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A NOTE ON THE COMPUTATIONAL COMPLEXITY OF BRACKETING
AND RELATED PROBLEMS*

MIRKO KRIVANEK}

Abstract. It is shown that the problem of finding the minimum number of bracketing transfers in
order to transform one bracketing to another bracketing is an NP-complete problem. This problem is
related to problems on random walks and to the problem of a comparison of two (labeled) rooted trees.
The latter problem is studied with connection to cluster analysis. Finally, one polynomially solvable class
of bracketing problems is obtained.

I. Introduction and background. Bracketing problems have a long history [8].
Though the main emphasis was mainly concentrated on enumeration problems we shall
be interested in the computational complexity of evaluation of the distance between two
given bracketings. Finally, using the concept of closed random walks we shall stress the
connection of bracketing problems to the problem of comparison and evaluation of two
labeled rooted trees. This type of problem is often investigated in cluster analysis [6].

More precisely, the word w in the alphabet X' = {(,)} is said to be a bracketing if it is
generated by the following rules :

S —s SS|(S)|4,

where A stands for an empty word. The set of all bracketings is often called the Dycklan-
guage and plays an important part in the theory of formal languages [3]. The abbreviation
I',i > 0,1 € X, denotes u Let B (B, resp.) be a set of all bracketings over X' (...of
i times

length n, resp.). Note that n is even. A bracketing b’ € B is said to be a sub-bracketing of
b, written b’ C b, if b’ is a proper subword of b. The nesting level of a sub-bracketing b' of
b is the number of different sub-bracketings of b which contain 4’ as their sub-bracketing.
Given two bracketings by, b2 € B, we say that bracketing b, arises from bracketing b; by
one bracketing transfer if there is a sub-bracketing b of b; such that

by = zby and either b = z,bzoy, where z179 =12,

or by =zy by;, where yy;=y, for z,z2,y,y1 € T, 21,y € Z*.

By (b1, b2) the minimum number of bracketing transfers needed to transform b; to b, will
be denoted, i.e.

B(b1,b2) =j if there is a sequence 31,82,...,8;41 of bracketings from B, such that
by = 81,b2 = 8,6(8i,8i41) =1 for i=1,...,5.

First we have the following straightforward lemma :
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LEMMA 1. The function B is the distance measure on B, and (B,,f) is a metric
space. []

The underlying computational problem BR in which lies our main interest is stated
as follows :

INSTANCE : Two bracketings by, b, € B,,, positive integer k ;
QUESTION : Does it hold that B(b1,b2) < k ?

Our NP-completeness terminology is that of [2].
II. Complexity results. First we shall prove the following,.

THEOREM 1.
The problem BR is NP-complete.

Proof. Clearly, the problem BR is in the class NP. We shall exhibit a polynomial
transformation from the problem BIN PACKING which is known to be strongly N P-
complete [2]. BIN PACKING has been introduced as follows :

INSTANCE : Positive integers 3,...,1s, B,r such that E;=1 ij=rB;
QUESTION : Is there a partition of {i1,...,%,} into r classes I,..., I, such that
EjEImiJ' =Bm=1,...,r?
Given an instance of BIN PACKING the instance of the problem BR is constructed
in polynomial time by putting

by def BYB  (BYB p, def () ()L, k def o _
N mem— ——

r times .

Now, the equivalence

B(b1,b2) = s — r & BIN PACKING has "yes”-solution

is easily verified and the theorem is proved. [

Theorem 1 says that it is very unlikely that there exists a polynomial algorithm for
the problem BR. Therefore we would like to exhibit a polynomial approximation for the
problem BR. Notice that proof of Theorem 1 does not exclude the possible existence of
such an algorithm. The so-called "next fit” approximation algorithin has been believed to
provide a "good” polynomial approximation for BR since BR generalizes in some way the
BIN PACKING problem. Recall that the next fit algorithm was proved to be a "good”
approximation for BIN PACKING both from the worst and average case complexity
viewpoint [2,4]. Formally the approximation algorithm A for BR is encoded as follows :



Algorithm A :

(Step 1.) 83 := by; 82 := by;
(Step 2.) do 2n times
Scan and compare current letters of s; and sy;
if they are different then
{suppose that scanned letter in sy is ”(” | i.e. 83 =z(y, =z,y € T*}
(Step 3.) find in 32 a "next” sub-bracketing b (minimal/maximal with respect to the current
nesting level) such that s2 = z)y1by2, y1,y2 € £*;
82 1= zb)y1y2;
endif

endo

endalgorithm

The correctness and time analysis of the algorithm A is established in the following
theorem :

THEOREM 2. Algorithm A runs in polynomial time and solves problem BR using
O(n) bracketing transfers.

Proof. Rough time estimate for Step 3 is O(n). This yields O(n?) time complexity
of the algorithm A. The algorithm A transforms bracketing b; into bracketing b;. This
is observed from the fact that eventually both words sy,s; produced by A are equal.
As possibly both b;,b; and consequently s;,3; are changed the sequences b; — s; and
s3 — by provide the sequence of bracketing transfers required for transforming b; to b,.
In the worst case the number of bracketing transfers is proportional to the corresponding
number of sub-bracketings of b; (b2, resp.) and thus it is O(n). 0

Remark. Using so-called search trees [7] as a data structure for the representation of
bracketings, Step 3 can be implemented in O(logn) time. Asymptotically O(nlogn) upper
bound is the best possible for polynomially solvable instances of BR since the well-known
SORTING problem is linearly transformable (assuming an unary representation of input
numbers) to the following instance of BR :

by =000)--- (M7 bz = ("*)"*("*)*...(°*)* where {z1,zs,...,2,}=1{1,...,n}

constitute an instance of SORTING. Recall that SORTING is solvable in O(nlogn)
time [7]. O

Let us deal with the question of how good the approximation produced by A is. Re-
grettably no constant bounded worst case error ratio is guaranteed.
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THEOREM 3. Algorithm A has a ©(n) worst case error ratio.

Proof. Let by = ay,b2 = yz,z = (,y = ()( 0-.-() ). In this case A(by,bs) = 1.
N, e’
O(n) times

However algorithm A constructs a sequence of O(n) bracketing transfers regardless of the
nesting level of the "next” sub-bracketing in Step 3. [

The failure of algorithm A is due to the fact that A does not search for identical
sub-bracketings in b; and bs. Therefore its behavior could be slightly improved by pre-
processing, i.e. by decomposing b; and b2 into their corresponding sub-bracketings, say,
maximal up to inclusion. This approach supposes setting up a data structure where nesting
level and sub-bracketing can be directly accessed. This way we avoid pathological behavior
of A on the current nesting level but complexity problems remain unchanged when dealing
with identical sub-bracketings on different nesting levels.

Let us conclude this section by a remark that some preliminary calculations indicate
that algorithm A also has the average case error ratio of order ©(n). The details will
appear in a full paper.

II1. Random walks and rooted trees. The aim of this section is to discuss a 1-1
correspondence between bracketings, random walks and rooted trees. It will enable us to
extend the results of the previous section to trees embedded to the plane. Our exposition
is based on [5].

Random walk of length n is a (n + 1)—tuple & = (¢(0),¢(1),...¢p(n)) where ¢ is a
mapping to non-negative integers such that

P(0) =¢(n) =0,p(i) € {v(i - 1) - Lp(i - 1)+ 1}i=1,...,n

LEMMA 2. There is a one-to-one correspondence between B,, and the set of all random
walks of length n.

Proof. Let b € B,. Define a random walk & of length n as follows

0, if i € {0,n}
e(i) =< @(i—1)+1, if i-th letter of b is ”(”
@(i—1)—1, if i-th letter of bis ”)”. [J

Let T be a rooted tree on n vertices embedded into the plane. Let us consider a
topological ordering wr = wvov;...V2n-2 of its vertices which is recursively defined as

follows :
(1) If T = {vo} then wr = vy,
(2) If T has aroot vo with the subtrees T, Ty, . .. , Ty then wr = vowr, vowT, Vg . . . W1, Vo.
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The set of all trees on n vertices with a root vy embedded into the plane will be denoted
by T.,.
Let T, Ty '€ T,,. T\ is said to be obtained from T, by one subtree modification if

T, ~ Ty — uv + uw, where uv € E(T),uw ¢ E(Ty),

where symbol = expresses that both trees have the same topology of plane embedding,
i.e. they are topologically isomorphic. The subtree distance 7(Ty,T) between T; and T; is
defined as the minimum number of subtree modifications needed to be performed on T in
order to obtain a tree which is topologically isomorphic to T;. Notice that the root v, is
supposed to be fixed. The following observations are quite straightforward:

LEMMA 3. The pair (T,,7) forms a metric space. []

LEMMA 4. There is a one-to-one correspondence between 7T, and random walks of
length 2n — 2.

Proof. Let T € T,. Let d(vi,vg) be the distance of the i-th vertex v; of w from vo.
The corresponding random walk & = ((0),...,¢(2n — 2)) is defined as follows :

0, if ¢ 0,2n -2
oli) = { e }

d(vi,ve), otherwise. [J
Now we are ready to prove the following :

THEOREM 4. GivenT,,T; € T,, the underlying decision problem of computing 7(T,,T,)
is N P-complete.

Proof. Choose by, b2 € B, and by virtue of Lemma 4 consider two corresponding trees
T,,T, € T,.. By the aid of Lemma 2 and Lemma 4 we have

B(b1,b2) = 7(T1, T2).
The use of Theorem 1 completes the proof. []

Trees from 7T, are very often constructed by hierarchical clustering procedures. The
study of the consensus between these trees is one of the most important problems encoun-
tered in cluster analysis [6]. However, special attention is mostly paid to binary trees [1].
The concept of random walks can be used for proving similar N P-completeness results for
binary trees, too.

Let T € T3,_1 be a binary rooted tree on n leaves, i.e. having all internal vertices of
degree 3 except of the root v which is of degree 2. A given binary rooted tree T' induces
a topological ordering w = vgv; . ..vs,—2 Which is defined recursively as follows :

(1) If T = {vo} then wr = vy,
(2) If T has a root vy with the subtrees T}, T, then wr = wpwr,vo.
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The set of all binary trees on n leaves and with the root vy embedded into the plane will
be denoted by 7. Given Ty,T; € 7,> we say that T} is obtained by one (binary) subtree
modification if

Ty = T — {{ui,v}, {us, w}} + {{uz, v}, {uz, w}}

where

{u1,v}, {u1,w} € E(T2) and {uz, v}, {uz,w} ¢ E(T?).

Notice that u, is a leaf. The (binary) subtree distance 7° is defined as the minimum number
of subtree modifications required to obtain a tree T} from T%. Similarly as in the general
case the following propositions hold

LEMMA 5. The pair (7., %) forms a metric space. [J

LEMMA 6. There is a one-to-one correspondence between binary rooted trees on n
leaves and random walks of length 2n — 2.

Proof. Let T € T,,,w = vgvy ...V2,—2. The corresponding random walk @ is defined as
follows
0, if 1 € {0,2n — 2}
e(i)=4¢ p(i—-1)+1, ifviisaleafinT

¢(i —1) — 1, if v; is an internal vertex in T'. [J

Combining Lemma 2, Lemma 6 and Theorem 1 we get

THEOREM 5. Given Ty, T; € T? the underlying decision problem of computing (T}, T5)
is N P-complete. []

IV. Labeled rooted trees. In this section a polynomially solvable class of brack-
eting problems will be explored by means of labeled rooted trees. Let T' € T, and let
wr be its topological ordering. Let us define on the set of vertices of T a labeling £,
€: {vo,...,vn-1} — {0,...,n —1} as follows :

0, if(l?Evo

£ - {

t, if vertex = occurs as the i-th new vertex in wr.

Let us suppose that we are given a fixed labeling £ on {vo,...,vp—1}. Let 7.,¢ denote the
set of all labeled trees on n vertices with the root vy and with the same labeling £. Now
we can define a subtree modification distance 7¢ between labeled rooted trees from T ¢
formally in the same way as in the unlabeled case with the only exception that now the
labeling £ must be preserved by subtree modifications. Clearly Lemma 3 and Lemma 4

can be rewritten as follows :



LEMMA 5. The pair (7;f,7¢) forms a metric space. []

LEMMA 6. There is a one-to-one correspondence between 7,¢ and random walks of

length 2n — 2. ]

Let us define two graphs
gl = (Tn, El)a g2 = (Tf,Ez)

where

{T],T2} e FE & T(Tl,Tz) =1 for TI,T2 € Tn,
(T, T2} € E; & (T, T3) =1 for Ty, T, € TE.

It is easy to see that G is a proper subgraph of G;. This observation justifies the following

theorem :

THEOREM 6. Given Ty,T, € T§, the problem of the computation of Tf(Tl,Tg) is
polynomially solvable.

Proof. Let us consider the following algorithm :

(Step 1.) do traverse the tree T, using so-called breath-first search [7]
(Step 2.) if childrens of the current vertex of Ty and T, are different
then update locally the tree T; by T}
endo

The loop involved in Step 1 requires O(n) time, Step 2 can be implemented in O(logn)
time using search trees as data structures for the fast search and update in T} and in T5. [J

It is left to the reader to find an example which shows that the algorithm outlined above
has ©(n) worst case error ratio if it is used as an approximation for a general bracketing
problem.
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