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Abstract: 

We present an algorithm for the routing problem for two-tenninal nets 
in generalized switchboxes. A generalized s\~itchbox is any subset R of 
the planar rectangular grid with no non-trivial holes, i.e. every finite 
face has exactly four incident vertices. A net is a pair of nodes of 
non-maximal degree on the boundary of R. A solution is a set of edge-dis­
joint paths, one for each net. 
Our algorithm solves standard generalized switchbox routing problems in 
time 0(n(109 n)2) where n is the number of vertices of R, i.e. it either 
finds a solution or indicates that there is none. A problem is standard if 
deg(v) + ter(v) is even for all vertices v where deg(v) is the degree of 
v and ter(v) is the number of nets which have v as a tenninal. For non­
standard problems we can find a solution in time O(n(log n)2 + IUIZ) where 
U is the set of vertices v with deg(v) + ter(v) is odd. 
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l. Introduction 

In this paper we solve the routing problem for two­
terminal nets in generalized switchboxes. A generalized 
switchbox is any subset R of the planar rectangular grid 
without holes, i.e. all finite faces of R have exactly 
four incident edges. (cf. Figure 1). Let 
SIR) := {v; v node of R and v has degree s 3} be the 

nodes of R which do not have maximal degree. Note that 

all nodes of B(R) are incident to the infinite face. A 
two-ter~inal net is an unordered pair of points in B(R). 
A generalized switchbox routing problem (GSRP) is given 
by a generalized switchhox R and a sot 
N • {(si,t i ) ; 1 sis m} of nets. A solution to the 
problem is a set P • (Pi' lSi 5 m) of paths such that 

(1) Pi connects si and ti for 1 ~ i 5 D 

(2) Pi and Pj arc edge-disjoint for i • j. 

In this paper we present an algorithm which solves 
standard generalized switchbox routing problems in 

time O(n(log n)2) where n is the number of vertices of 

the routing region R. A routing problem is standard if 
deg(v) + ter(v) is even for all nodes v where deg(v) is 
the degree of node v and ter(v) is the number of nots 
which have v as a terminal. We call deg(v) + ter(v) the 
extended degree of node v. For non-standard GSRPs we do 
slightly worse. We show how to find a solution in t i me 

O(n log Zn + lUll), where U is the set of verti ces with 

odd extended degree. 

A solution to a routing problem in the sense described 
above is usually called a solution in knock-knee mode. 
Note that a vertex v of R is used by either one wire or 
two wires which either go straight through v or bend in 
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v (cf. Figure 2). Previous work on routing problems in 

kock-knee mode can be found in Preparata/Lipski, Frank, 

Mehlhorn/Preparatll, Becker/Mehlhorn, Kramer/v. Leeuwen, 
and Brady/Brown. Preparata/Lipski solve the channel 
rou t i ng prob lell, Frank and ~Iehlhorn/Prepara ta solve the 
switchbox routing problem. A s~itchbox is a rectangular 
subset of the plane grid. The running time of their 
algorithm is O(nlog n) and O(ulog u) respectively where 
u is the circumference of the rectangle. Becker/~Iehlhorn 

consider a more general problem than the one considered 
here. They consider arbitrary subsets of the planar grid 
(holes are allowed!!) and solve the routing problem in 
time O(n 3/ 2). Finally Brady/Brown consider the problem of 
layer assignment. They show that any layout in knock-knee 
mode can be wired using four conducting layers. 

All papers mentioned above (except Brady/Brown) and also 
the present paper are based on a theorem of Okamura/ 
Seymour on multi-commodity flow in planar graphs. We re­
view their theorem in section Z. In section 3 we refine 
their theorem to the special case of standard generalized 
switchboxes. In section 4 we derive an algorithm for 
standard GSRPs and analyse its running time. In section 5 
we deal with non-standard GSRPs. 

2. The Theorem of Okamura/Seymour 

Let G = (V,E) be a graph and let N be a set of 
unordered pairs of vertices of G; N · ((si,t i ); 1 S; i:s m). 
A cut is a subset X = V of the vertices of G. The capaci ty 

of a cut X is the number of edges in E with exactly one 
end in X and the density of a cut X is the number of nets 
(s,t) E N with exactly one terminal in X, i.e. 

cap(X) • I{e E E; e a (a,b) and a EX, b t X)I 
dens(X)= I {(s,t) E N; SEX, t t X}I 



- 3 -

We will also use 

CAP(x) • {e E E; e • (a,b) and a E X, b ~ X} and 

dens(X 1,X 2) • {(s,t) € N; 5 € Xl' t € X2} 

for X1.X2 c: V. Xl nX Z =0 

Theorem (Okamura/Seymour): If G is planar and can be 
drawn in the plane such that sl •...• sm.tl •...• tm are 
all on the boundary of the infinite region and 
cap(X) - dens(X) is non-negative and even for all cuts 
X c: V then there are pairwise edge-disjoint paths 

P, •...• Pm such that Pi connects si and t i • lsi Sm. 

Okamura/Seymour give a constructive proof of their theorem; 
their proof leads to the following algorithm which can be 
made to run in time 0(n 2) as shown by Becker/Mehlhorn. 

A 

Let G be an embedding of G with s) •..• sm.tl •.•.• tm on 
the boundary of the infinite face. We may assume w.].o.g. 

A 

that G is 2-connected. Then the boundary of the infinite 
face consists of a circuit C which we regard as a subgraph 
of G. We say that a cut X is critical if X is connected. 
saturated. i.e. cap(X) = dens(X). and CAP(X) contains 
exactly two edges of C. Thus if X is critical then 
C I (V(C) n X) and C i (V(C) - X) are both paths. 

We can now describe the algorithm. 

let e = (v.w) be an arbitrary edge on the boundary C 
of the infinite face of C; 
if there is a critical cut X with v € X. w t X 
then let X be such a critical cut with 

IV(C) n XI minimal; 
let(s.t) € N be a net with s € X. t ¢ X such that 
the subpath of C from w to t not using v has 
minimal length; (cf. figure 3) 
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remove edge e from G; 

replace net (s,t) by the pair (s,v) and Cw,t) 

of nets; 

construct a solution for the reduced graph 
using the algorithm recursively and obtain the 

path for net (s,t) by connecting the paths for 
nets (s,v) and (w,t) by edge e. 

else remove edge e from G and add net (v,w) to the 

set of nets; 

fi 

construct a solution for the reduced graph and 
throwaway the path for net (v,w) 

The correctness of this algorithm can be deduced from 
the paper of Okamura/Seymour; a proof can be found in 
Becker/Mehlhorn. 

We close this section with a collection of simple ob­

servations. For a vertex v € V let deg(v) be the degree 

of v and let ter(v) be the number of nets in N which 

have v as a terminal. We call a routing problem (given 
as a planar graph and a set of nets) standard if the 
extended degree deg(v) + ter(v) is even for all v E V. 
We call it solvable if it has a solution. 

Lemma 1; Let G • (V,E) be a planar graph and let N be 
a set of nets having their terminals on the boundary 

of the infinite face. 
a) The routing problem (G,N) is standard iff 

cap (X) - dens (X) is even for every cut X. 
b) A standard routing problem (G,N) is solvable i f f 

no cut X is oversaturated, i.e. there is no cut with 
cap (X) < dens (X), 
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arb i trary. 

Z IC(s,t); 

We have 

(s,t) E Nand s,t E Xl I 

and 
cap (X) • r deg(v) - 2 I ( (a,b); (a,b) € E and a,b € xl I 

vEX 
This proves a) 

b) If (G,N) is solvable then there is clea rly no 
oversaturated cut. Conversely, if dens ( X) S cap(X) for 
every cut X then cap(X) - dens(X) is non-negative and 
even by part a). Hence (G,N) i s solvable by Okamura/ 
Seymour. D 

3. Critica l Cuts in Standard Generali zed Switchboxes 

Let R be a generalized switchbox. We use C(R) to 
denote its boundary, i.e. the boundary of the infinite 
face. Let 8(R) • (v € C(R); deg(v) s 3) and let 
N ~ B(R) • 8(R) be a set of nets. We assume throughout 
this section that (R,N) is a standard problem, i.e. 
deg(v) - ter(v) is even for all v E V. 

Our f i rst goal is to show that nodes \' E C(R) with 
ter(w) = deg(v) are easily handled. 

Lemma Z: Let v E 8(R) be a node with deg(v) = ter(v). 
Let (v,t i ), 1 Sis ter(v), be the sets which have v as 
a terminal and let bi , lsi S ter(v), be the nei p, hbors 
of v. The following transformations turn a solvable problem 
into a solvable problem. 

I) If ter(v) & I then delete v and replace net (v,t , ) 
by net (bl,t l ) 

2) If ter(v) = Z then let bl,tl,tZ,h z be the order in 
which these four points lie on c ircuit C; consecutive 
points may be equal. Delete node v and replace nets 

(v, t l ), (v, t Z) by (b

" 

t,' and (b Z' t Z). 
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3) If terev) - 3 then let b1.b 3 he neighbors of v on 

circuit C. Let b,.tl.tZ.t3.b3 be the order in which these 

five points lie on circuit C; consecutive points may be 
equal. Delete node v and replace net (v,t i ) by (bi.t i ). 
1 ~ i S 3. 

Proof: We prove part 3) the other two cases being simpler. 
Consider a solution P, •...• Pm for our routing problem. 
Assume w.l.o.g. that Pi is the path for net (v.t i ). 
I ~ i s 3. We may assume w.l.o.g. that paths Pl. PZ. P3 do 
not cross. Hence path Pi passes through vertex b i for 
1 siS 3. Thus the modified problem is solvable. 0 

Lemma 1 allows us to simplify routing problems. In a 
simplified standard generalized switchbox routing problem 
(SSGS) there are no nodes v with deg(l) - 1. and all nodes 
v with deg(v) -2 (deg(v) - 3) satisfy ter(v) • 0 (ter(v) = 1). 
Also nodes with deg(v) = 4 satisfy ter(v) - O. 
We will next characterize the form of critical cuts in 
SSGSs. 
Let (R,N) be a solvable SSGS. We may index the vertices of 
R by integer coordinates. Let v be a left upper corner 
(i.e. deg(v) - Z and the left and top neighbor of v do 
not exist) of R with maximal y-coordinate. Let w be the 
bottom neighbor of v (cf. Figure 4). Note that no vertex 
of R has y-coordinate larger than v. 

We consider critical cuts X with v € X and w ~ X if there 
are any. Among these cuts we select one with IV(C) n XI 
minimal and among these cuts ~e select one with IXI 
minimal. We denote this cut by Xo' One lIIain goal of this 
section is to show that Xo has a very simple form. Its 
boundary consists of at most two line segllents (sec Lemma 4 
for a preCise statement). We start with several simple 
observations. 
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1) RIX is connected. Otherwise we could take as o 
Xo the connected component of RIXo containing v. a 

contradiction to the choice of Xo' 
l) RIXo is a generalized switchbox. Assume otherwise. 

Let X' ~ X be obtained from X by filling the holes. 
- 0 0 

Then v EX'. w , X'. dens(X') = dens(Xo) and 
cap(X') < cap(Xo)' Thus X' is oversaturated and our 
routing problem is not solvable. 

3) Let v and v' be the endpoints of the path 
V(C) nxo. Then every node x E Xo - (v,v') has degree ~ 2 

in RIXo ' Assume otherwise . Consider cut X' = Xo - {x}. 
Then RI X' is still connected. V(C) n X' is still a path 
and hence x t V(C). dens(X') ~ dens(Xo) and cap(X') 
s cap(Xo)' a contradiction to the choice of Xo' 

Consider the edges in CAP(Xo)' i.e. the edges with exactly 
one endpoint in Xo' We can view the "cut" Xo as a polygonal 
line S intersecting exactly the edges in CAP(Xo)' Line S 
consists of straight line segRents sl.sZ •...• sk where 51 

intersects the edge (v.w). 

Lemma 3: Each segment si intersects an edge e • (x.y) € 

CAP(Xo) such that ei ther x or )' lies on the houndary C(R) 
of R. 

Proof: The claim is certainly true for segments 51 and 
sk' Assume now that there is a segment si' 1 < i < k. 
which cuts no edge incident to a node on the boundary. 
Assume w.l.o.g. that sl is vertical and that Xo is to the 
right of s·. Then s· 1 and 5'+1 are horizontal. 

1 1- 1 

case 1: either s. 1 or s. 1 extends to the rioht of 5·. 
1- 1+ ~ 1 

Then we can move 5 i one unit to the right and obtain a 
cut X' with dens (X') = dens(Xo), IX'I < lXo l. cap(X'):s; 
cap(Xo) and IV(C) n X'I = IV(e) n Xol • a contradiction 

to the minimality of Xo' 
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case 2: si_l and si+l extend to the left of si' Then we 

can move s. one unit to the left and obtain a cut X' 
l. 

with dens(X ' ) • dens(Xo) and cap(X') • cap(X)-2. Thus X' 
is oversaturated, a contradiction to our global assumption 
that we deal with a solvable problem. D 

Lemma 4: Line S consists of at most two segments. In 
addition, if there are two segments then the angle ~ (sl,s2) 
is concave relative to Xo' 

Assume first that angle 
(cf. Figure 5). Then k • 

4 (sl,s2) is convex 
2. Since ter(v) • 0 

relative 
and 

Proof : 

to Xo' 
te r (x) = 1 for all other nodes x € Xo cut Xo cannot be 
saturated, a contradiction. 

111is shows that k ~ 2 implies that J\ (sl,s2) is concave 
relative to X • It remains to show that k S 2. Assume 

o 
otherwise, i.e. k ~ 3. We have to distinguish two case5 

Case 1: ~(s2,s3) is convex relative to Xo' We know from 
the proof of lemma 3 that there arc points in C(R) 
immediately to the right of 52' Let a be the lowest such 
boundary point above 53' Then either the point above or 
below a is also a boundary point. 

Case 1.1 : The pOint immediately below a is not a boundary 
point. Then the point above a is a boundary point; call it 
b. (d. Figure 6) 
We consider the two cuts as shown in figure 7. Note that 
cut X2 exists since vertex a was chosen as the lowest 
boundary point to the right of 52' We have 

cap (X) • cap(X1) + cap (X 2) 
and 

dens(X) • dens(X l ) + dens(X 2) - 2 dens(X l ,X 2) 
since vertex a has degree 4 (if a had only degree 3 or 
less then R would not be biconnected) and hence ter(a) = O. 
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S dens(X 1) + dens(X 2) 

From cap (X) = dens(X) and cap(X i ) ~ dens(X i ) for i E 1,2 
we conclude cap (Xi) • dens(X i ) for i . 1,2. In particular, 
Xl is saturated. This contradicts the minimality of Xo' 

Case 1.2 : The point below a is a 
Figure 

boundary point and hence 
7). If the point above 53 cuts only one edge (cf. 

a is also a boundary point then we can certainly shorten 
cut Xo and still have a saturated cut, a contradiction. 
So let us assume that the point above a is not a 
boundary point. Let b be the boundary point which lies 
above a and is closest to a. Then the boundary C(R) either 
goes straight through b or bends in b. 

Case 1.2.1 : The boundary C(R) goes straight through b. 
(cf. figure 8). Then b must lie in the top row of R. We 
consider the cut X' obtained by moving 52 one unit to the 
right. (cf. Figure 9). We have dens(X') • dens(Xo) since 
ter(a) • 0 (note that deg(a) = 4). Also cap(X') • cap(Xo) 
and hence X' is saturated. This contradicts the minimality 

of cut Xo' 

Case 1.2.2 : The boundary C(R) bends in vertex b. (cf. 
Figure 10). Consider cuts XI and x2 as indicated in Fig. 11 . 
We have cap(Xo) • cap(XI) + cap(x2) and dens(Xo) = dens(X 1) + 

dens(X Z) - 2 dens(X 1,X Z) S dens(X I ) + dens(X Z)' Thus 
cap(XI) • dens(X I), a contradiction to the minimality of Xo' 

Case 2 : a(s2,s3) is concave relative to Xo' The proof 
of lemma 3 implies that there is a boundary point 
i~mediately to the left of 5eg~ent 52' 

Case 2.1: 53 cuts at least two edge5. Then the boundary 
points to the left of 52 lie in h (~1) segments as shown 
in Figure 12. Let ti be the nu~ber of vertices in the seg­
ment between a i and b i inclusive, 1 sis h. Note that 
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deg(a
i ) • deg(b i ) • 4 and hence 

We consider cuts X, •...• Xh+, as 
We have 

ter(a i ) • ter(b i ) = O. 
shown in Figure 14. 

cap(Xo) = cap(X,) + .,' + cap(Xh+1) + 
h 
I (1. -

i= 1 1 
2) + Z 

since ti - Z horizontal edges are not cut anymore in 
the i-th segment and two vertical edges are not cut any­
more. These edges are indicated as dashed lines in Figure 
13. Also 

h 
dens(Xo) ~ dens(X,) + .•• + dens(Xh+1J + I (l i -2) 

i=' 

since every net which goes across cut X also goes across 
one of the cuts Xi or has a terminal in one of the verti­
cal segments between a i and b i , Since cap(XoJ • dens(Xo) 
and cap (Xi) ~ dens(X i ), 1 ~ i ~ h+l, we conclude 

h 
cap(X,) + + cap(Xh+ ,) + I Ct , -2) + 2 

i = , 1 

3 cap (Xo) 

- dens(Xo) 
h 

~ dens(X,) + '., + dens(Xh+,) + I (l i -2) 
i=1 

h 
+ '" cap (Xh ,) + I 

+ . , 
1-

a contradiction. 

Case 2.2: 53 cuts exactly one edge. Then the situation 
is as shown in Figure 14. I.et ti be the number of vertices 

between and including 3 i and b i , '~i s h - " let 
i h be the number of vertices below and including ah and 
above 53' Consider cuts X1"",Xh as shown in Figure IS. 
We have 

and 

h-' 
I (1.-2) 

i = 1 1 

h-l 
I (t.-2) 

. 1 1 J . 
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As in case 2.1 we can now derive a contradiction. This 

finishes the case analysis and proves lemma 4. o 

Lemma 4 is vcry crucial for the efficiency of our algo­
rithm. It completely characterizes the form of the mini­
mal critical cuts Xo through edge (v,w). 

4. The Algorithm 

Let R be a generalized switchbox with n vertices and 
let N be a set of nets. Throughout this section we 
assume that (R,N) is a standard problem. The goal of 
this section is to describe an algorithm which solves 
any standard generalized switchbox routing problem in 
time O(n(log n)2). 

The algorithm is a special case of the general multi­
commodity flow algorithm outlined in section 2. 
It derives its speed from the clever use of the characteri­
zation of minimal critical cuts derived in section 3. 
The algorithm processes the routing region R row by row 
starting at the top row. In every step it considers a left up­
per corner in the top row, say v, and eliminates the vertical 
edge (v,w) incident to v as described in section Z. There 
arc two main tasks which we have to solve (efficiently). 

(1) find the minimal critical cut Xo through edge 
(v,w), if there is any 

(2) choose the appropriate net to route across cut Xo' 

We use two data structures to solve these tasks efficiently. 
The first data structure is a range tree for the set of 
nets and is global to the algorithm. The second data 
structure is a priority queue for the free capacities of 
the cuts through edge (v,w) and is local to each row of the 
routing region. We assume that the vertices on the boundary 
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C(R) of the routing region arc numbered in clock-wise 

order by the integers in range [l •. N]. 

As the algorithm proceeds vertices in C(R) are deleted 
(always a left upper corner) and new nodes become 
boundary nodes. The new boundary vertices inherit the 
number from deleted vertices as shown in Figure 16. 
In this way the numbering of the boundary vertices remains 
in increasing clockwise order. However. adjacent boundary 
vertices are not necessarily numbered by consecutive 
integers. From now on we identify nodes in C(R) with 
their number. 

A net is represented as a pair of integers. namely by the 
pair of numbers associated with its terminals. The set 
N = {(s .• t.); s. st.. 1 ~ i ~ m} of nets is stored in 

1 1 1 1 
a range tree. Range trees were introduced by Lueker and 
Willard; sec also Mehlhorn. section VII.2.2 . We briefly 
review range trees. Range trees consist of a primary tree 
and a set of secondary trees. one for each node of the 
primary tree. 

In our case the primary tree is a static search tree for 
integers 1 •...• M of depth O(log M) • O(log n) . Let v be 
a node of the primary tree and let NI.(v) • {(s.t) E N; 
the leaf labelled s is a descendaJlt of v}. The secondary 
tree ST(v) associated with node v is a balanced tree 
(AVL-tree. 88[a]-tree. or .•. ) for the ordered multi-set 
{t; (s. t) E NL(v)}. In every node w of a secondn), tree 
we store two aUXiliary fields: the first field contains 
the number of leaf descendants of wand the second field 
contains the maximal s such that net (s.t) E N is stored 
in that secondary tree and the leaf t is a descendant of 
w. It is clear that a range tree requires space Oem log N) 
• O(n log n) since every net belongs to O(log M) node lists. 
It supports the following operations in time O(loK n)2). 
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1) Insert a net into N or delete a net from N 

2) Given a,b,c,d find nets (s,t) € Nand (s',t') € N 

with as 5,5' S b, c S t,t' S d and t maximal or s' 
maximal respectively. These nets can be found as follows: 
Consider the sea rch paths for a and b in tile primary tree 
and let Cmax to be the roots of the maximal subtrees of 
the primary tree betl.een these paths. Then every ne t 
(s,t) € N with aSs S b belongs to Nl(v) for exactly 
ono node v € Cmax . Also ICmaxl • O(log M). For every node 
v € C ~e search for C in the secondary tree ST(v) and max 
find the maximal t(v) and s'(v) such that c s t(v) s d, 
cSt' (v) S d and (s (v), t (v» € NL (v) and (s' (v), t' (v)) € 

NL(v). In order to find t(v) we only have to inspect the 
leaf immediately to the left of the search path for d and 
in order to find s' (v) we have to i nspect the auxiliary 
fields of the nodes between the search paths to c and d. 
Finally comparing (s (v), t(v)) and (s' (v), t' (v)) for all 
v € Cmax allows us to find the desired nets (s,t) and 
(s',t'). 

3) Given a < b find the number of nets (s,t) € N with 
either aSs S b < t or s < a S t S b. Let n, • I ((s,t); 
aSs S h < t) I and n2 • I {(s, t); s < a S t S b) I. We 
can determine n l as follows; n2 is determined similarly. 
Define Cmax as above. For every node v € Cmax compute 
I ((s,t) € NL(v); b < t)1 in time O(log n) by a sea rch in 
ST{v) using the auxiliary information associated with the 
nodes. 

The local data structures for the rows will be described 
below. We give the algorithm first. 

(I) initialize the range tree for the set N of nets 
( 2) while routing region non-empty 
(3) do consider a top row of the routing region; 
(4) initiali ze the local data structure for the 

current row; 
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(6) 

(7) 

(8) 

(9 ) 

( 10) 

(1 I) 

(12) 

(13) 

(14) 

(IS) 

(16) 

(17) 

(1S) 

(19) 

(20) 

(21) 
(22) od 
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while row non-empty 
do let v be the left corner of the row, let" be 

its bottom neighbor and let x be its right 
neighbor; 

od 

if ter(v) = deg(v) 
then route as given by lemma 2 and delete v; 

update data structures 
else find minimal critical cut X through 

edge (v,w); 

H; 

if this cut does not exist 
then delete node v, add net (x,w) 

and update data structures 
else find net (s,t) to be routed across 

cut Xo ' s € Xo ' t t Xo ; delete 
vertex v; 

fi 

delete (s,t) from the set of 
nets and add nets (x,s) and (w,t); 
update data structures 

split routing region if it is not biconnected 
anymore; 

We will next describe the local data structure for each 
row. Let L be the length o f the top-row. We consider cuts 
consisting of one horizontal segment and one vertical 

segment or of only a horizontal segment. Let Xi be the 
cut where the horizontal segment intersects exactly i 
edg es of the routing reg i on. (cf. Figure Iry. For every 
i let 

be the free capaci ty of cut X .. We have to exec ute th e 
1 

follOwing operations on fcap(X i ) , 1 sis L. 
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(I) compute fcap(X.), lsi s L in order to initialize 
1 

the local data structure in line (4) 

(Z) find the maximal i with fcap(X i ) - 0 in order to 

find the minimal critical cut Xo through edge (v,w) in 
line (10). 

( 3) decrease fcap(X i ) by two for a sis b in order to 
update t he local data structure in lines (9), (13) and (18). 

We show first how to do the first task in time O(L(log n)Z). 

Consider cut Xi ' We know that Xi n V(C) is a path and 
hence the numbers of vertices in Xi n vee) form an inter­
val [h,jl with h < j or two intervals [h,~ll, [1,jl with 
h > j. Note that h is the number of vertex v. The integer 
j i s easily found by computing in a preprocessing step 
for every vertex U of R the highest vertex below u which 
lip.s on C(R). The capacity of cut Xi is now readily 
computed in time 0(1) by adding the lengths of its consti­
tuting segments. The density of cut Xi is computed in time 
O(log n)2) using the third property of range trees 
derived above. 

It rema ins to show how to solve the other two tasks. We 
use priority queues with updates as described in Galil/ 
Naamad; see also Mehlhorn, section IV.9.1. They allow us 
to perform these tasks in time O(log n) each. 

We will next discuss the lines of our algorithm in more 
detail. Lines (1) and (4) were already described. In line 
(8) we route as given by lemma 2. Let (v,t 1) and (v,t Z) 

be the two nets having v as a terminal with v,t1 ,t 2 in 
clockwise order on C(R). Let io be maximal such that t1 
and t 2 both belong to Xi for i S i o ' Then fcap(X i ) 
decreases by two for i S i o ' We also have to delete two 
nets from N and add two other nets. Thus the cost of line 
(8) i s O(log n + (log n)2) - 0((10/1 n) 2). 
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Line (10) takes time O(log n) by property (2) of the local 
data structure. 

In line (12) we have to add one net to N and to reduce 
f cap(X i ) by two for all i. 

In line (1~) we first have to find the net (s,t) which 

has to be routed across and cut Xo ' i.e. 5 € Xo ' t t Xo 
and t is as close to w as possible. Since Xo n Vee) is a 
path the boundary nodes in Xo form an interval [h,n with 
h < j or two inte rvals [h,M) and [I,j) with h > j. In the 
former case net (s,t) is either the net (s' ,t') with 
s' < h' s t' s j and s' maxima l or the net (s",t") with 
h s s" S j S t" and tOO maximal. In the latter case the 
net (s , t) is either the net (s' ,t') with 5' < h s t' S ~1 

and s' Ilaximal or th e net (s",t") with 1 S 5" S h < tOO < j 

and t" maximal. 

In line (16) we have to delete ono not from N and add two 
other nets for a cost of O«log n)2). In line (17) we have 
to change fcap(X i ) for some cuts Xi. Let (s,t) be the net 

to be routed across Xo . Let io and il be such that 
s,t t Xi for i S io and s,t E Xi for i ~ i 1 · Then fcap(X i ) 
dec reases by two f or i S io and i ~ i l . This change re­
quires time O(log n). 

We finally have to discuss line (20). Let y be the 
"diagonal" neighbor of vertex v. (cL Figure 17). Then y 
(and only y) may become an articulation point by the 
removal of v. Vertex y becomes an articulation point if 
y belongs to C(R) before the removal of v, i .e . if y wa s 
numbered prior to the removal of v. Thus it is easy to 
test whether tho routing region has to be split. 

We split the routing r egion by finding the nets (s . ,t . ) 
1 1 

which have to go through y using property (3 ) of the range 
tree and by replacing them hy nets (5 . ,y), (y,t . ). 

1 1 
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We then apply the algorithm separately to both parts. It 

is important to observe that we can use the same global 

data structure for both parts and that we can continue 
to process the current row, using the current local 
data structure. 

This concludes the description of the algorithm and its 
data structures. The analysis of the running time is 
also easily completed at this point. All lines except line 
(4) take time O((log n)2) and eliminate one vertex. Line 
(4) takes time O(L(log n)2) where L is the length of the 
current row; i.e. time O((log n)2) per vertex. Thus total 
running time is O(n(1og n)2). We summarize in 

Theorem I: Let (R,N) be a standard generalized switch­
box routing problem with a routing region of n vertices. 
Then a solution (if there is one) can be constructed in 
time O(n(1og n)2). 

5. Non-standard Routing Problems 

This section is devoted to non-standard routing problems. 
We show how to find efficiently a solution for a non-standard 

GSRP if there is one. 

We review the next two basic lemmas from the paper of Becker/ 
Mehlhorn; the proofs can be found there. 

Lemma 5: Let (R,N) be a non-standard GSRP which has a solution. 
Then there is a solvable standard GSRP(R,N') where N' ~ N U P 
and P is a pairing of U • (v; v has odd extended degree} 

We call (R,N') a standard extension of (R,N). 
Our extension is based on the concepts of U-minimal cut 
and canonical extension. 
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Let X be a saturated cut and let u1,uZ, .•• ,u Zk be the clock­

wise ordering of X n U. The cut X is U-minimal if X n U • 0 
and there is no simple saturated cut Y with Y n U • 
lUi ,u i + I' . .. ,u

j
) with I < i < j < 2k. The canonical extension 

of (R,N) with respect to X is obtained by adding nets 

(u 2i-l,uZi)' 1 ~ i ~ k. Note that adding these nets will 
make the extended degrees of all vertices in X even. 

LeJlJlla 6: Given a solvable non-standard GSRI'. 
An iterative application of canonical extension wi th respect 
to U-minimal cuts leads to a solvable standard GSRP . 

Lenu:la 6 leads to the following algorithm for turning a non­
standard problem into a standard problem. 

(1) Uo - (v; extended degree of v is odd) 

(2) U - Uo 
(3) while U. ~ do 
(4) if there is an oversaturated cut 
(5) then terminate and declare that the problem 

has no solution 
(6) f i 
(7) let X be a U-minimal cut (X • V is possible) 
(8) construct the canonical extension 

(9) U - U - X 

( 10) od 

Beckerl Mehlhorn showed how to implement th i s algorithm 
in time O(bn + IUo I 2) = O(bn) where b is the number of 
vertices on the boundary of the infinite face. Their 
algorithm works for arbitrary planar graphs where every 
interior node has even degree. The algorithm consists of 
two phases. 

1) In phase one the free capacity of all cuts X is 
determined which can conceivably become U-minimal during 
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the extension of the algorithm. This phase takes O(bn) 

and builds up a data structure of size O(IUoI Z) to be 

used in the second phase. 
2) In phase two the algorithm above is used to 

construct the standard extension. Phase two takes time 

0(IUo ,2). 

n ) 2) We will show how to execute phase one in time O(n ( log 
in our case. This will give an O(n( l og n)2 + 'Uo'Z) 
algorithm for solving non-standard problems. 

The main idea for the improved running time is the 
following: We may assume w.l.o.g. that U-minimal cuts have 
a very restricted form. Let X be a U-minimal cut. o 
As in section 3 we can view Xo as a polygonal line S inter-
secti ng exactly the edges in CAPCXo)' Line S consists of 
several straight line segments. We claim that two suffice. 

Lemma 7: Let (R,N) be a so lvab le generalized switchbox 
routing proble~ with U as its set of vertices of odd 
extended degree. Then there is a U-minimal cut Xo 
consisting of at most two s traight-line segments. 

Proof: If V is a U-minimaJ cut then the c laim is certainly 
true. As s ume otherwise. Choose an U- lI1ini maJ cut Xo con­
sis ting of straight line segments s" ... ,sk \d th k 
minimal. Note that ~ • Xo n U • U since V is not U-minimal. 
If k 5 2 then we are done . 

So let us assume finally that k ~ 3. We may ass ume w.l .o.g . 
that s 1 is horizontal and the left e nd of s, intersects the 
boundary of R. Then s2 intersects an ed ge of R whose left 
endpoint lies on the boundary of R. As in the proof of 
Lemma 4 we distinguish two cases. 
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Case A: s3 runs to the right as seen from the lower 

endpoint of s2. 

Case Aa: extending s3 for one segment of the left does 
not intersect a boundary edge (cf. Figure 18). Then the 
boundary points to the left of s2 lie in h (~1) segments 
as shown in Figure 18 . 

Let 1i be the number of vertices in the segment between a i 
and b i inclusive, 1 ~ i ~ h. Note that deg(a i ) = dog(b i ) = 4 

and hence ter(a i ) - ter(b i ) • O. 
We consider cuts X1 ••••• Xh+1 as shown in Figure 19. Let 0i 
be the number of vertices of odd extonded degree in the 
segment between a i and bi . We have 

h 
cap(Xo) • cap(X 1) + ... + cap(Xh+1) + r ( £i- 2) 

i=l 
and 

h 
dcn s (Xo) :> dens(X 1) + ... + den s (Xh+1) + r 

i - I 
(11.. -0 . - 2) 

1 1 

Since cap(Xo ) • dens(Xo) and cap(X i ) ~ dens(X i ) for all i 
(we deal with a solvable problem) we conc l ude 
that 0i = 0 for all i. 1 sis h. and cap (Xi) = dens(X i ) 
for lsi S h+l. Since 0i - 0 for all i we conclude 
further that Un Xo = (U n Xl) U ... U (U n Xh• 1) and hence 
one of the cuts Xi is U-minimal. This contradicts the 
choice of cut Xo. 

Cases Ab ( = not case Aa) and B (not case A) arc similar 
and arc left to the reader. D 

Lemma 7 tells us that we only need to consider cuts wi th 
at most one bend when searching for U-minimal cuts. Let 
e • (x.y) be an edge on the boundary of R and let 1 (e ) he 
the length of a cut through e which consists of a single 
straight line segment. 
Clearly r i(e) S O(n) where the sum is over all edges on 
the boundary of R. Also there are only 21(e) cuts through 
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e with exactly one bend. lIence only O(n) cuts must be 

considered as candidates for U-minimal cuts. For every 

single cut We can computo its free capacity in time 
0(108 n)2) as shown in soction 4. Thus time O(n(log n)2) 
suffices to compute the information required for the 
second stage of the algorithm in Becker/ Mehlhorn). 
We summarize in 

TheoreM l: Non-standard routing problems with n vertices 
and U vertices of odd extended degree can be solved in 
time O(n(log n)2) + lUll). 

Proof: By the discussion above one can extend the non­
standard problem to a standard problem in time 
O(IUl l

+ n(log n)2). The standard extension can be solved 
in time O(n(log n)2) by theorem 1. 

Conclusion: We exhibit a routing algorithm for two-terminal 
nets in generalized switchboxes. The algorithm runs in time 

Z O(n{log n) ) and finds a solution -if there is ono- in the 
case of standard problems. Several open questions remain. 

1) Can the running time be iMproved? 
2) Can we also solve non-standard problems optimally 

in time O(n(log n)2)? 

3) Can one extend the result to more general routing 
regions and/or multiterminal nets? 
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