
grey-scale image. Once again, we add noise to the figure by replacing X% of the 
pixels with a new value, chosen from a uniform random distribution between 0 
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and 255, Our results are obtained as follows. Figure 5e shows an image where 
25% of the pixels are corrupted with noise. We first use the min /max  flow from 
Eqn.7 until a steady-state is reached (Figure 5f). This removes most of the noise. 
We then continue with a larger stencil for the threshold to remove further noise 
(Figure 5g). For the larger stencil, we compute the average Average(x ,  y) over a 
larger disk, and compute the threshold value Tthreshol d using a correspondingly 
longer tangent vector. 

Fig.  5. Image restoration using min /max  flow of binary and grey-scale images 
corrupted with grey-scale salt-and-pepper noise 

3.3 Se lec t ive  s m o o t h i n g  o f  med i ca l  images  

In certain cases, one may want to remove some level of detail in an image; for 
example, in medical imaging, in which a low level of noise or image gradient is 
undesired, and the goal is enhancement of features delineated by large gradients. 
In this case, a simple modification of our min /max  flow can achieve good results. 
We begin by defining the mean curvature of the image when viewed as a graph; 
that is, let 

[ 2 (1 Iyy)l~ M = (1 + ,~)I~ - 2 I J y I ,  y + + 
(1 + I~ 2 + i2)a/2 (8) 
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be the mean curvature. If we flow the image according to its mean curvature, 
i.e., 

It = M(1 + I~ + I2y) 1/2 (9) 

this will smooth the image. Thus, given a user-defined threshold Vgradien t based 
on the local gradient magnitude, we use the following flow to selectively smooth 
the image: 

M if I VI [< Vg,.,~d~n~ 
Fmin/ma,/smoothi,~g = min/max flow otherwise (10) 

Thus, below a prescribed level based on the gradient, we smooth the image 
using flow by mean curvature; above that level, we use our standard rain/max 
flow. Other choices for the smoothing flow include isotropic diffusion and cur- 
vature flow. We have had the most success with mean curvature flow; isotropic 
diffusion is too sensitive to variations in the threshold value Vg,.adie,~t, since edges 
just below that value are diffused away, while edges are preserved in mean cur- 
vature flow. Our choice of mean curvature flow over standard curvature flow is 
because mean curvature flow seems to perform smoothing in the selected region 
somewhat faster. This is an empirical statement rather than one based on a 
strict proof. 

In Figure 6, we show results of this scheme (Eqn.10) applied to a digital 
subtraction angiogram (DSA). In Figure 6a, we show the original image. In 
Figure 6b, we show the steady-state min/max flow image. In Figure 6c, we show 
the steady-state obtained with min/max flow coupled to mean curvature flow in 
the lower gradient range. 

(a) Original (b) Min/Max Flow (c) Min/Max 
+ Mean Curvature 
Flow 

Fig. 6. Min/Ma~ flow with selective smoothing: The left image is the original. 
The center image is the steady-state of rain/max flow. The right image is the 
steady-state of the min/max flow together with mean curvature flow in lower 
gradient range. 
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3.4 Addi t ional  examples 

In this section, we present further images which are enhanced by means of our 
min/max flows. We begin with a medical image in Figure 7a; here, no noise is 
artificially added, and instead our goal is to enhance certain features within the 
given images and make them aminable to further processing like shape finding 
[9, 10, S]. 

(a) Original image (b) Min/Max:Final 

(c) Multiplicative Noise (d) Min/Max: Final 

Fig. 7. More denoising examples with the Min/Max flow. 

Next, we study the effect of our min/max scheme on multiplicative noise 
added to a grey-scale image. In Figure 7c & d, we show the reconstruction of 
an image with 15% multiplicative noise. Finally, interested reader is referred to 
Malladi and Sethian [6] for examples enhancing both gray scale and color images 
corrupted with Gaussian noise. 
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