N

N

A Confluent Relational Calculus for Higher-Order
Programming with Constraints

Joachim Niehren, Gert Smolka

» To cite this version:

Joachim Niehren, Gert Smolka. A Confluent Relational Calculus for Higher-Order Programming with
Constraints. 1st International Conference on Constraints in Computational Logics, 1994, Munich,
Germany. inria-00536826

HAL Id: inria-00536826
https://inria.hal.science/inria-00536826
Submitted on 16 Nov 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00536826
https://hal.archives-ouvertes.fr

A Confluent Relational Calculus for
Higher-Order
Programming with Constraints

Joachim Niehren * Gert Smolka **

Programming Systems Lab
German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3, D-66123 Saarbriicken, Germany
{niehren,smolka}@dfki.uni-sb.de

Abstract. We present the p-calculus, a relational calculus parametrized
with a logical constraint system. The p-calculus provides for higher-
order relational programming with first-order constraints, and subsumes
higher-order functional programming as a special case. [t captures im-
portant aspects of the concurrent constraint programming language Oz.
We prove the uniform confluence of the p-calculus. Uniform confluence
implies that all maximal derivations issuing from a given expression have
equal length. But even confluence of a nonfunctional calculus modelling
computation with partial information is interesting on its own right.

1 Introduction

We present the p-calculus, a relational calculus parametrized by a logical con-
straint system. The p-calculus provides for higher-order relational programming
with first-order constraints.

The p-calculus captures interesting aspects of the concurrent constraint pro-
gramming language Oz [3]. It is a minimalistic subcalculus of the Oz-Calculus
[12] which, in contrast, integrates a variety of paradigms into a single formalism.
The Oz-Calculus models functional, object-oriented, constraint-based and logic
programming [11].

We prove the uniform confluence of the p-calculus. Uniform confluence implies
that all maximal derivations issuing from a given expression have equal length.
This, in particular, yields equivalence of normalization and strong normaliza-
tion on the same expression. But even confluence of a nonfunctional calculus
modelling computation with partial information is interesting on its own right.

* Joachim Niehren has been supported by a fellowship from the ‘Graduiertenkolleg
Informatik der Universitat des Saarlandes’.

** Gert Smolka has been supported by the Bundesminister fiir Forschung und Tech-
nologie (FTZ-ITW-9105), the Esprit Project ACCLAIM (PE 7195), and the Esprit
Working Group CCL (EP 6028).

In Jean-Pierre Jouannaud, ed. 1st International Conference on Constraints in Computational
Logics, Munich, Germany, September 1994, LNCS 845.

Recently, two other minimalistic relational calculi have been proposed: the 4-
calculus [8] and the y-calculus [13] The d-calculus models purely functional com-
putation in a relational setting. It is uniformly confluent and embeds the eager
A-calculus. The v-calculus is a extension of the J-calculus being a minimalistic
foundation for relational, concurrent, and object-oriented programming. In par-
ticular, it provides for lazy functional programming with sharing [5] integrating
concurrent state [1, 6].

The ~-calculus provides for logical variables but not for first-order unification,
which would amount to the integration of a tree constraint system. This choice
makes the v-calculus technically simpler than the p-calculus. However, in rela-
tional calculi providing for encapsulated search [11] or type inference [7], first-
order unification or other forms of constraint solving are needed. For these pur-
poses, extensions of the p-calculus are appropriate.

We continue with some technical remarks on uniform confluence. In [8], uniform
confluence of the eager A-calculus and the §-calculus are proved. The proof for
the eager A-calculus is trivial, whereas the proof for the é-calculus requires a deep
analysis of parallel composition. We point out that proofs of uniform confluence
are based on local considerations excluding termination. This is possible, since
uniform confluence implies Huet’s notion of strong confluence [4].

A central contribution of this paper is the proof of the uniform confluence of
the p-calculus. This proof is hard. It is based on a method developed for the
d-calculus [8]. Additionally, it needs a novel method for the decomposition of
equivalence relations. This new complexity comes with the freedom of constraint

handling.

The confluence of the p-calculus depends essentially on the concept of names.
Names are first-class citizens. This means that variables may denote names and
that names can be passed as parameters. Names can be tested for equality and
disequality in first-order logic. An equation a = b between names is unsatisfiable
if and only if ¢ and b are distinct.

The p-calculus ensures that all abstractions are equipped with a unique name.
On creation of a new abstraction a new name is created, relying on a mechanism
independently proposed in [14, 10, 9]. Without the above invariant, confluence
of the p-calculus would fail. For instance, consider the following expression F
being a composition of two abstractions with the same name a:

ar /T Aay/L.
E reduces to non-joinable expressions when composed with an application a z:

EANL <« EANaz — EANT.

The paper is organized as follows: First, we define constraint systems and present
the p-calculus. Then, we give a typical example for programming in the p-
calculus. After that, we investigate uniform confluence and its consequences for
general calculi. Finally, we formulate our decomposition method and prove the
uniform confluence of the p-calculus.

2 Constraint Systems

We introduce constraint systems based on first-order logic with equality as in

[12, 13].

We assume an infinite set of variables ranged over by z, y, z and an infinite
set of names denoted by a, b, c. The letters u, v and w stand for references
being either variables or names. Throughout the paper, we will freely use the
replacement operator [u/v] (replace u for v) and apply it to logical formulae and
other syntactical categories.

A first-order signature X declares constants, function symbols and predicate
symbols. A theory A over X is a set of closed first-order formulae over 3. A
theory 1s consistent if it has a model. The formula 9(15 is an abbreviation for the
universal closure of ¢. A formula ¢ is valid with respect to a theory A if v @ 1s
valid in all models of A. In this case, we write A |= ¢.

A constraint system consists of a constraint signature X, a constraint theory A
and a set of constraints ranged over by ¢ and . X is a first-order signature
containing all names as distinguished constants. A is a consistent theory over
Y. The set of constraints is a subset® of first-order formulae over X including
bottom L, top T, and equations v = v, and closed under conjunction ¢ A ¥,
existential quantification Ja ¢, and replacement ¢[u/v]. We require the following
two conditions for all a, b and ¢:

1.AE —a=b if @ and b are distinct,
2. A E ¢ & ¢la/b] if ¢ 1s closed and does not contain a.

The first condition allows to test names for disequality. The latter ensures con-
sistency, when a-renaming for names comes into play. In particular, the above
requirements imply that names are different from any value that can be described
by a formula (see [12]).

3 The p-Calculus

We present the p-calculus with respect to a fixed constraint system. The p-
calculus is the restriction of an auxiliary calculus that is specified by expressions,
structural congruence, and reduction.

With respect to the structural congruence, an expression can be considered as
computation space consisting of a board and a collection of actors. A board con-
tains the information accumulated so far consisting of constraints and abstrac-
tions. Actors are conditionals and applications. They reduce driven by the infor-
mation on the board and disappear. Reduction possibly adds new information
and new actors.

® This slightly extends [12, 13] where all first-order formulae are constraints.

The abstract syntax of expressions ranged over by E and F' is defined by the
grammar in Figure 1. We write % (T and @ resp.) as abbreviation for possibly

empty, finite sequences of references (variables and names resp.).

EF.=¢ constraint
a:y [E (named) abstraction
uv application
if ¢ then E else I fi conditional
EANF (parallel) composition
Ju F declaration

Fig. 1. Expressions

An abstraction a:7 /E is named by the name a, has formal parameters § and
body FE. An expression uv 1is an application of an abstraction named u with
actual parameters v. A conditional if ¢ then E else F fi has guard ¢ and branches
E and F. Conjunction on constraints and composition on expressions coincide,
likewise a existential quantification and declaration of variables.

Bound variables are introduced by constraints, as formal parameters of abstrac-
tions and by declaration. Bound names are introduced by declaration only. Ref-
erences that are not bound are called free. F(FE) and B(F) denote the sets of

free respectively bound references in F.

Abstractions may be named by variables. For this purpose, we introduce z:y /E
as syntactic sugar for the expression Ja (# = a A a:y /FE) . This ensures that
abstractions named by variables have a unique name.

The structural congruence = is the least congruence on expressions satisfying
the axioms in Figure 2. It provides for the usual properties of composition and
declaration, identifies logically equivalent constraints (Equ) and allows for the
replacement of variables by equal references (Repl).

capture free renaming of bound references

2

ACIT) A is associative and commutative and satisfies EA T = E

(
(
(Er) JuIE = FouE
(
(
(

Mob) (BuE)AF = 3u(EAF) ifug F(F)
By ¢6=¢ ifAE$oY
Repl) z=uAE = z=uA Elu/z] if u ¢ B(E)*

Fig. 2. Axioms of Structural Congruence

* For technical simplicity, we prefer to use u ¢ B(E) instead of u is free for z in E.

With respect to declaration, the structural congruence treats names similar to
variables. This simple machinery circumvents inconsistent equations between
higher-order procedures using first-order constraints:

vy /EANcZ/F=3a(x=aAhay/E)yANTa(z =aNhaZ/F)
=Jdadb(e=arne=bAay/EAbZ[F)
=1L Adadb(a:g/EANb:Z)F)

Reduction — 1s the least binary relation on expressions satisfying the axioms in
Figure 3 and the rules in Figure 4. We use an generalized replacement operator
[u/Z] for simultaneous substitution. Its application implicitly requires that u
and T have equal length and that Z is linear (i.e. all elements of T are pairwise
distinct).

(Appl) a:yg/EANat — ay/E A E[u/y] ifu ¢ B(E)
(Then) o Aif dpthen Eelse Ffi — ¢y AE A E ¢
(Else) Y ANifpthen Eelse Ffi — ¢ AF A |E ¢— ¢

Fig. 3. Axioms of Reduction

Application (Appl) executes procedure calls by passing actual parameters for
formal ones. Note that references are passed but not expressions. A conditional
is reducible whenever sufficient information has been accumulated in form of
constraints. Irreducible conditionals are called suspended. The axiom (Then)
commits to the then-branch, if the guard is entailed (A = ¢ — ¢), whereas
(Else) chooses the else-branch if the guard is disentailed (A | ¢ — —¢).

An alternative formulation of reduction of conditionals is given in [13]. Tt is
based on constraint propagation modelling relative simplification of guards. For
the purpose of confluence, the presented version is simpler. However, relational
calculi extended with deep guards require relative simplification [12].

The rules in Figure 4 formalize that reduction is closed under the structural
congruence and allowed in every context but not in abstractions and conditionals.

E1—>E2 E1—>E2 ElEEQ E2—>E3 E3EE4
EIuE1—>E|uE2 El/\F—>E2/\F E1—>E4

Fig. 4. Rules of Reduction

We continue restricting of the auxiliary calculus above. First, we exclude that
several abstractions have the same name. Second, we take logical inconsistencies
into account.

An expression F is admissible if it satisfies the following two conditions:

1. E does not contain two abstractions with the same name.
2. The name of an abstraction nested inside another abstraction of F is declared
in the body of the enclosing abstraction.

Both restrictions do not diminish expressiveness. Real programs are usually writ-
ten in suggared syntax and use abstractions «: g /E named by variables exclusive-
ly. Clearly, expressions obtained by expansion of those programs are admissible.

Propositionl. Admissibility is preserved by structural congruence and reduc-
tion.

An expression is failed if it 1s congruent to L A FE for some F and unfailed
otherwise. Failure obviously destroys confluence. For instance, consider L A
zy AN ay/T Aby/(3eeiz/T Axy) whichs leads to several finite and one
infinite derivation that can not be joined.

One possible solution of the problem is to exclude expressions that will eventually
fail. But we can be less restrictive exploiting the following property valid for all
E: If there exists a derivation on E leading to failure then all finite derivations
on F can be extended to failure. The solution, we finally choose, is to add the
axiom (Bot) in the definition of reduction.

(Bot) LAE — L

(Bot) only applies to failed expressions forcing all maximal derivations to be
infinite:

IANE - 1L = 1LAT = L — ...
Conversely, uniform confluence requires that all maximal derivations on failed
expressions are infinite, since failure may occur after an arbitrary number of
reduction steps.

In the sequel we denote the relational composition of two binary relations —;
and — with —; o —,. The restriction of a relation — to a set £ is written as
e

1€

Definition2. An p-expression is an admissible expression. The set of all p-
expressions is denoted by £. The p-calculus is the triple (£, =¢, —>|£).

The following property of the p-calculus is important. It will be generalized in
Section 5 in order define a abstract notion of calculus.

Proposition 3. The p-calculus satisfies e = (Zje o e © =e).
This is a consequence of Proposition 1 and the = = (= o = 0 =).
Theorem 4 (Uniform Confluence). The p-calculus is uniformly confluent;

that s, for all admissible I/ and all Fy, Fy such that I\ « E — Fy either
Fiy = Fy or there exists G with Iy — G + Fs.

4 Examples

We illustrate the programmable control of data-flow of the p-calculus in connec-
tion with higher-order procedures.

First, we define two relational procedures Addl and Add2 for the addition of
integers. They are both correct with respect to the logical formula

VaeVyVz (add(z,y,z) e +y=2) .

Addl may proceed in computations with incomplete information, whereas Add2
suspends until the values x and y are determined.

Second, we define two procedures Suml and Sum?2 for the summation of lists
of integers. They are created generically from Addl and Add2 applying the
higher-order procedure Fold. The data-flow of Suml (resp. Sum?2) generalizes
the data-flow of AddI (resp. AddlI).

We chose a constraint system providing for trees and integers with addition. Its
signature X contains at least the binary function symbols cons and +, a unary
relation symbol int, and constants nil, 0, L1, 4+1, As constraints, we allow
for all first-order formulae not containing universal quantification, negation and
disjunction. An appropriate theory A can be defined combining the first-order
theories of integers and trees. For instance, it provides for

AEz240=z & int(x) Ahe==z.

We freely use syntactic sugar for lists and nesting. It ¢, ¢1, ..., ¢, are terms over
X then we define
[t1ta...tn] = cons(ty cons(ty ... nil))

uty ...ty = Jog o Fep (urr g A =0 A L AN By = 1)

As concrete variables (resp. names) we chose alpha-numeric expressions starting
with a capital (resp. lower case) letter. The procedure Addl is defined by

Addl XY Z/X+Y =2

We remember that this is syntactic sugar that has to be expanded before reduc-
tion. The computation of Add12Y 5 is done by the following derivation:

Add12Y b5 N Addl - XY Z/X+Y =27

IXIY (AddLXY Z A X =2 A Z=5) A Ja(Addl=a A a:...)
Fa3XIZ (X =2 AN Z=b AN Addl=a N aXYZ ANa:..)
Fa3XIZ (X =2 AN Z=bANAddl=a AN X+Y =7 ANa:..)
Y=3ATa(Addl=a AN a:..)

Y =3 A Addl:...

We abbreviate the above derivation by Add12Y 5 — Y = 3 . Further possible
derivations are Add1237 — Z =5 and even Add1 X0Z — int(X) A
X = 7 . The second procedure for addition Add2 is defined by:

T T

Add2: XY Z /Faif X = athen Telseif Y = athen Telse X + YV = Z fifi

It suspends until the parameters X and Y are determined. For example, the
following application terminates with an suspending conditional:

Add22Y5 —* Ja(if Y = athen Telse2+Y =5f)

Fold is well known from functional programming. As inputs, 1t takes a list L =
[X1 X5 ... X,], a binary functional procedure P, and a start value S. Its output
is the result of applying P recursively to the elements of L, from left to right,
starting with S. Hence, Fold(L,P,S) = P(P(...P(P(S,X1), X2)...), X»).
In the p-calculus, functional abstractions can be represented as relational ones
by adding an explicit output parameter R:

Fold: LPSR/if L =nilthen R=S5
else EIXlEILlEISl (L = cons(Xl,Ll) A PSX1 Sl A FOldLl PSl R) fi

The procedure Create abstracts over the second and third argument of Fold.
Thus, Create inputs P and S and outputs a new abstraction named A using the
remaining parameters L and R:

Create: PSA/(A: LR/ FoldL PSR)

Now we can create the procedure Suml (resp. Sum?2) computing the sum of lists
by application of create with Add1 and (resp. Add2):

Create Addl Suml — Suml:LR/FoldL Addl1 SR
The data-flow of Suml is as dynamic as the data-flow of AddI. For instance,
Suml[2Y 3]9 = Y =41.

Choosing Sum?2instead of Sum1 ends up with a suspending conditional whenever
one of the elements of the list is not determined.

5 General Calculi

We define an abstract notion of calculus appropriate for the investigation of
uniform confluence in general. An (abstract) calculus consists of a set £ an
equivalence relation = on &, and a binary relation — on & satisfying the property

== (Eo—oo0=).

The elements of £ are the expressions of the calculus, = is its congruence, and
— 1ts reduction. Note that every binary relation on a set £ defines a calculus
when taking the identity on £ as congruence.

Given a calculus, we define the following relations:
- — 0 *
===, 1= (=), =" = Up>o0 =, -

A calculus is confluent iff (*< o =*) C (=* o ") and Church-Rosser iff
(¢~ U —=)* C (=* o *¢). It is strongly confluent iff (< o —) C ((= U =)o *¢)
and uniformly confluent iff («— o0 —) C (ZEU(— o0 +)).

Proposition5. Uniform confluence tmplies strong confluence which implies con-
fluence. Confluence and Church-Rosser property are equivalent.

We define some further notions with respect to a given calculus. An expression
E is irreducible iff there is no expression F' with £ — F'. A derivation is a finite
sequence ()", or a infinite sequence (FE;)72, with F; — F;44 for all ¢ > 0.
A derwation on E 1s a derivation (Ei)izo with £ = Ey. A derivation is called
mazimal iff it is infinite or if its last element is irreducible. Reduction on E
normalizes iff there is a maximal finite derivation on E. Reduction on E strongly
normalizes if all maximal derivations on E are finite.

Theorem 6. If E is an expression of a uniformly confluent calculus then all
derivations on E have the same length.

The proof is based on an inductive argument similar to proving that strong
confluence implies confluence [4, 2].

Corollary 7. If E is an expression of a uniformly confluent calculus then nor-
malization on E and strong normalization on F are equivalent.

6 Decomposition of Equivalence Relations

We present a method for the decomposition of an equivalence relation defined
as least fixpoint. The method is independent of the underlying set.

Theorem 8 (Decomposition). On a given sel, we assume a confluent binary
relation — and two equivalence relations &~ and 1 such that:

1. =~

N

(%1U—>UF)*, 2. (%O%l) g (Nloﬁ).

Then =~ C (—* o~y o *«) holds.

For instance, the decomposition (&1 U = U «)* = (=" o &1 o *«) holds
under the assumption 2 of the theorem. For the proof we need the following
statement that 1s not difficult to establish.

Lemma9. If = and —, are transitive and reflexive relations, then we get:

(—>1U—>2)* = U 9 0 =3 O =39 O0...0 = .
n>3

n

The lemma states that the transitive reflexive closure is spawned by some of all
possible compositions of — and —, In particular, the length n of the composi-
tion i1s odd and greater or equal than 3.

Proof of the Decomposition Theorem. We define &y = (= U «)* . Obviously,
U= U)" = (m1 U m)" holds. Hence, Condition 1 is equivalent to

(zzozlozzo...ozz) C (=" om0 7¢) for all n >3 (1)

This property can be shown by induction on n. For this purpose, we first formu-
late three simple properties. Confluence of — and Proposition 5 imply:

Ay C (27 0 ™) (2)
A simple inductive argument applied to Condition 2 of the theorem yields:
(*< o) C (=1 0 ") (3)
Since ¥ is symmetric, Property (3) is equivalent to:
(10 =7) C (=" om) (4)
Now, we are in position to prove Property (1). The case n = 3 works as follows:

(R 0 R 0 =% 0 ") Property (2
(Rn 0 =" o’y 0 *¢) Property (4)
(g 0”1 0 ") definition of =5
(—* o *¢— om0 *¢) Property (2)
(=" om0 "0 ") Property (3)
(

NN ININININ

Next we consider the case n > 4 which implies n > 5 automatically:

(g 0 R3] 0RIg 0...0 R9)
C (om0 om0 ™) induction hypothesis
C (a0 " ory om0 * 0 *¢) property (4)
C (reg o & 0 &g) definition of ~»
C (2F om0 *¢) case n =3

7 Proving Uniform Confluence

Given a p-expression E we have to show how to join all F with £ — F by
means of reduction. But it is not obvious at all how to describe all those F' in
a finite manner. This problem comes with the syntactical flexibility provided by
the structural congruence.

The idea of the proof is that all possible reductions may be performed on
standardized expressions. These are unfailed, a-standardized expressions in prenex
normal form and with separated constraints. We show how to reformulate con-
gruence and reduction for standardized expressions. The reformulated versions
are much simpler than the original ones with respect to the following aspects:

1. Quantifiers are not longer free to move into compositions.
2. Constraints are separated from abstractions, applications, and conditionals.
3. Reduction applies on the top-level of expressions and not below composition.

Standardization is performed by the following program: First, we circumvent fail-
ure. Next, we compute a-standardized prenex normal forms (PNF). In the follow-
ing step, the structural congruence on PNFs is decomposed into the congruence
over (ACI) and (Ex) and a directed relation corresponding to («), (Mob), (Equ),
and (Repl). For decomposition we apply Theorem 8. Its assumptions require that
the directed relation commutes with the remaining congruence. This statement
would fail when choosing another decomposition treating some of the axioms
(a), (Mob), (Equ), and (Repl) independently. We can get rid of the directed
relation, since it commutes with application of reduction axioms.

The remaining congruence is defined by (ACI) and (Ex). Reduction on PNFs
with respect to the remaining congruence amounts to multiset rewriting. Hence,
it 1s easy to describe and join all possible reductions on PNFs.

7.1 Congruences, Reductions and Other Relations

Let R be a binary relation on expressions. —p, is the least relation containing R
and closed under declaration and composition. = is the least relation containing
R and satisfying:
El :>R E2 El :>R E2
ay /B =x ay/E, if ¢ then £ else F'fi = if ¢ then £ else F fi

Fy =g Fy
if ¢ then £ else F1 fi = if ¢ then E else Iy fi

=g 1s the least congruence containing R.

All notations introduced above apply to axioms, since axioms may be identified
with binary relations. For example, the axiom (Refl) E = E corresponds to the
binary relation {(Z, F') | £ is an expression }. Hence, the following notations are
defined:

—Mob =a; :>Equ .
In analogy, sets of axioms can be considered as binary relations. This allows us

to define the relation — by ;):;){Appl,Then,Else} where (Bot) is omitted.

7.2 Failure

Proposition10. Failure is preserved by structural congruence and reduction.

Proof. The first statement can be proven using the following characterization
of failed expressions: An expression F is unfailed iff the constraint is satisfiable
which is obtained from E by replacing abstractions, applications, and condition-
als with T. We omit the details.

Proposition11. The p-calculus is uniformly confluent iff for all unfailed p-
expressions Ev, By and all Fy, Fy such that F\ & E1 = Ey = Iy either F} = Fy
holds or there exists G with F} — G + Fs.

Proof. Let E be afailed p-expression such that Fy « F — F5. Using Proposition
10, Fi and Fy are failed. Thus Fy — 1 < F5 holds.

7.3 Structure of the Proof

The structure of the proof is explained by Figure 5. This visualization is intended
as a map of the proof. The proof is a travel starting in the north with F; <

FE1 = F3 = Fy and leading to G in the south. The expressions F; and F are
assumed to be unfailed and admissible. At a first glance, the reader should not
be worried about undefined symbols. They will be explained on need.

F1 ; E1 = E2 :> F2
I ” {Je I
o] O % O % o]
7 — 7 7 — 7
P o« FE = Fk = F
% Il Il A\

1 — 1 1 1 1 — 1
Fl — El =2 Dl = D2 =2 E2 — F2
i 4 4 i

1 — 1 1 — 1
o~ F = E, F,

G

Fig. 5. Structure of the Proof

7.4 «-Standardization

An expression is a-standardized if none of its references is bound more than once
and if there is no bound reference having a free occurrence. We define £ = F
iff ' is obtained from E by replacing a bound reference in £ with a reference
not occurring in E.

Proposition12. For every E and every finite set of references Ref there exists
an a-standardized F with E =% F and B(F) N Ref = 0.

This can be shown by induction on the structure of expressions. The proof of
the next proposition uses the term rewriting techniques of [8].

Proposition13. If E is a-standardized and E (< o =) F then E (= o0 =,) F.

7.5 Computing Prenex Normal Forms (PNFs)

PNFs are extended expressions using a noncommutative composition operator
&. The definition of PNFs is mutual recursive with the definitions of two other
forms of extended expressions, molecules, and chemical solutions:

B:i=a:y/D | uv | if ¢ then D else Dy fi molecules
C:=T|B|C ACy chemical solutions
Di=¢&C | 3JuD PNFs

Extended expressions can be considered as expressions by just replacing & by A.
Hence, relations defined on expressions carry over. Furthermore, it makes sense
to overload the meta-variables £/ and F' in order to denote extended expressions,
whenever the distinction between & and A does not matter.

The rules in Figure 6 provide for computation of PNFs of a-standardized ex-
pressions. We use P and @ for quantifier prefixes Ju; ... 3Ju, with n > 0.

S(¢: ¢) S(uv, T &uv) S(a:g/‘z‘(,E—‘ll g)a:g/F)
S(E, F) S(E1, Py (61 & F1)) S(Ea, Pr (62 & F))
S(Elu E‘7 Elu F) S(El /\E‘Q7 P1P2 (¢2/\¢2&F1 /\FQ))

S(E\, Fi) S(Bs, F)
S(if ¢ then E else Es fi, T & if ¢ then F} else F fi)

Fig.6. Computation of Prenex Normal Forms

Proposition14. If S(E, F) then F' is a PNF. For all E there is (a not neces-
sarily unique) F with S(E, F). If E is a-standardized then E = F. Furthermore,
F is a-standardized, B(E) = B(F), and F(E) = F(F).

The proofs are straightforward by induction.

7.6 Congruence and Reduction for PNFs

The congruence =; is the least congruence on PNFs satisfying the axioms in
Figure 8. It 1s the appropriate counterpart of = when restricting to PNFs.

(ozl) capture free renaming of bound references

(AC[l) A restricted to chemical solutions is associative and commutative,

and satisfies C A T = C
(Ex1) D = FIuD

(Moby) 3z (6& C) = (Fud)&C if x ¢ F(C)
(Bqu) ¢=1v ifAEdey

(Repli) ¢ & C =, ¢ & Clu/x] fAES—sz=u

Fig.7. Axioms of =;

Propositionl15. If Ey and Es are a-standardized, 1 = Fa, S(E1, I1), and
S(Ez, Fz) then F1 =1 Fz.
The proof of this proposition is tricky and omitted due to lack of space.

The appropriate reduction on PNFs — is the least relation containing the axioms
in Figure 8 (but not any rule).

(Apply) Q(p& ay/EANau AF) = Q(¢p Aary /E N E[u/y] A F)
(Then:) Q (¢ &ifythen Erelse FfiAF) = Q(¢p A ELAF) fTAEd Y
(Elser) Q(p&ifypthenFrelse ExfiAF) = Q(d A ExAF) fTAEG— Y

Fig. 8. Reduction on PNFs

We define =3 = =(a¢r1,,Br,}- It has the nice property that it preserves a-
standardization. Furthermore, the following proposition can be proved along

the lines of [8].

Proposition16. The conditions Ey = F, S(F1, E2), and E1 a-standardized
imply Eo(=2 0 =0 =)F.

7.7 Decomposition of =,

We want to decompose =; into =» and a directed relation corresponding to the
set of axiom {«y, Moby, Fquy, Reply} by applying the Decomposition Theorem
8. The definition of the directed relation is based on the axioms in Figure 9.

For an arbitrary relation R on expressions we define :T>R to be the restriction of
=g to a-standardized expressions. We define the directed relation = by

5 T
== (:>oc1 U i{Mobg,Eun,Replg})

(Moby) PAzQ (¢ & C) =1 PQ (I ¢ & C) if x ¢ F(C)

(Repl) Q (¢ & C) =1 Q (¢ & Clu/x]) fAE¢ > z=uand
u is a name or u € F(C) or x € B(C)
(Bqus) Q (6 & C) =1 Q4 & C) ARG oo,

F(4) € F(o), and B(y) C B(4),

Fig.9. Axioms needed for Directed Relation

Propositionl7. (< o=3) C (=20 <) holds and = s confluent.

The proofs rely on the rewriting techniques of [8].
Corollary 18 (Decomposition). =; C (=" o =30 *&).

Proof. We apply the Decomposition Theorem 8 instantiated with ~==; , =&
==, and — == The application conditions hold due to Lemma 17.

Proposition19. (*<o =) C (—o=).

The proof again uses the rewriting techniques of [8].

7.8 The Final Case Distinction

Proposition20. Let Ey and E5 be a-standardized and admissible PNFs such
that F, — Ey = Ey =~ Fy . Then Fy = Fy or there is G with F, —
G + Fy.

Proof of Uniform Confluence. Applying Proposition 11, we have to join F}
and Fs assuming Fy < F; = F3 — F» for unfailed p-expressions F; and F5. We
can assume Fy Z Fy without loss of generality. In the sequel, all statements hold
for ¢ = 1 and ¢ = 2. Proposition 12 yields the existence of EZI with E; :s% EZI

Applying Proposition 13 we get EZI — FZ»I =, F; for some FZ»I. By Proposition 14,
there exists a-standardized PNFs (' with S(EZI», C;I) and EZI = D;I. Proposition

K3
7 —

15 ensures Dlll = DIZI and Proposition 16 implies D;I = K — FZ»” = FZ»I for
some E;I, FZ»”. EZI»I is a-standardized and F," =; E;. By the Decomposition of

=, (Corollary 18) we get Eil =" Ellu =, EIZH = E;I. Proposition 19 yields

foi

, —F = FZ»” for some FZ»”I. The final case distinction (Proposition 20) and

F# FZI” imply the existence of G with Fll” - G FZHI. All together, this
proves Fy — G « Fj. 0O

8

Conclusion

Relational calculi provide for appropriate models of higher-order, concurrent,
constraint programming. They cover important aspects of computation and have
a rich mathematical theory. We have presented powerful methods solving some
of the technical challenges when giving up syntactical position in favor of naming.

Acknowledgement The authors are grateful to Martin Muller, Tobias Muller
and Christian Schulte for many suggestions and help.

References

10.

11.

12.

13.

14.

Paul Barth, S. Nikhil Rishiyur, and Arvind. M-Structures: Extending a Parallel,
Non-strict, Functional Language with State. In J. Hughes, editor, Functional Pro-
gramming Languages and Computer Architecture - 5th ACM Conference, number
523 in LNCS, pages 538-568. Springer Verlag, August 1991.

N. Dershowitz and J.-P. Jouannaud. Rewrite Systems, volume B, chapter 6, pages
243-320. MIT Press, Cambridge, Massachusetts, 1990. Handbook of Theoretical
Computer Science.

M. Henz, M. Mehl, M. Miller, T. Muller, J. Niehren, R. Scheidhauer, C. Schulte,
G. Smolka, R. Treinen, and J. Wiirtz. The Oz Handbook. Research Report RR-
94-09, DFKI, 1994.

Gérard Huet. Confluent Reductions: Abstract Properties and Applications to Term
Rewriting Systems. Journal of the ACM, 27(4):797-821, October 1980.

John Launchbury. A Natural Semantics for Lazy Evaluation. In Proceedings of
20th POPL, pages 144-154. ACM, 1993.

Jean-Jaques Levy, Bent Thomsen, Lone Leth, and Alessandro Giacalone. Con-
currency and Functions: Evaluation and Reduction. In FATOS, pages 88-106.
ESPRIT, nov 1992. Esprit Basic Research Action 6454-CONFER.

Martin Miiller and Joachim Niehren. Higher-Order Meta Programming in Oz.
unpublished, May 1994.

Joachim Niehren and Gert Smolka. Functional Computation in a Calculus of
Relational Abstraction and Application. Research Report RR-94-04, DFKI, March
1994.

Martin Odersky. A Functional Theory of Local Names. In POPL, pages 48-59,
January 1994.

Andrew Pitts and lan Stark. On the Observable Properties of Higher Order Func-
tions that Dynamically Create Local Names. In Proceedings of the ACM SIGPLAN
Workshop on State in Programming Languages, pages 31-45, June 1993.
Christian Schulte and Gert Smolka . Encapsulated Search in Higher-Order Con-
current Constraint Programming. Research report, DFKI, April 1994. to appear.
Gert Smolka. A Calculus for Higher-Order Concurrent Constraint Programming
with Deep Guards. Research Report RR-94-03, DFKI, February 1994.

Gert Smolka. A Foundation for Concurrent Constraint Programming. In CCL,
1994. Invited Talk.

Gert Smolka, Martin Henz, and Jorg Wirtz. Object-Oriented Concurrent Con-
straint Programming in Oz. Research Report RR-93-16, DFKI, April 1993.

The papers of the programming systems lab at DFKI are available via anonymous ftp
from ttps-ftp.dfki.uni-sb.de and via www from tthttp://ps-www.dfki.uni-sb.de/.

This article was processed using the INTEX macro package with LLNCS style

