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Abstract:  This paper describes the application of CLP (constraint logic program-
ming) to several digital circuit design problems. It is shown that logic programming
together with efficient constraint propagation techniques is an adequate programming
environment for complex real world problems like high level synthesis, simulation,
code generation, and memory synthesis. Different types of constraints - Boolean,
integer, symbolic, structural, and type binding ones - are used to express relations
between the components of a digital circuit and efficient propagation is achieved by
the coroutining mechanism. To deal with the increasing complexity of digital circuits
we use HDL’s (hardware description languages) to represent structure and behaviour
of circuits.



I Issues

This paper describes the successful use of logic programming extended by constraints to
solve complex real world problems in the area of digital circuit design: high level synthe-
sis, simulation, code generation, and memory synthesis. Instead of other systems in this
area ours are able to work on a high level of abstraction and to deal with hardware descrip-
tion languages (HDLs).

II Results

It has been shown that logic programming extended by constraints is an adequate mecha-
nism to solve problems in the area of digital circuit design. Working systems for synthesis,
simulation, test, code generation, and memory synthesis have been implemented in
ECLIPSE [5]. Boolean, linear, structural, and type binding constraints are used to restrict
the design space. So unneccessary backtracking as performed in PROLOG could be
avoided. Using the combination of logic computation and constraints leads to new con-
cepts to solve these kinds of problems. Some examples of effective constraints are given.
Results are considered in the context of runtime, length of code, and design space restric-
tion.

III Significance and Relevance to the Conference

An important aspect for developing a new programming paradigm is to demonstrate its
advantages and disadvantages. The only possibility to do this is by studying applications of
the paradigm. Preferred application areas for the new style have to be found and tested to
close the gap between the theoretical framework and potential applications.

So this paper describes practical applications of combining computational logics and con-
straints. Several types of constraints - Boolean, linear, structural and type binding con-
straints - are used to develop working systems for complex real world problems in the area
of digital circuit design. It is shown that the combination of logic programming and con-
straints gets practical relevance even for large software products.



D
R

A
F

T

1 Introduction

1.1 Motivation

Starting with a specification of a circuit to be designed, the task of VLSI design is to create
a set of documents that can be given to a manufacturing site to produce a chip that will real-
ize the initial specification. Due to complexity, the design process is divided into a sequence
of subtasks on different levels of abstraction. Solving these subtaks is not feasible without
CAD tools. CAD for electronic circuits (ECAD) covers a wide range of applications like
synthesis, simulation, verification, test pattern generation, microcode generation, place-
ment, routing, etc. All of these application domains are very complex: The inherent com-
plexity of the application domains which often contain NP-hard problems (e.g. scheduling
with resource constraints) and the large number of design objects and possible design deci-
sions result in a huge problem space.

In the traditional approach to VLSI design complexity consisted in separating related sub-
problems and solving them sequentially. Solving a set of interdependent tasks requires accu-
rate handling of constraints, because each (partial) solution of one task constraints the set of
solutions for dependent tasks. But due to the lack of support of constraint handling in most
programming languages, a lot of constraints are just ignored or handling of constraints is
hidden in complex algorithms and data structures.

As ECAD software must also adapted continuously to the ongoing progress in manufactur-
ing technology, writing and maintaining ECAD software is difficult and costly. This is a
problem even for larger companies (e.g. Mentor) and of course this is even more true in the
field of research, where the realisation of new ideas is delayed due cumbersome implemen-
tation.

We are thus following the constraint logic programming approach to VLSI design. Program-
ming in PROLOG can be done on a high level of abstraction. Rapid prototyping is easy and
the resulting programs are pretty short. PROLOG shortens the development time of new
software and also simplifies software maintenance. Moreover, the ability to use clauses bidi-
rectionally is especially useful in the area of VLSI design. The same is true for the built-in
backtracking mechanism, because solving complex problems usually involves some kind of
search. But due to the large search space pure backtracking is not sufficient. Search has to
be guided by constraints. This directly leads to constraint logic programming (CLP).

We use CLP to restrict the domain of variables denoting the components of a technical sys-
tem instead of guessing their values. This is done by delaying clauses until necessary pre-
conditions (e.g. the instantiation of some variables) are given. Therefore the search space is
restricted more and more until it is small enough to be explored by simple search.

For these reasons we decided to develop ECAD software (synthesis, simulation, and code
generation), commonly implemented by imperative languages, and a new tool in this area,
memory synthesis with CLP languages. We show that, in opposite to pure logic program-
ming, a significant amount of backtracking can be avoided using CLP.

1.2 Organisation of the Paper

In the following section we describe four different applications. We start with high-level
synthesis which enables the user to generate a structure of interconnected circuit compo-
nents automatically. We continue with the description of a simulator, based on a hardware
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description language. Afterwards, a retargetable code generator is described. With this tool
it is possible to generate code, like a compiler, for a previously generated register transfer
structure. In the last section we describe a memory synthesis tool, which configures a mem-
ory hierarchy optimized for a given application specific processor. Each tool description is
finished by results to point out advantages of the application of constraint logic program-
ming. At the end of the paper some conclusions are given.

1.3 Related Work

Several approaches to digital circuit design using logic programming have been presented
[28], [11], [9], [4], [25], [26], [8], most of them concentrating on the gate level or even lower
levels of abstraction. Only a few contributions consider higher levels of abstraction in the
context of logic programming [19], [23], [13]. Especially the work of Helmut Simonis [27]
considers CLP as a tool for digital circuit design. Until now, most of the approaches have
been applied only for small examples and not for real life problems. Filkorn [31] uses Prolog
and boolean unification in a large industrial circuit design application: verification of
sequential circuits. Important parts are implemented in C because of restrictions of the used
Prolog system, which are not all confirmed by us. The work described here tries to investi-
gate usefulness and efficiency of CLP for very large ECAD software projects.

2 Applications

2.1 High-Level Synthesis

One of the first steps in VLSI design is to describe the system to be designed by a behav-
ioural specification on the algorithmic level, which is usually a program in an imperative
hardware description language. The task of high-level synthesis is to find a structure of
interconnected components on register-transfer level which realizes the behaviour of the
input description. It creates a description of the data-path and a specification of a controller.
High-level synthesis can be decomposed into a number of distinct but not independent sub-
tasks, i.e. scheduling, allocation and binding. Solving a set of interdependent tasks requires
accurate handling of constraints, because each (partial) solution of one task constraints the
set of solutions for dependent tasks.

Related Research.Due to the complexity of the overall transformation, most high-level
synthesis systems perform the subtasks of high-level synthesis (more or less) in sequential
order, often by utilizing some heuristics [17]. In general, the resulting designs are thus sub-
optimal. A different, analytical approach to high-level-synthesis is integer programming:
The high-level synthesis problem is mapped to a set of variables denoting design decisions
whereas design constraints are denoted by linear (in-)equations. In [12], an integer program-
ming approach to high-level-synthesis is presented which subsumes the ideas described in
[6], [16] and [24].

While traditional synthesis systems fail to deal with constraints accurately, the drawback of
the integer programming approach is that the domain of high-level synthesis must be
mapped to a very restricted mathematical model. The formulation of the model is cumber-
some even for simple high-level synthesis models and it is probably impossible to represent
all aspects of synthesis by linear equations. The resulting models get very complex for
enhanced synthesis models which causes serious run-time problems.
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We adopted the basic idea of handling the synthesis problem as a constraint satisfaction
problem and focus on solving it by constrained branch-and-bound search.

Synthesis of Basic Blocks.A fundamental part of data-path synthesis is the synthesis for
basic blocks. Abasic block is a sequence of assignment statements in the input specification.
A basic block can be represented by a directed acyclic graph in which nodes represent oper-
ations (e.g. +, *, shift) and edges the data-flow between these operations. This data-flow
graph also reveals a partial order between operations due to data-dependencies: If there is a
path from one node to another, the operation of the first node has to be finished before the
operation of the second node may start.

Scheduling of operations, i.e. assigning them to a sequence of control-steps, is one subtask
of high-level synthesis. Scheduling is a very common problem which can easily be mapped
to CLP by using finite domains [8]: The start time CSi (control step) of an operationi is rep-
resented by a domain variable CSi::1..Cmax1 and precedence between operations is
declared by constraints CS1+CT1 #<= CS22, where CT1 is the number of control steps that
are needed to perform the first operation (computation time). Resource constraints are intro-
duced by restricting the number of functional units, e.g. there may be only one adder avail-
able. This can be represented by a disjunctive predicate stating that for two operations of the
same type, either CS1+CT1 #<= CS2 or CS2+CT2 #<= CS1 must hold. Assuming that the
delay is 1 for all operations, the atmost/33 predicate [5] can be used to impose resource con-
straints. If there are N functional units of type T, a list L of all control step variables belong-
ing to operations of the same type is constructed and atmost(N,L,C) for C=1..Cmax is
called. This idea can be extended to the more general case of realistic delays and libraries.

However, scheduling is only one subproblem in high-level synthesis. Allocation is another.
While the number of resources and the duration time of the tasks to be scheduled are known
a priori in common scheduling problems, this is not true for high-level synthesis. Here,
resources, i.e. functional units, are described by a library. Each functional unit type is
described by a set of attributes, e.g. the operations that an instance of this functional unit
type may perform, the execution time for every operations, and its latency if it is a pipelined
unit. It should be noted that there is no 1-1 mapping between the set of operations and the
set of functional unit types. There may be several types of adders to implement an add oper-
ation and ALUs can execute different operations. The task of allocation is to allocate a min-
imal set of functional units sufficient to perform all operations in the data-flow graph.

The goal of scheduling is to minimize the number of control steps, the goal of allocation is
to minimize the total area of all instanciated functional units. Hence, both tasks are interde-
pendent and there is a trade-off between both goals. We use a set of constraints to propagate
design decisions made in one task to the other task during a branch-and-bound search to
solve both tasks. The search is guarded by a cost term, which is the weighted sum of the
number of control steps and the total area of all instanciated functional units. In the follow-
ing, we focus on the scheduling task.

1. Var :: {1..Cmax} denotes the constraintVar∈{1..Cmax}.
2. Term1#rel Term2 introduces the constraintTerm1 rel Term2, whererel is <, <=, =, etc.
3. atmost(N,L,Val) denotes the constraint that no more thanN values in listL may be equal

to Val.
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Propagation of Scheduling Decisions to Allocation.For each operationi in the data-flow,
we declare three domain variables, CSi, FTi and CTi: Again, CSi::1..Cmax denotes the con-
trol step in which operationi is started. FTi is an index to the set of all functional unit types
that can execute operationi and is used to denote the binding of the operation to a functional
unit type (type-binding). When searching the library for candidates that may be used to
implement an operation, a list CTList of all corresponding computation times of these func-
tional units is also constructed. This list is then used to constrain the computation time of
the operation and to relate it to the type-binding byelement(FT,CTList,CT)1.

As described above, precedence constraints due to data-dependencies between operations
are now introduced, e.g. CS1+CT1 #<= CS2. But CT1 now is a domain variable which is
also directly related to the operations type-binding index FT1. Thus, if the domain of CT1
is reduced due to precedence constraints in scheduling, this is also propagated to allocation
and a slow functional unit may be discarded.

Because there is no fixed number of functional units for any type, it is impossible to impose
a priori resource constraints. Nevertheless, if there are only two adders allocated, no more
than two additions can be executed at the same time, unless an additional one is allocated.
This is what we do. Of course, the allocation of an additional functional unit increases the
cost of the current solution in the branch-and-bound search. The increased costs have to be
propagated to the cost term guarding the branch-and-bound search.

For all operations, all functional unit types that may be used to execute the corresponding
operation, and for all control steps we declare a binary domain variable which reflects the
usage of a functional unit type in a single control step. E.g., if the number of control steps
Cmax is 4 and there are two candidate types for the first operation with computation time of
2 and 1, respectively, we impose the constraints:

For the index I1, we call I1 #= (FT1*Cmax-Cmax+CS1), whereas FT is the type-binding,
and CS1 the control step of the first operation. The 0/1 pattern in these constrains are used
to model the computation times of the functional unit types. As the first unit type needs two
control steps to perform the operation, O1F1U2 is 1 iff the operation is bound to this type
(FT1=1) either in control step 1 or 2 (CS1=1 or CS1=2).

For each functional unit type and each control step, we also create a weighted sum of all
usages for this type. Finally, there is also one domain variable for each functional unit type
denoting the total number of used units of this type. This variable is constraint to be greater
than or equal to the according sums of all control steps. The totals for all functional unit
types, weighted by the type’s area, contribute to the cost term guarding the branch and
bound search.

Once a solution is found, the system searches for another one with reduced costs. Schedul-
ing decisions are propagated to the cost term. Thus, the search space is pruned by abandon-
ing any partial solution with increased costs. As the number of different operation types is
usually small with respect to the number of operations (e.g. the fifth order wave filter [29]

1. element(I,L,V) denotes the constraint thatV is theI’th element of ListL [5].

element(I1,[1,0,0,0, 0,0,0,0],O1F1U1),
element(I1,[1,1,0,0, 0,0,0,0],O1F1U2),
element(I1,[0,1,1,0, 0,0,0,0],O1F1U3),
element(I1,[0,0,1,0, 0,0,0,0],O1F1U4),

element(I1,[0,0,0,0, 1,0,0,0],O1F2U1),
element(I1,[0,0,0,0, 0,1,0,0],O1F2U2),
element(I1,[0,0,0,0, 0,0,1,0],O1F2U3),
element(I1,[0,0,0,0, 0,0,0,1],O1F2U4).
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contains 34 operations, but only two different operation types: Addition and multiplication)
and only a few functional units are instanciated at all, pruning may happen just after a few
scheduling decisions.

Results. To test the applicability of constraint logic programming in the domain of high-
level-synthesis, we first implemented an experimental program for a simplified scheduling
problem with resource constraints (unit delay, 1-1 mapping between operation types and the
types of functional units) by using the ECLIPSE system. The implemented program consists
of less than 200 lines of source code, whereas 2/3 of the program text handles input and out-
put only; thus the code for the scheduling itself is really short. The program was successfully
applied to the fifth order wave filter [29].

Currently, we are developing a more enhanced system which does scheduling and allocation
simultaneously. The scheduling part, as described above is already implemented. Schedul-
ing alone can be done optimally, but combined scheduling and allocation still sometimes
causes high runtimes. This is, because the allocation is deduced only indirectly from sched-
uling. A subsystem imposing constraints on allocation directly is under development.

Our first experiences in application of CLP to high-level synthesis support the claims of this
new programming paradigm with respect to software technology (cf. Section 1.1). But the
most important aspect of CLP is that each design decision is immediately propagated by
reducing the domains of all related domain variables. In contrast to traditional approaches
to high-level synthesis, the CLP paradigm also supports propagation of design decisions
between distinct subproblems such as scheduling and allocation. Finally, it is easy to allow
user interaction or to include a priori design decisions made by the user.

2.2 Simulation

Using ECLIPSE, an event driven simulator for a hardware description language like VHDL
[7] or MIMOLA (machineindependentmicroprogramminglanguage) [2], [15] has been
implemented. The simulator is able to simulate a processor together with a given program
and is based on three levels of abstraction: the built-in operators, an interpreter for the
behaviour of single components and an event driven simulator for circuits together with
microcode. Especially for the implementation of the operators, we made extensive use of
the coroutining concept of the ECLIPSE language. Due to the lack of space we do not con-
sider the interpretation level and the event driven simulation as described in [3].

For the interpretation of a HDL an implementation of its built-in operators is necessary,
which range from logic primitives to complex arithmetic operators. These are represented
as Prolog predicates, which mainly have to fulfil the following demands:

a) The operators must work bidirectionally, to be used simulating a circuit from the inputs
to the outputs as well as vice versa, i.e. for backward simulation.

b) They should work deterministically, i.e. subsequent backtracking steps must not pro-
duce the same solution. This is especially important for the backward simulation, as the
mapping of an operator is not necessarily definitely reversible. Certain backtracking
alternatives have to be pruned to avoid duplicate solutions.

c) The computation must be - at least on operator level - data driven, i.e. the application of
an operator to unbound variables is propagated symbolically as a delayed goal, until the
instantiation of the variables is absolutely unavoidable. By this, the number of back-
tracking steps is reduced.
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The third point is achieved by using the coroutining mechanism of the ECLIPSE language,
which allows the programmer to specify conditions, under which the execution of a goal
shall be delayed, depending on the bindings of its parameters. Whenever a variable occur-
ring in one of these is bound, either to a value or another variable, the goal will be woken,
and the delay conditions are checked again.

Nevertheless, at the end of a simulation the set of all delayed constraints must be consistent,
i.e. there should be a constraint solver which finds contradictions and - if possible - solutions
for variable bindings. It would be sufficient to consider a minimal complete set of operators,
but for efficiency we used a set containing AND, OR, XOR and NOT. The Prolog code for
those operators is now divided into delay clauses and program clauses. To get an impression
of the effectiveness of Boolean constraints, we consider a simple or/3 clause (fig. 1).

The delay clauses cover the case, when the two input parameters are distinct unbound vari-
ables, and the output parameter is either unbound or 1. In these cases it is impossible to draw
any conclusion, so the call to the predicate is delayed. The program clauses use the commu-
tativity of the logical OR: the first two of them deal with the case, when one of the inputs is
bound, and callor1 with this one in the first place. For the third clause there are - due to the
delay clauses - only two possibilities left: either the output is 0, which forces the inputs to
take the same value, or the two inputs are identical variables, to which the output will be
bound, too. The auxiliary predicateor1 expects its first input to be instantiated. If it is bound
to 1 the result must be 1 either. If it is 0 the output is identical to the second input.

The more complex operators are now based on these four logical primitives (AND, OR,
XOR and NOT) and about 50 different operators have been implemented. Of course the set
of operators is not restricted to single bit operations. For each of them there is also a version
for bit strings which are represented as lists. On top of these there are built-in arithmetic
operators like addition, multiplication and string manipulation operators like shift and con-
catenate. Supposed, a half adder (consisting of an and/3 and a xor/3 gate) has already been
defined, we consider increment/2 as an example for a more complex operator (fig. 2).

E.g. the goal incr([A, B], C) yields the following set of constraints:

{C = [Y, Y1], not(B,Y1), and(A, B, _Carry), xor(A, B, Y) }

Such operators can be used bidirectionally, symbolically and deterministically. If necessary,
remaining variables can be bound by a labelling procedure. The event driven simulator men-
tioned above does not instantiate remaining variables but generates a set of constraints
instead of making random guesses.

delay or(X, Y, Z) if var(X), var(Y), var(Z), X \== Y.
delay or(X, Y ,Z) if var(X), var(Y), Z == 1, X \== Y.

or(X, Y, Z) :- nonvar(Y), !,or1(Y, X, Z).
or(X, Y, Z):- nonvar(X), !, or1(X, Y, Z).
or (X, X, X).

or1(1, _, 1).
or1(0, X, X).

Fig. 1.or/3 implemented as a boolean constraint
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structures described by hardware description languages. Table 1 gives informations about
some example circuits: simplecpu [3], demo [2], prips [1] and mano [14]. The number of
RTL components and the width of the microinstruction controller are given. The results
shown here indicate that the tools can be applied to realistic structures. All times are meas-
ured on a SPARC 10 workstation and are achieved by simulating a simple loop. Note that

every event means the simulation of a complete register transfer level component. The
implementation of the whole simulator in ECLIPSE consists of 2700 lines of code whereas
a Pascal implementation has about four times as many. Most of the ECLIPSE implementa-
tion can be used bidirectionally and symbolically which is very important for code and test
generation.

2.3 Retargetable Code Generation

In this section we want to give an example for the application of structural constraints which
we understand as constraints forcing variables to get bound to specific structures, e.g. trees
or lists. We use structural constraints e.g. to simplify some problems in a tool called retarg-
etable code generator. A retargetable code generator is a tool for mapping algorithms to pre-
defined programmable structures by generating the required binary code. Fig. 3 gives an
overview of the retargetable code generation process. We start with a programmable micro-
processor, described by a computer hardware description language. This description may be
generated by a synthesis tool as described above. The hardware description of a microproc-
essor serves as input of a retargetable compiler which generates binary code for a given pro-
gram. Such a retargetable compiler is necessary since typical design processes require
several iterations resulting in slightly changed architectures. Instead of writing target-spe-
cific compilers, we propose using target-independent compilers to allow the user to imple-
ment a procedural behaviour on a programmable register transfer structure without
changing the compiler.

incr (In, Out) :- incr(In, Out, _Carry).

incr ([X], [Y], X) :- !, not(X, Y).

incr ([X | RestX], [Y | RestY ], Cout) :-
incr(RestX, RestY , Cin),
halfadd(X, Cin, Y, Cout).

Fig. 2.Example of an increment for a bit string, e.g. incr([0,0,0,0], [0,0,0,1]) is true.

circuit RTL modules instruction width events CPU sec events/sec

simplecpu 10 20 149 0.83 179.5
demo 16 84 1394 25.05 55.6
prips 50 83 1003 21.99 45.6
mano 21 50 478 4.3 111.1

Table 1: Example Circuits
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We describe a subtask of the circuit analysis (see Fig. 3, shaded box) phase. The capabilities
of a microprocessor, i.e. the instructions which can be performed by a structure, can be
extracted by a preceding circuit analysis phase. A retargetable code generator typically has
to generate conditional jumps for a given programmable hardware structure, that is to trans-
late a conditional jump (2 way jump) into a control word, i.e. a bit string that forces the hard-
ware to perform a conditional jump as follows:

IF condition THEN increment program counter ELSE jump to label;

Figure 4 shows a part of a typical programmable microcoded controller of a processor. The

controller consists of a program counter, an instruction memory, an incrementer and a mul-
tiplexer. The next state of the program counter is selected by the multiplexer control signals.
The controller given above allows 4 way jumps. The behaviour of the multiplexer is given
by the hardware description. At the beginning of the compilation phase, we do not know
how the multiplexer is specified, because a retargetable code generator is target independent
. A multiplexer can be specified by an IF or CASE construct as shown by the following
equivalent statements:

Fig. 3.  Retargetable Code Generation

Fig. 4.A part of a typical programmable microcoded controller
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a) IF Condition THEN S1 ELSE S0;
b) CASE Condition OF 0: S0; OF 1: S1;
Furthermore, case statements can have different numbers of branches. Starting with a circuit
given as a hardware description a tree based Prolog circuit representation is generated by a
frontend compiler. Every module consists of a list of connections, a list of storing cells and
abehaviour tree. A behaviour tree is shown in figure 5 representing a part of the multiplexer
shown above. Such a tree is easily represented by a Prolog structure. A non-empty tree is

represented as a tupel: a term (called the root element of the tree) and a list of sons of the
term (called subtrees). Figure 5 shows IF constructs nested in a CASE construct. The value
loaded into the program counter depends on the condition if the multiplexer control input is
4 or 5. Consider the following examples:

a) control = 4 and condition = 1 => next state of the program counter is label 1
b) control = 4 and condition = 0 => next state of the program counter is PC+
c) control = 5 and condition = 1 => next state of the program counter is PC+
d) control = 5 and condition = 0 => next state of the program counter is label 1
Otherwise an unconditional jump (label 1 - 3) or an unconditional increment of the program
counter (PC+) is performed (not shown in Fig. 5).

Figure 4 shows only one possible realization of a controller and figure 5 depicts only one
possible realization of a multiplexer, but a target independent code generator has to consider
different specifications of the same behaviour. We describe different alternatives by struc-
tural constraints. This will be shown by a simple example.

To compile a conditional jump we have to search for a multiplexer starting at the program
counter and backwards through the circuit. This search can be accelerated significantly if
unnecessary backtracking is avoided. Using coroutining we search for alternative specifica-
tions in parallel. Consider the multiplexer/2 clause shown in figure 6. The recursive search
is able to find a candidate multiplexer construct with root termif or case and a list of sons
of different lengths. The three multiplexer/2 facts given above show simplified alternatives

Fig. 5.Behaviour tree of a typical multiplexer

control of 0 of 1 of 2 of 3 of 4 of 5

Output NextPC

case

condition THEN ELSE

PC+ label 1

condition THEN ELSE

label 1 PC+

IF IF............ ...
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the first two facts can be used to realize 2 way jumps.

Such alternative specifications of the same behaviour are considered by transformation
rules. Transformation rules can be applied to replace certain high-level language elements
by equivalent statements. E.g. a statementx := y+1 can be replaced byx := increment(y).
Even loops can be transformed (fig. 7). Structural constraints are used to implement such
transformation rules.

We want to point out the advantage of structural constraints applied to this problem. At the
beginning of the process of retargetable code generation we do not know how the hardware
is specified by the user or a synthesis tool. So we have to take different alternative hardware
specifications of the same behaviour into account. This is easily handled by structural con-
straints (implemented by the use of coroutining), because the behaviour of a given hardware
component is represented as a tree and transformation rules, also representing alternative
structures, are represented as alternative clauses (facts). Therefore it is better to generate
constraints which ‘guard’ that a required behaviour is taken into account instead of search-
ing for different alternatives by try and error.

Results. The results shown in table 2 are measured for the circuit analysis phase and the cir-
cuits (processors) mentioned in table 1. In the circuit analysis phase the given hardware is
analysed and the microoperations which can be executed by the hardware are extracted. A
conditional jump as described above is an example for such microoperations which are
stored as facts. The implementation of the circuit analysis phase in ECLIPSE consists of
2200 lines of code whereas a comparable C++ implementation [30] has about 10000 lines
of code. The results show that for larger circuits a lot of facts are generated by the circuit
analyser.

delay multiplexer(Operator, OperatorSons) if var(Operator), var(OperatorSons).

multiplexer(if, [Condition, Expression, then, ThenBranch, else, ElseBranch]).
multiplexer(case, [Control, Expression, of, S0, of, S1]).
multiplexer(case, [Control, Expression, of, S0, of, S1, of, S3, of, S4]).

Fig. 6.Structural constraints

<label>: REPEAT <block> UNTIL <condition>

(* can be transformed to: *)

<label>: <block>
ProgramCounter := IF <condition>

THEN incr(ProgramCounter)
ELSE <label>

Fig. 7.Loop transformation rule
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In the last years execution speed of processors increased much more than memory access
speed leading to a gap between processor and memory speed. VLSI designers try to reduce
this gap by developing memory hierarchies including small memory modules with short
access time (e.g. cache) and larger slower ones (e.g. main memory and secondary memo-
ries). The increasing complexity of the memory hierarchy and the introduction of multiproc-
essor systems with shared data makes memory synthesis more and more complex. Therefore
tool support is necessary.

Related Research. Up to now no tool support exists to design a memory hierarchy. The
cache was the most examined memory module in the past: A good overview of all its design
choices is given in [21]. Some general analysis are done in how to improve access perform-
ance [10] by varying some of the cache parameters. Concepts for main memory like inter-
leaving are analyzed in [20]. Due to the needs of multiprocessor systems [22] gives an
overview of mechanisms for data consistency. The influence of the memory access behav-
iour of programs on the memory design is rarely examined. [18] analyses address sequences
to calculate an upper bound for necessary memory size. None of them describes methods
how to design memory hierarchies optimized for a special application domain running on a
special kind of computer system.

The Memory Synthesis Problem. Memory synthesis configures a memory hierarchy for
some kinds of access sequences by optimizing the time to read/write a date from/into the
memory, the required chip area and the cost. The features of these access sequences are
highly influenced by the computer architecture the memory is designed for and the applica-
tion programs. To minimize access time data should mostly be found in the fastest memory
module, the cache.

A memory hierarchy can be described as a highlygeneric modelexpressing all configura-
tion alternatives as parameterswhich has to be adjusted during memory synthesis. Table 3
shows some of the parameters of a cache with different domains.

circuit generated facts CPU sec

simplecpu 26 0.56
demo 61 2.96
prips 415 77.03
mano 131 11.85

Table 2: Circuit Analysis Times

Parameters Meaning parameter domain

size size of an on-chip cache 1 - 256 K Bytes
line  size line size of an on-chip cache 1 - 256 Bytes

associativity number of lines that are accessed in parallel to
search for an address

1, 2, 4, 8, 32, full associative

replacement decides which of the parallel accessed lines is
replaced when a new data is brought into the cache

random, LRU, FIFO, ...

write how to update the main memory write through, copy back

Table 3: Some of the Cache Parameters in the generic memory hierarchy model
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Memory Synthesis with Constraint Logic Programming. In memory synthesis only few
structural decisions have to be done (e.g. availability of a cache, unified cache or seperarted
data and instruction cache). This leads to a moderate number of parameters (less than 200).
The huge design space is caused by the combination of the parameters with partly large
domains. These domains are restricted by hundreds of relations between the parameters and
the features of the architecture and the application domain. Therefore the main task in mem-
ory synthesis is to compute all these relations. They are adequately expressed and computed
using CLP. Figure 8 shows two relations restricting the design space for caches expressed
as constraints (in ECLIPSE notation). The first onerestrict_associativity/4 handles an inte-
ger constraint between the associativity and some of the other cache parameters: For data
and unified caches the number of lines and/or the associativity must be high enough to avoid
high miss rates1, for instruction caches an associativity of 2 is enough. While it is unknown
if the cache is separated or not, this constraint is delayed instead of guessing and backtrack-
ing. The second one,make_powerof2/1 is used to restrict the size and the line size of a cache
to powers of two. This constraint is not delayed but the domain of the variable is restricted.2

Solving a problem like memory synthesis with constraints may cause two problems:

The first one is anunderconstrained design space, i.e. after evaluating all given constraints
the remaining design space is still too large for a simple search strategy. The remaining
parameters of the memory hierarchy must be adjusted by some heuristic strategy not guided
by synthesis knowledge. Nevertheless analysis knowledge is available: After adjusting the
parameters the memory hierarchy model together with a given address trace is put into a
simulator to check if the requirements are fulfilled. If not, the reasons are analysed and one
of a few redesign cycles is started with some additional redesign knowledge. After each iter-
ation the results are checked by simulation.

The evaluation by an external trace driven simulator and redesigning is of special impor-
tance for memory synthesis because the direct influence of the parameter adjustments on the
goals like access time is not completely clear3.

Due to the optimization criterion given by the user, the clausesoptimization/2 in Figure 8
describe two simple search strategies to adjust the parameters of a cache in the first design
cycle when no analysis knowledge is available from the simulator: To minimize the area of
the cache, its size and associativity is minimized by themin_max/2 predicate. To minimize
average access time the differences between size, line  size, and associativity and their mean
values is minimized by themin_max/2predicate.

The second problem is anoverconstrained design space, i.e. the set of constraints is incon-
sistent. For this reason the constraints are split into hard and soft ones. Hard ones must not
be inconsistent but soft ones may be relaxed if they lead to an inconsistency. In figure 8,
restrict_associativity/4is a hard andmake_powerof2/1 applied to size and line size of a
cache is a soft one.

1. A miss is an access to data not in the cache that must be fetched from main memory
2. dvar_domain/2, dom_intersection/3, andvar_update/2 are built-in predicates to manipu-

late domains of domain variables. The well knownlabeling/1 predicate uses the built-in
predicateindomain/1 to instantiate a list of variables.

3. E.g., on one hand in a larger cache more of the accessed data is available and has not to
be fetched from the slower main memory, on the other hand the larger the cache, the
larger the access time for each date.
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This leads to the concept of a memory synthesis tool roughly shown in figure 9. Relevant
informations about the architecture of the underlying computer system and the application
domain are used to predict the memory access behaviour. The memory synthesis tool con-
figures a suitable memory hierarchy by taking the given goals into account. The simulator
then checks the goals for a given address sequence of the application domain and the con-
figurated memory. If they are fulfilled the memory configuration is given to the user for fur-
ther work but if they are not fulfilled or if the set of constraints is inconsistent a redesign
cycle is started by adding or relaxing some of the soft constraints.

delay restrict_associativity (Content, _, _, _) if var(Content).
restrict_associativity (Content, Size, Linesize, Associativity) :-

Content\==instruction, % unified or data cache,
Size*Associativity#>=512*Linesize.

restrict_associativity (Content, _, _, Associativity) :-
Content==instruction, Associativity#<=2.  % instruction cache.

make_powerof2(X) :- X==1.
make_powerof2(X) :- nonvar(X), X #= 2*X2, make_powerof2(X2).
make_powerof2(X) :- var(X),

dvar_domain(X, Domx), powerof2_dom(Dom2),
dom_intersection(Domx, Dom2, NewDomx, _),
dvar_update(X, NewDomx).

powerof2_dom(Dom) :-
make_powerof2_list(L), % L=[1,2,4,8, ... , maximal size]
sorted_list_to_dom(L,Dom).

optimization ([Size,Linesize,Associativity,Replacement,...],Goal) :-
Goal == area,  % minimize area of caches
Objective #= Size + Associativity,
min_max (labeling([Size,Linesize,Associativity,Replacement,...]), [Objective]).

optimization ([Size, Linesize, Associativity, Replacement, ...], Goal) :-
Goal == accesstime,   % minimize access time
S#=Size-64*1024, B#=Linesize-64, A#=Associativity-8,
abs(S, S_abs), abs(B, B_abs), abs(A, A_abs),
Objective = S_avs + B_abs + 8*A_abs,
min_max (labeling([Size, Linesize, Associativity, Replacement, ...]), [Objective]).

Fig. 8.Constraints restricting the cache design space and a simple search strategy

Fig. 9.Rough concept of the memory synthesis tool

information about architecture

information about
application domain

synthesised memory model

address
sequence
analyser CLP

system

simulator

goals about access time, area, cost price
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Results. For the memory synthesis all constraints between the parameters of the caches are
implemented. Due to the parameter domains of the on-chip cache only (without any consist-
ency problems) the design space contains 0.5*1020 different designs. After evaluating the
constraints between the on-chip cache parameters itself (about 50) the number of possible
designs decreases to 107 and about 30 constraints are delayed, most of them because size
and line size of the caches are not enough restricted yet. Just these cache parameters are
highly dependent on the access behaviour of the application domain and the underlying
computer architecture. It can be expected that they will be strongly restricted after evaluat-
ing the according constraints not yet implemented. Assuming that the cache size and line
size is instantiated the design space decreases to 430 design possibilities. Not looking on the
number of possible values of the parameters but on their domain ranges (difference between
maximum and minimum of the domain of each parameter before and after evaluating the
constraints and instantiating cache size and line  size), we have a restriction to 0.1% of the
design space. The search through this very restricted design space is done by heuristic
search.

3 Conclusions

We presented applications of constraint logic programming to the area of CAD for VLSI.
By the PROLOG-like programming style, implementation can be done at a high level of
abstraction, resulting in short programs that can be easily maintained. This is important,
because ECAD software must be adopted to new technologies frequently. Using CLP to
express certain constraints, a significant amount of backtracking can be avoided. On the
other hand, software written in standard Prolog is slower, but with the new concept of con-
straint logic programming this disadvantage becomes smaller, because this technique leads
to a significant reduction of backtracking.
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