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Abs t r ac t .  Wavelet transforms are attracting increasing interest in com- 
puter vision because they provide a mathematical tool for multiscale im- 
age analysis. In this paper, we show that i) the subsampled wavelet mul- 
tiresolution representation is translationally variant; and ii) a wavelet 
transform of a signal generally confounds the phase component of the 
analysing wavelet associated with that scale and orientation. The im- 
portance of this observation is that commonly used features in texture 
analysis also depend on this phase component. This not only causes un- 
necessary spatial variation of features at each scale but also makes it 
more difficult to match features across scales. 
In this paper, we propose a complete 2D decoupled local energy and 
phase representation of a wavelet transform. As a texture feature, lo- 
cal energy is not only immune to spatial variations caused by the phase 
component of the analysing wavelet, but facilitates the analysis of sim- 
ilarity of across scales. The success of the approach is demonstrated by 
experimental results for aerial Infrared Line Scan (IRLS), satellite, and 
Brodatz images. 

1 I n t r o d u c t i o n  

In a multiresolution approach, texture segmentation typically consists of sev- 
eral basic stages: 1) application of a set of wavelet-like filters tuned to different 
frequency band and orientations; 2) one or more nonlinear operations to the 
linear filtering outputs; 3) average of the resultant responses to derive "tex- 
ton" density measure; 4) finally, the segmentation. To choose appropriate filters 
(wavelets) and adequate nonlinear operations in the first two stages are critical 
for the subsequent processing. 
For a continuous wavelet t ransform (CWT),  it is defined by 

W ,  f(a,  b) = --~ r f (x)  ) dx 

where a E R +, b ~ R are scale and translation parameters  and the wavelet 
r  can be any bandpass function. If  the scale and space parameters  of C W T  
are sampled at {a = 2-J ;  b = 2 - ik ;  j , k  E Z}, and the wavelet r  is bi- 
orthogonal, then the most compact and complete wavelet t ransform is defined 
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by 

Wcf(j ,  n) = 2~ ~ f(k)r - n) ~=< f(z),  Cj,n(X) > (1) 
k 

where ~bj,,~(x) = 2ff r j k - n ) .  Although this representation has been shown use- 
ful in image compression because of its completeness and compactness, We f(j ,  n) 
is translationally variant by noticing 

Wcf(j,  n) = 2�89 < f (x  - xo), Cj,n(z) > 

= 2~ < f(z),  Cj,,_2Jxo(X) > 

~= 2~ < f(x), r > 

For an arbitrary translation x0, x0 = 2-Jm; m E Z won't in general be satis- 
fied. In other words, if two identical signals were to appear in different positions, 
their representations Wcf(j ,  n) can be quite different. Such performance may 
not cause problem for image compression but  it badly affects texture segmenta- 
tion. 
The need for non-linear operation after linear filtering has been recognised [5, 1], 
but there are still no principles determining what kind of operation should be 
used. Overwhelmingly, the nonlinear operations used to generate features are 
nonlinear smoothing [3, 5, 7] and energy measure [8, 4]. Although smoothing 
can remove weak variations, it is also liable to destroy important  details. The 
most commonly used energy measures are full- and half-wave rectification and 
the square power. However, we show that,  in general the features generated 
by applying these energy measures to the output of the wavelet transform are 
coupled with the local phase component that  depends not only on the analysed 
image but also on the analysing wavelet at that  scale. This is because the output  
of a wavelet transform oscillate in space depending on the shape of the wavelets. 
Consequently, their moduli are also affected by the oscillation as illustrated in 
Figure 1 (top row). Such performance is unacceptable for texture analysis be- 
cause one wants a uniform feature response in those regions of the image which 
have uniform texture, while a wavelet is typically an oscillating, wave-like func- 
tion. Hence, some other nonlinear operation must be found to derive features 
which can be invariant to the phase at each scale. 
In this paper, we first define a translationally invariant wavelet transform and 
propose a definition of 2D local energy and phase in wavelet scale-space. Based 
on this definition, a complete, decoupled local energy and phase representation 
of 2D wavelet transforms is presented. As a result of this theory, the local energy 
is phase independent and used as feature for texture segmentation. 

2 Trans lat ion  Invariant  Wave le t  T r a n s f o r m  

To overcome the translation variant problem of the most compact wavelet trans- 
form, we change scale-dependent sampling, i.e. {a = 2-J; b = 2-Jk; j, k E Z}, 
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to a uniform spatial sampling given by {a = 2-5; b = k; j,k E Z}. Hence, the 
discrete wavelet transform is redefined by 

WWcf(j, n) = 2 5 E f(k)-r - n)) 
k 

Clearly, WWef(j,  n) is an oversampled version of W,r n) given in Eqn: 1 
and it becomes translationally invariant. Although WWef(j, n) sacrifices the 
compactness of the representation compared with Wef(j, n), it provides trans- 
lational invariance which is essential for texture segmentation, and many other 
image processing tasks. 
Similarly, a translationally invariant 2D separable wavelet transform can be de- 
fined by 

DD~(m, n) = < f(x,  y), 2Jr - m))2Jr - n)) > 

DD~(m,  ~) = < f (~ ,  V), 2~r - m))2~r - n)) > 

DDJd(m, n)= < f(x,  y), 2Jr m))2ir  n)) > (2) 

It can be shown that  DD~:, DDy, DDd have same orientation emphasis as their 
subsampled version as given in [6]. More precisely, they give strong response 
to spatial structures in the horizontal, vertical and diagonal directions 1, and so 
they are called the horizontal, vertical and diagonal channels, respectively. 

3 2 D  D e c o u p l e d  L o c a l  E n e r g y  a n d  P h a s e  

A 1D decoupled local energy and phase representation of a real-valued wavelet 
transform has been developed using the Hilbert transform [10]. The principal 
theoretical difficulty in extending the local energy and phase representation of 
the 1D wavelet transform to 2D is that there does not exist a universal 2D 
Hilbert transform. 
Nevertheless, we propose a definition of the local energy and local phase of a 
2D wavelet transform which not only provides a complete representation of a 
2D wavelet transform in scale-space, but also facilitates the local energy to be 
independent from the phase components of the analysing wavelets. Moreover, the 
relationship between a 2D wavelet transform and its local energy is established 
both in scale-space and in frequency space. 

3.1 H o r i z o n t a l  a n d  ver t i ca l  channe l s  

Recall the mother wavelets associated with the horizontal and vertical channels: 

~/1 (X, y) : r 1 6 2  k [1"2 (X, y) = r162 

1 The orientation of the spatial structure is defined as perpendicular to the direction 
of maximum gradient. 
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Since the scaling function r is low-pass, DDJ(m, n) can be considered as a 
1D wavelet transform with respect to r for each column (y axis) after first 
smoothing each row (x axis). Similarly, DDJ(m, n) can be considered as a 1D 
wavelet transform for each row after first smoothing each column. Hence, the 
local energy and phase can be defined as given in 1D [10]. More precisely, 

Def in i t ion  1. For a real valued r and f(x, y) E L2(Z 2) the local energy p=, py 
and the local phase ~ ,  ~y of DD j (m, n) and DDJ (m, n) are given by 

d.(m, n) = ~f[DDJ(m, n)] 2 + [Hy{DDJ~(m, n)}] ~ 

~J.(m, n) -- Atan2 Hy{DD. -j (m, n)} 
DDJ~(m,n) 

pC(re, n) = ~[nDJ (m, n)] ~ + [H={ Dl~(m, n) }] ~ 

~{ (m, n) = Atan2 H~{DD~y (m, n)} 
DJ~y(m,n) 

where H~ {. } (Hy {. }) denotes the Hilbert transform of the 1D function DO(m, n) 
when n (m) is fixed. 

3.2 Diagona l  c hanne l  

The diagonal channel of the wavelet transform of a function f(x, y) is given by 

DD~(m, n) = <  f(x, y), 22J~P3(2J(x - m), 2J(y - n)) > (3) 

The mother wavelet associated with DD~(m, n) is 

~3(x, y) = r162 (4) 

We construct four complex functions as follows 

GI(~, ~) = [r + ir162 + iCH(y)] 
c~(~, ~) = [r - i r 1 6 2  - i r  

c3(~,  y) = [r + iC. (x)] [ r  - i r  

c4(~,  y) = [r - ir162 + ir  (5) 

Noting the following conjugacy relationships, 

DG~ (m, n) = ~-V~(m, n) 

Dd3(m , n) = -D-GJ (m, n) (6) 

only one pair {DGJk(m, n); k = 1, 3} or {DGJ(m, n); k = 2, 4} needs to be con- 
sidered. In the following discussion, we take the first pair. Substituting ~3(x, y) 
with {Gk(x, y); k = 1, 3} in Eqn. 3, we generate two complex images by: 

DaJ(m,n) ~f < f(x,y),22Jak(2J(x - m),2J(y-  n)) > ; k = 1,3 (7) 

= (f(x, y) * 22J-Gk(--2 j x, --2Jy) (8) 
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The properties of functions {DGJ(m, n); k = 1, 3} are essential for deriving the 
decoupled local energy and local phase representation of the diagonal channel. 
We present them in the following lemma. 

L e m m a 2 .  For each scale j 

1. The functions DaY(m, n) can be represented by DD~(m, n) as 

DGJ(m, n) = DD~(m, n) - gv{g.{DD~(m , n)}} + 

i(H~{DD~(m, n)} + Yy{DD~(m, n)}) (9) 

and gives a strong response to spatial structures at or close to ~. 
2. The functions Dda(m, n) can be represented by DD~(m, n) as 

DG~a(m, n) = DD{(m, n) + Hy{H~{DD{(m, n)}} 

+i(H,{nD~(m, n)} - Hu{DD~(m, n)}) (10) 

and gives a strong response to spatial structures at, or close to a@. 

Proof. See [9]. 

Now we are in the position to define the local energy and local phase of the 
diagonal channel: 

De f in i t i on  3. The function DGJ(m, n) is a complex function and can be written 

DG j (m, n) = PJx+y (m, n)ei~:+. (re'n) 
a S  

w h e r e  

p~:+y(m, n) = ~/[g - H.y{g}] ~ + [Ha{g} + Hy{g}] 2. (11) 

* .  . r  g -  g.y{g} ~J+y(m, n) = atanZL g g J (12) + Ag} 

where g = ODd(m, n) and g~y{.} denotes the nilbert transform along x, fol- 
lowed by along y. The [pJ~+y(m, n)] 2 and ~:+v(m, n) are called the local energy 

and the local phase of DD~(m, n),respectively, at or close to {. 

Def in i t i on  4. The function DGJ(m, n) is a complex function and can be written 
aS 

DGJ(m,n) = p{_y(m,n)ei~:-. (re'n) 

where 

p~_y(m, n) = ~/[g + Hay{g}] 2 + [Ha{g} - Hy{g}] 2 (13) 

~'x_y(m,n) = Atan2[ g +Hay{g} ~ (14) 
H~{g} - gy{g} j 

where g = DDJd(m, n) and [pJ~_y(m, n)] 2 and taJ~_y(m, n) are called the local 

energy and the local phase of ODd(m, n),respectively, at or close to ~ .  
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Now we have defined four local energy channels for each scale j,  denoted by 
pJ~ (m, n), ~ ( m ,  n), p~x+y (m, n), p~_~ (m, n), which are oriented in the horizontal, 
vertical and 4, ~ directions, respectively. Comparing a patch of local energy 
and moduli surfaces shown in Figure 1, the phase dependency embedded in the 
moduli has been removed in the local energy representations. Moreover, the local 
energy images at different scales become comparable in terms of shape similarity 
as indicated by the correlation of the images between adjacent scales shown in 
Figure 1 (bottom row). 

3.3 P rope r t i e s  of  the  local energy  and local phase  

The following theorem shows that the local energy and local phase defined above 
provide a complete representation of 2D wavelet transform. The local energy and 
the wavelet transform are equivalent in frequency domain (conserve energy), but 
they are very different in scale-space. 

T h e o r e m 5 .  For a real valued r and f (x ,y )  E L2(Z2), 

I. The wavelet transform DDJ(m,n),  DDJy(m,n) and DD~(m,n) can be rep- 
resented complelely by the local energies and local phases and are given by 

D/Yd(m, n) = l(p3)+y(m,n)cos~'~+,(m,n)+ p~x_y(m,n)cos~'~_y(m,n)) 

2. For each scale j < O, 

1 

1 

m n m 12 

1 

'D% ~ m n 

(16) 

Proof. See [9]. 

The wavelet detail images and their associated local energy images are very 
different in scale-space: the former confounds the phase component, the latter 
does not. Further, fl'om Eqns. 15, it is clear that full-, half-wave rectification or 
squaring of the wavelet transform also confound the phase component. 
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Fig. 1. Comparison between the modulus and the local energy of the wavelet transform. 
Top row (left to right): the plot of patches of [DD~[ of an circular impluse edge, at 

J scale j = - 1 , - 2 , - 3 ,  respectively; middle row: the plot of the local energy Px-u for 
the same patch at scale j = -1,  -2,  -3 ,  respectively; bottom row: the plot of the linear 
correlation coefficients of two local energy images at adjacent scales, j = -1,  - 2  and 
j = - 2 , - 3  respectively. 

4 Application to texture segmentation 

As shown in the last section, the outputs of real-valued wavelet transform at each 
scale are coupled with the phase of the wavelet associated with that scale and 
orientation. As a consequence, squaring, half- and full-wave rectification of the 
outputs are also phase dependent. Furthermore, it is known that the outputs of 
wavelet transform at a given location and orientation fail to match across scales 
according to the local image structures giving rise to the responses. In order to 
overcome the phase dependency and spatial localisation problems, we propose a 
four level computation scheme for texture segmentation. 
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At the f i rs t  level, the 2D o v e r s a m p l e d  w a v e l e t  t r a n s f o r m  is applied to 
an image. This transform decomposes an image into a stack of images denoted 
by DD(O,j,x,y) at sampled orientation 0 = {0t , . . . ,0N} and sampled scale 
a = {2-J; j = - 1 , - 2 , . . . , - J } .  For a 2D separable wavelet transform, an im- 
age is decomposed into a pile of images {DD~(x, y), DD~ (x, y), DD~(x, y); j = 
- 1 ,  - 2 ,  �9 �9  - J }  
The second  level is a nonlinear operation to remove the phase dependency from 
each image DD(O, j: x, y), to obtain a pile of local energy images p(O, j, z, y) = 
{pa~ (x, y), g ( x ,  y), pax+y (x, y), pax_y (x, y)}. This level operates only within a sin- 
gle scale, hence it is also called in t ra -sea le  n o n l i n e a r  fus ion.  
The t h i r d  level derives two texture features in wavelet scale-space, i.e. a multi- 
scale orientational measure c~(j, x, y) and an energy measure F(j, x, y). This level 
is composed of two sub-processes, namely in te r - sca le  c lu s t e r ing  and in t e r -  
o r i e n t a t i o n  fusion.  The inter-scale clustering designed to associate the local 
energy descriptors p(O, j, x, y) across scales such that,  for the resultant new fea- 
ture image p'(O,j, x, y), the spatial localisation problem is minimised globally. 
Unlike the other levels given above, the inter-orientation fusion is not universal. 
It is specific to each application and to the meaning of different orientation chan- 
nels. Currently, a simple formula is used to combine four oriented local energy 
images into quantitative and orientational measures of local energy given by 

F(j, x, y) = ~[p'(O, j, x, U)10=0] ~ + [p'(0, j, x, y)10-- F 

+c* ~[p'(O,j,x,y)lo=~] u + [p'(O,j,x,y)]Ulo=~ (17) 

,p'(O,j,x,y)lo=~ 
a(j ,  z, y) = argt p-~ ,y ,~ ,  ~ )  (lS) 

The f o u r t h  level is the segmentation, which is carried out by Gaussian smooth- 
ing, clustering and post-processing. 
The texture segmentation scheme given above is implemented and has been 
tested on more than 30 real aerial and satellite images. Typical results are shown 
in Figure 2. Figure 2 (a), (b) show typical IRLS images taken from a low flying 
aircraft. The goal (part of a system under development for matching images on 
successive fly-pasts and matching/constructing a map) is to segment rural and 
urban areas. The patches in Figure 2 (b) correspond to parks within the sur- 
rounding urban area. Figure 2 (c) shows the segmentation of a satellite image 
taken over Plymouth area, the segmentation result is matched quite well with 
the map over same area. Finally Figure 2 (d) shows the segmentation of two 
Brodatz textures [2] (cotton canvas and woolen cloth). 

5 C o n c l u s i o n s  

In this paper, we developed a complete, decoupled local energy and phase repre- 
sentation of a 2D oversampled wavelet transform. This representation provides 
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(a) (b) 

(c) (d) 

F ig .  2. Examples of texture segmentation results. Texture boundaries are extracted and 
superimposed on their original images. Top row: Urban regions have been extracted for 
real IRLS aerial images; bot tom row (left to right): Urban regions have been extracted 
for a satellite image, cotton canvas (in right bot tom corner) have been picked up from 
woolen cloth background for a Brodatz montage image. 
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a guide to choose appropriate wavelet by revealing the phase dependency 
problem associated with widely used real-valued wavelet transforms. 

- an approach to construct a complex-valued wavelet from a real-valued wavelet 
function such that the phase dependency problem can be overcome; 

- a method to derive local energy in wavelet scale-space. As a local feature, 
the local energy is not only immune to spatial variations caused by the phase 
component of the analysing wavelet, but facilitates the analysis of similarity 
of across scales; 
a way to formulate 2D Hilbert transform which is still an open problem. 

The usefulness of this decoupled local energy and phase representation is demon- 
strated by its application to segment textures in several classes of natural images. 
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