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Abstract. Reducibility defined by oracle strong nondeterministic machines
is studied. T'wo definitions of relativized strength are presented and separated.
The corresponding reduction classes of the sparse sets give two nonuniform
analogs of the class NP N coNP. An oracle-restricted positive relativization
of the probabilistic class ZPP is developed.

Resum. Estudiem reduibilitats definides per maquines indeterministes fortes
amb oracle. Proposem dues definicions de forga relativitzada i les separem.
Les classes de reduccié corresponents a conjunts esparsos proporcionen classes
no uniformes analogues a la classe NP N colN P. Desenvolupem amb aquestes
definicions una relativitzacié positiva de la classe ZPP.

1. Introduction

In the study of complexity classes defined by sequential models of computation,
several classes have been identified by considering bounded amounts of the main resources.
An important line of research has studied the advantages of having access to an “advice”
of feasible size that can help the computations. This approach defines the nonuniform
complexity classes, that can be related to some other models of computation.

Thus, Karp and Lipton (1980) show that the class P with advice, denoted as P/poly,
can also be defined by considering polynomial time deterministic machines that can query
sparse oracles. Pippenger (1979) shows that it coincides also with the class of sets that have
small (i.e. polynomial) size acepting circuits. Similarly, Yap (1983) and Schéning (1984)
study the class NP with advice, NP/poly, and show that it contains precisely the sets
accepted by nondeterministic machines relativized to sparse oracles. It also turns out that
such sets are the range of polynomial size circuits with many outputs (small generators).

* Part of this work was presented at Symposium on Mathematical Foundations of Computer Science,
Carlsbad, Czechoslovakia, 1988



The purpose of this work is to find similar results for the class NP N coNP with
advice. In particular, we study what kind of sequential machine yields this class when
relativized to sparse oracles, and characterize it in terms of boolean circuits.

Inspired by the work of Long (1982) on strong nondeterministic machines, we pro-
pose a model of strong generators, and study its relationship with (NP N coNP)/poly.
These generators, however, define instead the class (NP/poly) N (coN P/poly). As these
two classes seem not to be exactly equivalent, we engage in a deeper study of their differ-
ences and relationships.

We then focus on the two concepts of “strength” for nondeterministic oracle ma-
chines used in the literature: that which depends of the oracle set and that which is
“robust” against changes on the oracle set. References that use these definitions are, re-
spectively, Long (1982) and Book, Long, and Selman (1985). We obtain two forms of
reducibility, show that their zero degrees coincide, and then separate them in the class of
the recursive sets. We then consider their relativizations to sparse sets, and we see that,
due to an overlooked hypothesis, the very general theorem of Schéning (1984) can be ap-
plied only to one of these two reducibilities. (A complete restatement of this theorem can
be found in the preliminaries.) Thus a characterization of (NP N coNP)/poly in terms of
sparse oracles is obtained.

These characterizations allow us to discuss the possibility that the two nonuniform
versions of NP N coNP with advice are equal. Recall from Yap (1983) that if NP C
coN P/poly, then the polynomial time hierarchy collapses to its T3 level. We conclude
that if the two classes found are equal, we can prove a collapse to £; and so Yap’s result
1s not optimal.

Finally, since sets in ZPP can be considered as well tractable, we have studied
relativizations of this class, restricted in an analogous manner to a certain degree of ro-
bustness. The interest of the obtained class is justified by the fact shown here that the

class yields an oracle-restricted positive relativization of the equality P < ZPP.

2. Preliminaries

We assume that the reader is familiar with basic concepts of complexity theory, such
as the classes P, NP, PSPACE, and the polynomial time hierarchy, PH.

All our sets are defined over an alphabet ¥. Here ©" and =" mean the sets of
words of length exactly n and up to n, respectively. We denote with (.,.) any pairing
function easy to compute and invert.

Besides the standard Turing machines with final, accepting states, we consider also
machines having three kinds of computations: those that accept the input, those that reject
the input, and those that are “undefined” in the sense that they stop without answer. For
a machine M and an oracle set B, MZ(z) denotes the set of possible computations of M
with oracle B and input z, and L(M, B) the set of accepted inputs.
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We say that a set 4 is self-reducible if there is a polynomial time machine M such
that M only queries its oracle about strings shorter than its input and 4 = L(M, A).
Recall that SAT, the set of satisfiable boolean formulas, is known to be N P-complete and
self-reducible. We also make use of the concept of lowness, as defined in Schéning (1983).
For any n > 1, define the class of low sets at level n as

Ln={A€ NP :S,(4) C .}

Our notation for nonuniform classes follows IKarp and Lipton (1980). In particular,
all our complexity classes are of the form C/poly, for a complexity class C. We say that
a set A is in C/poly if there is a polynomial p, an “advice function” h: IN — £*, and an
“interpreter set” I in C such that for every n, |h(n)| < p(n), and for every z € <"

z € Aiff (z,h(]z|)) € 1

For any reasonable class C, ¥™ can be used instead of £<" in this definition.

Other notations are either adjacent to an appropriate reference, or are standard and
can be found in textbooks like Garey and Johnson (1979), Hopcroft and Ullman (1979),
or Balcdzar, Diaz, and Gabarré (1988).

Two kinds of known results about these classes will be used here: the connection
with classes relativized to sparse oracles and the equivalence with certain types of boolean
circuits.

Generalizing previous results, Schéning (1984) presents a result which allows to re-
late, in an almost “mechanical” way, nonuniform “advice” classes to sparse relativizations.
A somewhat informal argument, however, makes the result applicable only to complexity
classes defined by oracle-independent conditions on the machines, as being polynomially
clocked and the like. In order to apply this result to the machines we deal with here, an
implicit hypothesis has to be remarked. Thus, we reformulate here this result. The proof
is essentially the same, and wiil be omitted.

Let us start with some definitions. Let C be a relativizable complexity class; we
assume that for each set in C there is a “type C” machine to witness it.

We say that C is good if and only if for every oracle machine N of type C and
oracle machine M of type P (i.e. polynomial time clocked) with output, the machine that
simulates M and then simulates N under the empty oracle on the output of M is also of
type C.

We say that C' is oracle-resistant if and only if for every oracle machine N of type
C, the (non oracle) machine that on input (z,y) simulates N on input z using as oracle
the set encoded by y is also of type C.

Informally, “goodness” means that the class is “closed under composition with P
machines”, which allows to perform some preprocessing on the input without exceeding
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the computational power of the class; while “oracle-resistance” means that the fact that
a machine behaves as a type C' machine does not really depend of the oracle used, which
allows to “get rid of” the oracle remaining again within the class.

1. Theorem (Schoning 1984). Let C' be a good, oracle-resistant class such that type C
machines make queries polynomially bounded on the length of the input. Then

C(0)/poly = | J{C(S) : S sparse}

The proof is as in Schéning (1984). It can be seen that the inclusion left to right
only requires goodness, but that in the converse inclusion the additional property of oracle-
resistance is needed as well. In fact, we will present below a class to which the theorem
does not seem to apply, since it is good but not oracle-resistant.

The result is of course applicable to the classes in the polynomial time hierarchy,

and to PSPACE.

2. Proposition. P, NP, PSPACE, and all the classes in the polynomial time hierarchy are
good, oracle-resistant, and accepted by machines making polynomially bounded queries.

Finally, it should be noticed that nonuniform complexity classes frequently can be
characterized by very natural computational models. In particular, P/poly is the class of
sets accepted by polynomial size boolean circuits; see Pippenger (1979). By using circuits
with many outputs, Yap (1983) proposes to consider circuits as generators instead of as
acceptors, considering the sets that are the range of a family of polynomially bounded
circuits, and relates this class to NP/poly. Schéning (1984) completes the relationship
by establishing a characterization of NP/poly. In section 6 below we present a “strong”
version of these generators, and give a characterization in the framework of our discussion
about the classes (N P/poly) N (coN P/poly) and (NP N coNP)/poly.

3. Strong machines and robustly strong machines

In this section we present the strong nondeterministic machines, and two versions
of the oracle strong nondeterministic machines. Strong machines were introduced by Long
(1982), who studied extensively the strong nondeterministic Turing reducibility, based on
previous work by Adleman and Manders (1977). Robustly strong machines have been
used by Book, Long, and Selman (1985) to obtain positive relativizations of the equality

P £ NPNcoNP , and later by Long and Selman (1986) to obtain oracle-restricted positive
relativizations of the same equality, as discussed below. Hemachandra (1987) used another
notion (robustly complementary machines) to study essentially the same idea.

3. Definition. A (non oracle) nondeterministic Turing machine is strong if and only if for
every input z:

1. there is a defined computation in M(z), and
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2. there is an accepting computation in M(z) if and only if there is no rejecting
computation in M(z).
Besides their theoretical importance to define reducibilities, strong machines are

attractive since they are nondeterministic but not inconsistent: they do not give contra-
dictory answers.

The following fact is clear: by switching accepting and rejecting states on a strong
machine, a new strong machine is obtained which accepts the complement of the originally
accepted language. This allows to characterize the class of sets accepted by strong machines
in polynomial time.

4. Proposition (Long, 1982). A is accepted in polynomial time by a strong machine if and
onlyif A € NPNcoNP.

Consider now strong polynomial time nondeterministic machines which have access
to an oracle set. At least two interpretations of the word “strong” are possible; we present
both, and define their corresponding polynomial time reducibilities.

5. Definition. M is strong under oracle B if and only if for every input z:
1. there is a defined computation in M?Z(z), and
2. there is an accepting computation in MZ(z) if and only if there is no rejecting
computation in M3 (z).

The corresponding reducibility is denoted <5V,

6. Definition. A set A is SN-reducible to a set B (A< N B) if and only if A = L(M, B)
for a polynomial time machine M which is strong under B.

The notation of Long (1982) for this reducibility is <3V; other versions, more re-
stricted, are defined as well, like <7¥. Long shows that all of these reducibilities are
different among them and from S; and §¥ P and that the power of quqN is intermediate

between Sg and §¥P.
An equivalent definition of <5V that we will ocasionally use is given by the following:

7. Proposition. For any A and B, A<SNB iff A € NP(B) N coNP(B).

As mentioned, a second interpretation of the concept of strong nondeterministic or-
acle machine has been used in the literature; it requires the machine to be strong no matter
the oracle it uses. We call these machines “robustly strong”, and define the corresponding
reducibility.

8. Definition. M is robustly strong if and only if for every oracle A, M is strong under A.

9. Definition. A set A is RS-reducible to a set B (A<®SB) if and only if A = L(M, B)
for a polynomial time machine M which is robustly strong.

It is clear that S; implies <#5 and that <®S implies <5N. The following theorem
shows another basic relationship.
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10. Theorem. For any two sets A and B:
(i) AKSNB and BE NPNcoNP = A€ NPNcoNP.
(ii) AK®BSB and Be NPNcoNP = A€ NPNcoNP.
The proof for <5 can be found in Long (1982) and the other is similar. An
interesting consequence is that the zero degree of both reducibilities is exactly NPNcoNP.

These two reducibilities, however, do not coincide in general: our main result in
this section shows that <®° differs essentially from all the reducibilities of Long, above
NPNcoNP. We prove first that it differs from <5V, Intuitively, the difference is due to the
fact that plain strong machines may expect the adequate oracle and exploit its structure
in order to be strong, while robustly strong machines must maintain their “coherence” by
themselves, expecting no “a priori” particular property of the oracle.

11. Theorem. For every recursive set A € NP N coN P, there is a recursive set B such
that A<M B but A £%° B.

Proof. Let A be fixed. We construct B such that, for all words z,
r € A& Iy(lyl = |z| and (z,y,1) € B) & Vz(|z| = |z| = (z,2,0) € B) (1)

which guarantees that A<SY B, using the natural procedure.

We construct B so that A €25 B by diagonalization over all the machines that
could reduce A to B. At stage n, and using the initial segment B,_; constructed so far,
we search for the minimum word z that satisfies:

(1) it does not interfere with previous stages, and either
(2) the machine M, with oracle B,—1 and input z is not strong, or
(3) Mn(z) accepts and z € A, or
(4) M,(z) rejects and z € A.
When found, z is used to extend Bn—; to By, in a way that preserves condition (3).
(5) find a word y, |y| = |z, not queried by one computation found in (3) or (4), and
(6) add (z,y,1) to Bp—_1 if (4) holds, and (z,y,0) if (3) holds.

If case (2) appears then any word of length [z| can be selected for y. It is easy to
see that, by conditions (1) to (4), z witnesses that A £75 B via M,.

We prove now that the witness z must exist at each stage. Otherwise, if conditions
(2) to (4) are false for all z, M, is correctly RS-reducing A to B,_;. But, since B,_; is
finite, A must be in NP N coN P, which contradicts the hypothesis. |

We use a result from Long (1982) to show that <29 also differs from <3N,

12. Theorem. For every recursive set A € NP N coNP, there is a recursive set B such
that A<ESB but 4 £3N B.

BIBLIOTECA



Proof. Given A, Long shows that there is a B such that A<SB and A £V B. Since <F
implies <®5, the same B satisfles the statement of the theorem. |

All robustly strong machines that we can exhibit (and that really use its oracle)
can be trivially made deterministic. This raises the question of whether robustly strong
polynomial time reducibility differs from plain polynomial time reducibility, which has
been addressed in Book, Long, and Selman (1985) to investigate positive relativizations

of P NP NcoNP. The separation has been left there as an important open problem;
moreover, if two additional technical conditions are imposed (confluence and maturity),
then a positive relativization is obtained.

An important step forward has been obtained by Hemachandra (1987), who shows
—theorem 5.3— that the reduction class of any recursive set A under <5 is always
included in the class P(4 @ SAT). It follows that:

— if <BS equals S;, then P = NP NcoNP, and

— if <RS differs from _<_¥ anywhere in the recursive sets, then P # NP, since if
P = NP then P(A® SAT) = P(A) and therefore <% and <25 must coincide.

So, although robustly strong machines are not exactly a positive relativization of
anything, proving equality or inequality with deterministic machines would have important
consequences.

4. Nonuniform classes defined by strong machines

We characterize in this section the nonuniform classes corresponding to the reduction
class of the sparse sets, using the reducibilities defined in the previous section. We start
with the class corresponding to the robustly strong reducibility.

13. Theorem. {A:3S5(S sparse and A<RSS)} = (NP N coNP)/poly

Proof. 1t is enough to prove that this class satisfles the hypothesis required to apply the-
orem 1. For goodness, note that performing a deterministic computation phase (that can
alter the input) before running a robustly strong machine keeps it robustly strong. For
oracle resistance, note that a robustly strong machine that is given a finite oracle as part
of the input must be strong on that input, since it is strong on any oracle and input. m

However, when we want to characterize in a similar manner the class

{4 :35(S sparse and A<V )}

some problems arise. Indeed, it is not difficult to see that if there is an oracle B and an
input z under which a given machine M is not strong, then the machine that is given
as input a pair formed by z and an initial segment of B is not strong (in the non-oracle
sense). Thus, this class is not oracle-resistant and Schoning’s theorem does not apply.

Anyway, a characterization in the style of the advice classes (although not properly
an advice class) is obtained in the remaining of this section, preceded by a result that
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amounts, roughly speaking, to “factor out” sparse oracles from complementary machines:

14. Theorem.

{A :35(S sparse and A< N S)} = | J{NP(S) : S sparse } N |J{coNP(S) : S sparse }
Proof. Inclusion left to right is immediate from proposition 7. For the converse, form the
join of the two sparse oracles involved and design a machine that chooses nondetermin-
istically among the two machines involved, using for each one the corresponding part of

the oracle. This new machine is strong with this oracle, since one and only one of the two
machines can accept the input. n

The nonuniform-like class characterization is as follows:
15. Theorem. {A:3S(S sparse and A<SN S)} = (NP/poly) N (coN P/poly)
Proof. Follows from the previous result by two applications of theorem 1, since both NP
and coN P belong to the polynomial time hierarchy. 2

To end this section, we note the interesting (although not surprising) fact that tally
sets can be substituted for the sparse sets in all the characterizations given.

16. Proposition.
(i) A<SN S for some sparse S iff A<SNT for some tally 7.
(ii) A<BSS for some sparse S iff A<EST for some tally 7.

The proof follows standard techniques; see Hartmanis (1983).

5. Comparison of the two classes obtained

We study now some relationships between the classes obtained in the previous sec-
tion. More explicitely, we obtain some consequences of the following

17. Hypothesis for this section. (NP NcoNP)/poly = (NP/poly) N (coN P/poly).

In Yap (1983) it is shown that if NP C coNP/poly, then PH = ¥3. We show that
if the hypothesis holds, this result can be improved to a collapse to X,.

Some comments are in order before stating the new result. Note first that, in the
hypothesis, inclusion from left to right is trivial, and both classes are equal to N P/poly if
NP = coNP. So proving the hypothesis false is at least as hard as proving NP # coNP.

Let B a set in (NP NcoNP)/poly with an interpreter set I € NP N coNP. We can
then define the set of “good advices” for B:

GA(B) = {{(0",h) : Yz € 25"z € B & (z,h) € I)}

As a correct advice function exists, there is at least one word (0™, k) in GA(B) for
every n. This set can be shown to be in II;(B), and in some cases we can even drop the
oracle B.



18. Lemma. For any set B € (NP N coNP)/poly that is self-reducible, GA(B) € II;.

Proof. If I is the interpreter for B, the fact that a word (0™, h) is a good advice for B up
to length n can be expressed:

Yz € Z5%((z,h) € I & ¢ € B)

Let M be the deterministic, polynomial-time machine that self-reduces B. We then
can check z € B by running M and answering the oracle queries with the help of &, so
inductively if A is “good” with the (shorter) queried strings, it will be with z. Thus this
predicate can be written as:

Vz € 5% ((z,h) € I & 2 € L(M,{y : (y,h) € I})

This is a II;(I) predicate for GA(B). Since II;(NP N coNP) = II; (see Balcazar,
Diaz and Gabarré (1988) for a proof), we have GA(B) € II;. =

Another technical result shows that sets in these conditions are low.

19. Lemma. If B € NP and GA(B) € coNP, then B € L,.

Proof. Let A be any set in Ly(B). We will prove A € £3. We know that for a suitable
polynomial-time machine M, it holds for all

z € A& Jy1 Yy2 (2,y1,92) € L(M, B)
But, as there are good advices at every length, this is equivalent to
z € A« 3h (0 h) € GA(B) A 3y1 V2 (z,y1,v2, k) € L(M', I))

where M’ behaves as M substituting all queries to B about strings z by queries to I about
(z,h). Now we have a predicate for A of the form 3((a) A (b)), where (a) is in coNP by
lemma 18 and (b) is in X2 since I € NP N coNP. So, the whole predicate is in X5. el

A similar result was obtained by Kamper (1987}, who proved that all sets in NP and
(NP NcoN P)/poly (but not necessarily self-reducible) are in fact in L3. Related material
is stated (without a proof) in Abadi, Feigenbaum, and Kilian (1987).

Now it is easy to show the announced improvement of Yap’s collapse.

20. Theorem. If hypothesis 17 is true and NP C coNP/poly, then PH = %,.

Proof. 1t will suffice to show that SAT € L, since L2(SAT) = Z3;. Assume that SAT is
in coNP/poly. Then it is in (N P/poly) N (coN P/poly) and so in (NP N coN P)/poly by
hypothesis 17, but as it is self-reducible, it is in Lo by the previous lemmas. H

It is interesting to observe that, for the proof, a statement weaker than hypothesis 17
is enough, namely that (VP/poly)N{coN P/poly) and (NP NcoN P)/poly coincide in N P.
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The proof of theorem 20 is easily seen to relativize. Kadin (1988) asks whether Yap’s
result is optimal, that is, if there is any relativized world where the collapse of PH cannot
be improved any more. It follows from theorem 20 that a proof of optimality implies a
separation of our two nonuniform counterparts of NP NcoN P, and moreover the existence
of a witness in NP for this separation. In turn, this would improve our theorem 11 by
producing a set A in NP and a sparse set S such that A<V S and 4 L85 S,

It is not known whether assuming hypothesis 17 has any consequences on its own
(i-e. not simply improvements of previous results). No easy proofs seem at hand, mainly
because little structural properties of NPNcoN P are known, such as having complete sets
or being self-reducible.

6. Strong generators

As previously indicated, we present here a nonuniform model corresponding to the
S N-reducibility to sparse oracles. It is similar to the small generators described by Yap
(1983) and Schéning (1984).

21. Definition. A set A has polynomial size strong generators if and only if there is a
polynomial p such that for every n, a circuit C,, and an integer e, exist for which

1) Cr has at most p(n) gates.
2) C, has e, inputs.

3) C, has n+1 outputs, plus one additional output “domain indicator”. Only “valid
outputs” are considered, and these are those that appear under an input for which
the domain indicator evaluates to 1.

4) For every z € ="
r € A& Jy(ly| = en and Cu(y) = 1z) & Vz(|z] = en = Cn(z) # 0z)

Notice that from 1 and 2 it follows that e, < p(n).

Those circuits are very similar to the generators studied in Yap (1983) and Schéning
(1984), the difference being that a “strength” condition has been added. Indeed, condi-
tion 4 is analogous to the condition imposed to the nondeterministic machines in order to
consider them strong. Intuitively, if C, is a family of strong generators for A then for each
n every word of length n appears as output of C,, if the appropriate input is chosen, and
moreover C,, correctly indicates whether this output word is in A or in A. The reader is
advised to compare this model with the generators of Yap (1983) and Schéning (1984).

Our main result in this section is a characterization of the reduction class of the
sparse sets under the SN-reducibility.

22. Theorem. A set A has polynomial size strong generators if and only if A<SNS for
some S sparse.
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Proof. Given A with polynomial size strong generators, it is an easy task to obtain standard
generators for both A and A: it suffices to give undefined output for the inputs that are not
in the desired set. By the results in Yap (1983), both sets are in NP/poly, and therefore
in NP(S), resp. NP(S"), for some sparse set S, resp. S', by theorem 1. It only remains
to apply theorem 15 to obtain the implication left to right.

For the converse, follow backwards the same argument, using the converse of Yap’s
result —which appears in Schéning (1984)—, to obtain generators for both 4 and A, and
combine the generators into a family of strong generators. ]

Generators can be viewed also as acceptors with nondeterministic gates in a standard
manner. It is easy to see that this view can be adapted as well to the strong generator
model. In this case, for every word there is an extension of values of the nondeterministic
gates which yields a valid output, and this output always correctly determines membership
to A of the input word.

7. An oracle-restricted positive relativization of ZPP

Positive relativizations have appeared in several previous papers; see Book, Long,
and Selman (1984) and the references there. A positive relativization of a pair of classes C
and D is arestricted way of relativizing both classes, such that the restriction is meaningless
for the unrelativized case, and such that the unrelativized classes coincide if and only if
their restrictions coincide in every relativization.

A different sort of positive relativization has been developed in Long and Selman
(1986) and in Balcdzar, Book, and Schoning (1986). In it, an additional condition is im-
posed to the class of oracles, sometimes substituting the restriction on the oracle machines.
As examples of this kind of oracle-restricted positive relativizations, we state some results
from these references.

28. Theorem. The polynomial time hierarchy equals PSPACFE if and only if for every
sparse set S, the polynomial time hierarchy relative to S equals PSPACE(S); and the
polynomial time hierarchy differs from PSPACE if and only if for every sparse set .S, the
polynomial time hierarchy relative to S differs from PSPACE(S).

24. Theoremn. P = NP if and only if for every tally set T', P(T) = NP(T).

25. Theorem. P = NP NcoNP if and only if for every tally set T, P(T) equals the class
of sets L(M,T) where M is robustly strong.

By restricting probabilistic machines so that certain functions describing machine’s
behavior are computable by certain probabilistic models, Russo (1985) has obtained (in
joint work with S. Zachos) positive relativizations of ZPP and other probabilistic classes,
defined by Gill (1977). Here we present a different view, by exhibiting an oracle-restricted
positive relativization of ZPP. It is based on the following definition.
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26. Definition. A nondeterministic machine M is robustly Z PP if and only if for every or-
acle set A and input z, either more than half the computations accept and no computation
rejects, or more than half the computations reject and no computation accepts.

The main result of this section is as follows.

27. Theorem. P = ZPP if and only if for every tally set T, P(T') equals the class of sets
L(M,T) where M is robustly ZPP.

Proof. The only nontrivial part of the proof is to show that if P = ZPP then robustly ZPP
machines can be simulated in deterministic polynomial time. The idea is that the condition
of robust-ZPP-ness implies that a machine which is given part of the oracle as input is
also a Z PP machine. Then a P(T) machine can be constructed that first scans the oracle
to construct a table recording the accesible part of it, then simulates the Z PP machine
that incorporates the oracle as part of the input. 5!

For similar proofs see Long and Selman (1986). The result is also true for a slightly
more general (but very technical) class of oracles: those with “self-producible circuits”.
These sets are characterized in terms of tally sets in Balcdzar and Book (1986), and the
generalization of theorem 27 to them is immediate from this characterization.

8. Conclusions

Motivated by the question of finding a nonuniform analog of the class NP NcoNP,
two versions of strong nondeterministic reducibilities have been defined and compared,
and differences have been found at arbitrary height within the class of recursive sets.
The corresponding reduction classes of the sparse sets have been characterized in different
manners. Strangely enough, the class corresponding more naturally to a nonuniform model
of computation is the one that is not properly a nonuniform class in the sense of Karp and
Lipton (1980), and is also the one for which the very general technique of Schéning (1984)
for dealing with this kind of classes fails.

More precisely, the reduction classes of sparse sets under both reducibilities turn
out to be, respectively, (N P/poly)N(coN P/poly) and (NP NcoNP)/poly. There seems to
be more than a syntactic difference between these classes. It is not difficult to see that the
second class is included in the first, and that they are equal if NP = coNP; it is shown
that, assuming equality, a result by Yap can be improved, by collapsing the polynomial
time hierarchy to ¥s instead of X3.

As shown by Long and Selman (1986), the reduction class of the tally sets under the
robustly strong machines yields an oracle-restricted positive relativization of the equality
P £ NPNcoNP. Motivated by this fact, we have shown that a natural analogous condition
yields an oracle-restricted positive relativization of the equality P L ZPP.

We consider that the main question left regards the robust reduction class to sparse
sets, and can be expressed as follows: What is the reason that such a natural condition does
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not yield a natural nonuniform model? Naturalness is argued in the following grounds:
it is the immediate consequence of the nonuniform notation, and gives rise to positive
relativizations. The answer is not known yet, but surely more insight has been gained
from the comparison between both reducibilities.
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