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Abstract 

Howell, R.R., L.E. Rosier and H.-C. Yen, A taxonomy of fairness and temporal logic problems 
for Petri nets, Theoretical Computer Science 82 (1991) 341-372. 

In this paper, we &fine a temporal logic for reasoning about Petri nets. We show the model 
checking probtrbn for this logic to be PTIME equivalent to the Petri net reachability problem. 
Using this lcb~c and two refinements, we show the fair nontermination problem to be PTIME 
equivalent to reachability for several definitions of fairness. For other versions of fairness, this 
problem is shown to be either PTIME equivalent to the boundedness problem or highly undeci- 
dable. In all, 24 versions of fairness are examined. 

In the specification and analysis of concurrent systems, some notion of fairness 
is often necessary to exclude from consideration certain co ~?tatio~s which 
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particular events from occurring, even though these events may be possible infinitely 
often. Many d&nitions of fairness have been proposed (see, e.g., [s-g, 1% 21, 22, 
3@]), and each has its merit in particular applications. Several VerSiOnS Of faim?SS 
have been &fined (or adapted) for Petri nets [5-8,301, a powerful fOrmdiSm Often 

employed to model concurrent systems [28]. Decidability issues concerning fairness 
in Petri nets were considered in [6,7,38]. One problem examined in these papers 
is the fair nontermination problem [ll]; i.e., for a certain definition of fairness, 
does there exist an infinite fair computation? Though the decidability of a number 
of these problems has been determined, only a few rough complexity bounds have 
been given for those known to be decidable [7]. In [ 161, we examined the complexity 
of the fair nontermination problem for conflict-free Petri nets with respect to several 
definitions of fairness. In this paper, we extend this study to general Petri nets, 
examining the 24 versions of fairness presented in [S-8, 13,21,22, 301. The results 
of this study are summarized in Section 5 (Table 1). 

In the study of Petri nets, a scarcity of knowledge concerning computations1 
complexity is by no means unique to the fair nontermination problem. For example, 
the precise complexity of the reachability problem has remained elusive for many 
years. For this problem, the most efficient algorithm is not primitive recursive [20,25], 
whereas the best known lower bound is exponential space [23]. We show in this 
paper that there is a close relationship between the reachability problem and several 
of the fair nontermination problems. In particular, we show several of these problems 
to be equivalent to reachability; i.e., their complexities are equivalent to that of 
reachability with respect to PTIME many-one reductions. (Throughout this paper, 
we will use the word “equivalent” in this sense when referring to decision problems.) 
Thus, to detervine the precise complexity of any of these problems (modulo PTIME 
reductions), it is sufficient to consider only the reachability problem. For examples 
of other (more classical) problems known to be equivalent to reachability, see [28]. 

Clearly, since some versions of the fair nontermination problem have been shown 
to be undecidable [6,7], not all versions are equivalent to reachability. Rather, one 
of the main points of this paper is that most versions are either highly undecidable 
(in particular, complete for X : -the first level of the analytical hierarchy), equivalent 
to reachability, or equivalent to boundedness (i.e., exponential space complete with 
respect to PTIME many-one reductions). In some sense, it is easier to show problems 
to be highly undecidable or equivalent to boundedness than it is to show equivalence 
to reachability The reason for this is that highly undecidable problems and exponen- 
tial space complete problems as a whole are fairly well understood. The reachability 
problem, however, is not well understood, as is evidenced by the lack of knowledge 
concerning its complexity. Hence, as a way to overcome this difficulty, we develop 

in this paper a framework based upon temporal logic for reducing fair nontermina- 
tion problems to the reachability problem. 

For some time, temporal logic has been considered an appropriate formalism for 
reasoning about systems of concurrent programs [24,29]. A typical problem involv- 
ing temporal logic is the model checking problem [l&j; i.e., determining whether a 
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given structure defines a model of a correctness specification expressed in the 

temporal logic. The problem can be formally stated in a variety of ways. For the 

purposes of this paper, model checking is the problem of deciding whether in a 

given Petri net there is an infinite firing sequence satisfying a given temporal logic 

formula. This version of model checking (with respect to finite-state structures) was 

referred to as “determination of truth in a structure” in [33]. What makes the model 

checking problem useful for us is that most fairness specifications can be stated in 
some temporal logic (see, e.g., [Ill). Thus, a fair nontermination problem can be 

reduced to a model checking problem. Now in order for this reduction to be useful 

(for our purposes), the model checking problem must be no harder than reachability. 

Unfortunately, we were able to show in [16] that for a fairly simple temporal logic, 

the model checking problem is undecidable, even for conflict-free Petri nets (see 

also [35]). On the other hand, we were able to show a subset of the logic to be 

NP-complete for conflict-free nets. This logic utilizes the predicates ge( p, c) (place 

p is greater than or equal to c), en( I) (transition t is enabled) and fi( t) (transition 

t is the next to fire). Call this set of predicates Q’. The operators used are F 

(sometime), X (next time), A (and), v (or), and 1 (not), where 1 is used only on 

predicates. The problem with this logic (which we will lzall .&Q’, F, X)) is that it 

can only make assertions about finite portions of (possibly infinite) firing sequences. 

Hence, it is only marginally useful for expressing fairness constraints. 

With respect to general Petri nets, it is not hard to see that L?( Q’, F, X) is powerful 
enough to express reachability. Thus, the model checking problem for this logic is 

as hard as reachability. In this paper, we extend this logic by adding new predicates 

which give it the power to specify certain loops. This strategy differs from our 

analysis in [16], where we kept the set of predicates fixed but restricted the use of 

the operrhors in order to develop various logics. With this new logic (which we will 

call 2?( Q, F, X)) we associate a variation of the model checking problem which we 

call the finite model checking problem. This problem is to determine whether there 
exists aJnite firing sequence that satisfies a given formula. The reason we introduce 

the finite model checking problem is to allow us to use predicates asserting that a 

firing sequence produces a nonnegative (or zero) net change on a given place; this 

assertion would not make sense for arbitrary infinite firing sequences. We are then 

able to show that the finite model checking problem for g( Q, ) is equivalent 

to reachability. In so doing, we develop a methodology for admit new predicates 
to the logic without destroying its equivalence to reachability. Because &Q, 
has the power to specify loops, it can specify that cet?szi : f;‘pes of events occur 

infinitely often. In particular, suppose we wish to determire whether a Petri net 9 

is a model for a formula fE L?( Q’, ). We need only to find a finite firing 

that satisfies f and ends in a loop. We can spe ath of this type in 2( 
hence, the model checking problem for &Q’, ) may be expressed as an instanci 

of the finite model checking problem for &Q, ). Furthermore, -J?( Q, ) is 

powerful enough to express formulas of the form “infinitely often q,” where 4 is a 

Zoolean combination of predicates from Q’. (Call this set of formulas z”( Q'M 
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Again, we can express the model checking problem for z”( 0’) as an instance of 
the finite model checking problem for .& 0, F, X). This answers a question left Open 
in [I61 as to whether the model checking problem for Z”(Q’) is decidable for 
conflict-free Petri nets. Perhaps the most important property of &Q, ) is its 
ability to succinctly express various definitions of fairness-namely, a-fairness [s], 
fdp- T where T is a set of transitions [7], and five types of fairness introduced by 
Landweber [2I] and Carstensen and Valk [S]. As a result, we are able to show the 
fair nontermination problems for all of these types of fairness to be equivalent to 
reachability. Thus, L&Q, F, X) provides a powerful mechanism for showing 
equivalence of ain fair nontermination problems to reachability. Finally, we 
might also ment that the existence of such a logic is somewhat surprising in view 
of the aforementiouea negative results of [ 161. 

Since so many of the decidable versions of the fair nontermination problem are 
equivalent to more claFsica1 Petri net problems, one might surmise that the undeci- 
dable versions are equivalent to containment and equivalence, which have been 
shown to be undecidable in [4] and [ 143, respectively. Since reachability is decidable, 
it is not hard to see that both of these problems are in II, ; i.e., they are co-r.e. As 
Vidal-Naquet 163 and Carstensen [7] have demonstrated, the key step in showing 
that any version is undecidable is to show that the Petri net under the given fairness 
constraint can simulate zero-testing. Once zero-testing can be performed, the Petri 
net can simulate an arbitrary Turing machine. Carstensen [7] has also exhibited 
another interesting capability of Petri nets under certain fairness constraints: the 
ability to nondeterministically generate any natural number without running the 
risk of entering an infinite loop. Thus, unbounded nondeterminism can be simulated. 
We use this fact to show that these versions are complete for Z:. Hence, these 
problems are highly undecidable and not equivalent to containment or equivalence. 
These results may be compared and contrasted with those of [I-3,9, 15, 27, 341. 

The remainder of the paper is organized as follows. In Section 2, we give the 
basic definitions of Petri nets and temporal logic. In Section 3, we develop the logics 
that are later used to show various types of fair nontermination problems to be 
equivalent to reachability. In Section 4, we examine the fair nontermination problem 
for the 24 types of fairness. In most cases, we are able to show the problems to be 
either highly undecidable, equivalent to reachability, or equivalent to boundedness. 
One exception is with respect to fairness (as defined in [22]) for bounded Petri nets, 
as is mentioned in [7]. Although this problem is clearly decidable, we are able to 
show it to be nonprimitive recursive. We conclude in Section 5 with a summary of 
our results and a discussion of open problems. 

A Petri Net (PN) is a tuple (P, T, tp, po), where P is a finite set of places, T is a 
finite set oa’ transitions, cp is a jluw function cp : (P x T) v ( T x P) + IV, and ~0 is the 
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initial marking po: P + N, where N is the set of natural numbers. A marking is a 

mapping p : P+ N. We often establish an order on the places, p,, . . . ) I-G, and 

designate a marking p as a vector in N’, where the ith component represents p( pi). 
A transition t E T is enabled at a marking CL iff for every p E P, Q( p, t) s p(p). A 

transition t may jire at a marking p if t is enabled at p. We then write p &+ p’, 
where p’(p) = p(p) - Q( p, t) + (9( t, p) for all p E I? A sequence of transitions o = 
t,. . . t, is a Jring segtlence from cc0 iff p. % pl 3 l l . k p,* for some sequence of 
markings pI, . . . , p,, . We also write p. * p*, and denote t, . . .+ by o[ j] for 1 <j < n. 
We extend these notions to infinite firing sequences in the obvious way. 

For a PN 9 = (P, T, Q, po), the reachability set of 9 is the set R( 9) = (p 1 p. * p 

for some a). Given a marking p of g, the reachability problem (RP) is to determine 
whether p E R(9). The boundedness problem (BP) is to determine whether R( 9) 

is finite. Throughout this paper, we will define several fairness properties for firing 
sequences. Given a fairness property x, the nontermination problem with respect to 
x (NTP”) is to determine whether there is an infinite firing sequence Q in 9 that 
satisfies x. 

A labeled Petri net is a triple 9 = (9,) Z, h), where 9, = (P, T, Q, po) is a PN, C 
is a finite set of labels, and h : T + C u {E} is a labeling function. We also extend 
h:T*+E* by h(E)=& and h(ot)=h(cr)h(t). Given a marking p of 9, we define 
the terminal language of g with respect to p as L’( 9, p) = {h(a) 1 p. s p). 

Let JV denote the set of all PNs, 3* denote all finite firing sequences of nets in 
JV’, 3” denote all infinite firing sequences of nets in JY, and Ep” = Y* v 9”. A predicate 
is a partial function q : N x r x N + {true, false}. A well-formed formula (wff) is 
either a predicate or of the form TJ f A g, Xf, or fug, where f and g are wffs. We 
will use the notation (9, a, n)I=f to signify that the wff f holds after n transitions 
have fired in the firing sequence c of the PN g. More formally, for 9 EN, u a 
(finite or infinite) firing sequence of 9, n E N, and a predicate q, we say (9, C, n)l= q 
ifi q(9), a, n) = true. For a firing sequence a of 9 and wffs f and g, we say. 

(9,u, n)l=if iff not ((9$u, n)l=f); 
(9, a, n)I= Xf iff (9, a, n + l)l= f; 
(g,u,n)I=fUg iff 3r>n such that (g,u,r)I=g and Vs,n<sCr,(Y,o,s)~f; 
(9, a, n)t= f A g iff (9, a, n)I= f and (9, u, n)+g. 

also use the following abbreviations: 
v g= l(lf A 1g); 

We say that 9 is a (finite) model for f iff there is an infinite (finite, respectively) 
firing sequence u in 9 such that (9, a, O)t= jI Let 9 be a set of wfis. The (jnite) 
model checkingproblem with respect to 9, denoted CP( S), respectively), 

is to determine whether a given PN 9 is a (finite) model for a given formula fc 2 
Let Q be a set of predicates. We then define 

Z(Q) = (f 1 f is a wff using predicates from Q}; 
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&Q,F,X)=U-if is a wff using predicates from Q and the operators F, 
v, and 1, such that 1 is used only on predicates}; and 

Y”(Q)=WWkf is a Boolean combination of predicates from Q}. 
For a PN 9 = (P, 7” 9, pO), a wff f, and a natural number n, we define the model 

language of 9 with respect to f and n as L”‘(9,f, n) = (CT 1 c is finite and (P, a, n)t= f }. 
A set 9 of wffs is said to be RP-decidable iff for all f E 9, 9 E N, we can construct 
in PTIME a labeled BN P’= (9;) 2, h), .!?‘I = (P’, T’, <p’, &), P’= p,, . . . , pk, and 
a marking IL’ on pI , . . . , pk_ I such that for all n E N, L”( 9, f, n) = L’( 9’, (p’, n)). 

We will refer to pk as the marker. 

3. A temporal logic for Petri nets 

In this section, we will present a temporal logic for reasoning about Petri nets 
such that if 9 is the set of all wffs in the logic, then FMCP(9) =p-rrME RP. The 
logic will be g( Q, F, X) for a set Q of predicates to be defined later. Even though 
FMCP(& Q, F, X)) is no harder than RP, Q will contain a sufficient variety of 
predicates to provide a powerful mechanism for showing fair nontermination prob- 
lems to be equivalent to RP. Furthermore, certain restrictions of the logic provide 
interesting extensions to the results shown in [ 161. The first extension we show is 
that MCP(& Q’, F, X)) = PTIME RP, where Q’ is the set of predicates from the logic 
developed in [ 161. The second extension is that MCP(p”( Q’)) =PTrME RP. Both of 
these extensions may be considered refinements of the main result of this section- 
that FMCP( L?( Q, F, X)) = -pTIME RP. All of these logics will be used in the next 
section to show various fair nontermination problems to be equivalent to RP. The 
main result of this section may therefore be viewed as an umbrella under which a 
number of the subsequent results in this paper are derived. 

In order to show that FMCP(& Q, F, 3’)) < -mIME RP, we will first show that the 
reduction holds for any RP-decidable set of predicates whose negations are also 

decidable. We will then define Q and show that both Q and Q = {lq lq E 0) 
are RP-decidable. We first state the following lemma, which follows immediately 
from the definition of the terminal language of a labeled PN. 

emma 3.1. Given a labeled PN 9 = (9,) 2, h) und a marking p, L’( 9, p) #0 iff 
F E R(9,). 

We can now give the following lemma, relating the FMCP to the RP. 

For a set of wfls 9” if 9 is RP-decidable, then FMCP( 9) 6 m!ME RP. 

Given an RP-decidable set 9 of wffs, let f E 9, and let Y be an arbitrary 
PN. Since 9 is P-decidable, we can construct in PTIME a labeled PN Y= 
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(9:) X, h) and a marking p such that L’(9’, cc) = L”‘( 9, f; 0). Then 9 is a finite 
model for f iff L”‘(9,J;O)ZO iff L’(Y+)#O iff per. Therefore, 
FMCP( 9) s PT,ME RP. 0 

The following theorem now gives a framework for defining our set of predicates. 

Theorem 3.3. l’f a set of predicates Q is R&decidable and 0 = { 19 19 E Q} is RP- 
decidable, then FMCP(& Q, F, 

Proof. We will show by induction on the structure off t’ & 0, F9 
PN 9, we can construct in PTIME a labeled PN 9’ and a submarking JL~ such that 
for all n E N, L’( Y, (cc, n)) = L”( 9, J n). The theorem will then follow from Lemma 
3.2. If fe Q u Q, this is trivial. Therefore, assume we have f, , f2 E L?( Q, ) such 
that for any PN g, we can construct in PTIME labeled PNs Si, 95 and markings 
~l,~2suchthatforalln~N, L’(-Yi,(p,,n))=L”‘(9,f,,n)and L’(Yi,(p2,n))= 

L”(% f2,4. 

Case 1: f = fi A fi. We construct 9’ from 9: and 9: as follows. Let T,4 ( TJ be 
the set of all transitions labeled a in 91 (95, respectively) for all a E C u {E}, where 
Z={a,,..., a,,,} is the 4phabet of L”( !?, J n). We relabel all transitions in 9’; and 
9; as E, and add m + 1 new transitions and 2m + 3 new places, as is shown in Figure 
1. We define p as: 

p(pij)=pi(ptj) for i=l,2, j=l,...,ki-1; 
p(Pik,) = 0 where Pi&, is the marker for 9’:) i = 1,2; 
/l(acki) = 1 for i = 1,2; 
&L(ellij) =O for i = 1,2, j = 1,. . . , m. 

p,,,ark is the marker for g’. It is not hard to see that for all n E N, u E L ‘(p’, (cc, n)) 
iff aE L’(g’,,(fi,, n))n L’(95, (jh2, n)) iff GE L”‘(9, f,, n)n L’“(9, f?, n) iff 
(9,u, n)l= $1 ii f2 iff gE L’“(g, J n). 

Case 2: f = fi v f2. 9’ nondeterministically chooses to simulate (Bne of 9; or 95; 
the other, it brings immediately to its final marking with a zero marker value. ~9’ 
can also transfer all tokens from the markers of 9: and 9: to its marker. The details 
_a ! left to the reader. 

Case 3: f = Xf, . 9’ simulates 9;) but in order to reach its final marking, it must 
subtract 1 from the marker. 

Case 4: f = Ff,. This is the same as Case 3 except that 9’ can subtract more than 
1 from the marker. Cl 

We are now ready to define our predicates. For a PN 9 = (P, T, gc, po), p E P, 

t E T, c, n E N, and a jnite firing sequence U, let: 

(%c, +ge(p, c) ifi PO 
4nl 
- p and p(p) 2 c; 

(9, a, n)i= fi( t) iff t is the (n + 1)st transition in a; 
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: : 
\ I 

e 

e : 

<qn> 

Pll PlK 1 

P mark 

Fig. 1. 9 forf, A_&. 

(&u&=lp(p) iff row LL~~?P~, and CL~(P)+~(P); 
(~,,,n)~zl(p)iffCLO~ILI,1IO~C(Z,ii:ldCLI(p)=I1Z(p); 
(9, 0, n)t== co(j.4) iff pO 3 pl and there in a p2 E R( P, T, (9, ~1’) such that cc2 2 CL. 

Let Q be the set of all of the above predicates for all places p and transitions t, 
and 0 = (9 I19 E 0). We wish to show that FMCP(& Q, F, X)) +riME RP. From 
Theorem 3.3, we need only show that Q and 0 are RP-decidable. For most tiements 
of Q u 0, this is straightforward. The main difficulty lies with -ICO( p). In showing 
--x0(& to be RP-decidable, we will construct a PN that will in some sense produce 
all markings from which no marking greater than or equal to p can be reached. In 
order to construct such a PN, we first construct a modified Turing machine (TM) 
that accomplishes the same purpose. This modified TM will be such that using 
Lipton’s construction [23], we can transform it to a PN. In order to define the 
precise function of the modified TM, we introduce the following notation. Given 
an unmarked PN 9 = (P, T, ,-), a marking p, and a positive c, let S(g, p) = 
(~u~#EL’+.G EL’~ R(P, T, 60, pO)}, and S’(9, p, c) ={~o#z”“‘“g”‘Ipo~ S(9, p)}, 
where n is the number of bits needed to encode 9 and p. Also, let S(g, p) and 
s’(p, p, c) denote the complements of S(g, CL) and S’(g, 1~~1, c), respectively. We 
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now give two lemmas which define the function of the modified TM and give its 
construction. 

There is a positive constant c such that for any unmarked PN 9 = ( P, T, Q ) 

and marking p, we can construct in PTIME a linearly bounded automaton (LBA) M 

that accepts the set S’(9, I_C, c). 

roof. For any fixed constant c, we can clearly verify deterministically in linear 
space whether the input is syntactically correct and the number of #s is correct. 
From [31], if I_C~ 2 ccl 2 L.C, 
than 2 -@PI 106 ” 

then p. 2 p2 2 p such that the length of a2 is no more 
for some constant d. Thus, any marking produced in this firing sequence 

can be stored in size( PO) + 2’*‘Og n bits for some constant c. s’(p, p, c) is therefore 
accepted by an LBA M’ that can be constructed in PTIME. From [ 18,361, there is 
an LBA iM that accepts S’( 9, p, c). An inspection of the proofs in [ 18,361 reve& 
that PA can be constructed from M’ in PTIME. 0 

Lemma 3.5. Let 9, cc, and n be as in Lemma 3.4, and let k be the number of places 

in 9. We can construct in PTIME an 0(2an’osn ) space bounded TM M with no input 
tape, augmented with k unbounded increment-only counters such that the set offinal 

counter values in all accepting computations is S( 9, p ). 

Proof. Let d be the constant from [313 mentioned in the proof of Lemma 3.4. We 
define a function g mapping markings to markings such that 

g(cL)( PI = 1 P(P) 
if cc(p, ~ 22J”11~~o)11 

2p’mw~1 otherwise 
. 

It follows from [31] that cc0 E S( 9, cc) iff g(pO) E S( 9, p). We can therefore construct 
M to operate as follows. M first nondeterministically generates k nonnegative 
integers no larger than 2’d”““p”’ and stores them on its worktape and on the k 

counters. If any of these values are exactly 22”““‘8”‘, the corresponding counters may 
be incremented arbitrarily many times. M then writes #“““““*’ on its worktape, 
where c is the constant from Lemma 3.4, and simulates the machine given by Lemma 
3.4 on the contents of its worktape. The result follows from Lemma 3.4. Cl 

We are now ready to show the main result of this section, that FMC 
is equivalent to RP. From this result we will subsequently derive two refinements 
concerning logics developed in [ 161; these refinements will be given in Theorems 
3.7 and 3.9. We will then use Theorem 3.6 and its reqnements in Section 4 to show 
seven fair nontermination problems to be equivalent to RP. The reason we can use 
a finite model checking problem to encode a fair nontermination problem is that 

-%Q, ) has the power to express certain loops which may be iterated to produce 
an infinite “fair” path. Thus, Theorem 3.6 is an umbrella under which power 
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machinery is developed for proving certain fair nontermin6on problems to be 
equivalent to RP. 

Theorem 3.6. FMCP( g( Q, F, X)) E PTlME RP. 

Proof. Let 9 = (P, T, cp, & be an arbitrary PN, and let JL be an arbitrary marking 
of 9. Clearly, p E R(9) iff there is a finite firing sequence o such that 

(9, a, O)@ 
[ 

A (ge(p, p(p)) A-v&, dP)+ 1)) 
I;< P 1 

vF A (ge(p,Cc(p))Alge(p,~(p)Sl)) l 

P’ p 1 

Thus, RP +T,M[: FMCP@( Q, F, x)). 
In order to show that FMCP(&Q, F, X)) <pTIME RP, we need only to show that 

Q and 0 are RP-decidable; the theorem then follows from Theorem 3.3. Let 
9 = (P, T, ~0, pO) be an arbitrary PN. We need to show that for any element q of 
Q u 0, we can construct in PTIME a labeled PN 9’ and a marking p’ such that 
for any n E IV, L”‘( 9,q, n) = L’( P’, (p’, a)). Since most of the cases are straightfor- 
ward, we will only show the cases ge(pi, c) and ICO(~). 

Case 1: q = ge( p,, c). We construct 9’ as shown in Fig. 2. Let p ‘(en?) = 1, p’(p) = 0 
if p Z en? and p f pmafkr where j&ark is the marker. In order to reach (p’, n), 9’ 

must pass through tbo phases. In the first phase, p’ simulates n transitions of a 
firing sequence o on two copies of 9. In the rsecond phase, th? remainder of u is 
simulated on one of the copies. At any time, the transitions tzi, . . . , tzA, ?I,, . . . , tl, 

may fire. These transitions enable no new transitions, but allow all places in both 
copies of 9 to be brought to b after the simulation of U. Furthermore, tPe must fire 
exactly once, guaranteeing that p, is at least c after ~[ra] is executed in 9. It can 
therefore be seen that L”( 3, q, n) = L’( Y, (p’, n)). 

Case 2: 9 =ico(p ). Before we construct Y, we wi’ri construct a PN 9” with 
designated piaces py , . . . , p;‘, where k is the number of places in 9, and a submarking 
CL” on the remaining places in 9”, such that for any marking @I of !Y, (CL,, p”) E R( 9”) 
iff pl F S((P, T, cp), p). Let M be the machine given by Lemma 3.5 to compute 
S(( P, K co), p )* Since the worktape of M is bounded by Q(2”“‘olr’*) space, it can be 
simulated by four O(2”““““’ ) bounded counters; furthermore, this construction can 
be done in PTIME. From [23], we can construct in PTIME a PN and a marking 
p” such that any firing sequence yielding ~1” simulates an accepting computation 
of M without its k unbounded counters. Since the k unbounded counters are 
increment-only, they can clearly be implemented by k places in the PN. We have 
therefore constructed 9” and p”. The construction of g’ and p’ from 9, Y’, and 
$’ is now similar to Case 1 and is shown in Fig. 3. It should be clear that 

‘V’, (p’, n)). cl 



Fairness and temporal logic problems -fur Petri nets 351 

t’ 
'k 

I 
I t 
I m I m 

9 I 

: 
I 
I 

I 

, 
$3 - - <E> 

D mark 

Fig. 2. 9 for ge( p,, c). 

We now will examine two logics developed in [16]. We can show that the MCP 

for both problems can be expressed as restrictions of FMCP( p( Q, )). We will 

use these two logics in Theorems 4.2 and 4.10 to give succinct reductions from 

various fair nontermirztion problems to RP. 

Let Q’ be the set of predicates ge( p, c) and fi( t) extended to infinite firing 

sequences, and let @ = (1s 1 q E Q’}. MCP(.& Q’, )) was shown in [16] to be 

NP-complete for conflict-free PNs. (The logic in [ 161 also included predicates 

asserting that a transition t is enabled; this assertion and its negation can clearly 

be encoded in g( Q’, ).) Although g( Q’, ) can only express loops in which 

the repeated markings are explicitly stated, this is sufficient to encode several of the 

andweber [21j and Carstensen and Valk [RI. 
Ns is equivalent to reachability. 
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Pg. 3. 9’ for 70(p). 

Theorem 3.7. MCP(Z’( Q’, F, X)) =pTlME RP. 

Proof. We will first SCOW RP <pTIME MCP(& Q’, F, X)). Let 9 be an arbitrary PN 

and p be an arbitrary marking of 9. We construct a PN 9’ from 9 by adding a 

transition t that does nothing and is always enabled. C!~erly, p E R( 9’) iff p E R(g), 
and any finite firing sequence in 9’ can be made infinite. Since we can express 

reachability in 2&Q’, F, X) as in the proof of Theorem 3.6, 

RP sPl-lME MCP(& Q’, F, xb 
We will now show MCP(& Q’, F, X)) bpTIME RP. We will reduce the MCP to 

FMCP(& Q’, F, X)); the result will then follow from Theorem 3.6. Let g = 

(P, T (9, pO) be an arbitrary PN, and let f be an arbitrary wff in 2?( Q’, F, X). Let 

f’s f A F A,,, p lp( p). It is a straightforward matter to show that 9 is a model for 
f iff 9 is a finite model for f’. Cl 

One question left open in [ 161 was whether MCP(Y”( Q’)) is decidable for 

conflict-free PNs. In Theorem 3.9, we will give a positive answer to this question 

by showing the problem with respect to general PNs to be equivalent to RP. Again, 

Theorem 3.9 may be viewed as a refinement of Theorem 3.6. Clearly, Z*( Q') can 

be used to express fairness constraints for which a certain event must be repeated 
infinitely often. We now define the following terminology. A set of wffs s is 

Q-pumpable iff there is a PTIME function g : 9~ ,2&Q, F, X) such that 

(1) for any f~ 9, and any infinite firing sequence u in 9, if (9, o, O)t= then 
for any infinite set I of natural numbers such that if i E I, then (P,u, i)+J there is 

an infinite subset I’ of I such that for any i, j E I’, i <j, (9, o[j], i)I= g(f); and 
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(2) if 9 = (P, T, cp, pO) is such that (g, a, n)I= g(f) for some finite u = CT[ n]o’, 
dnl 

then go - PI 
L&.&.. such that ((P, T, (9, pj), o’[ 11, O)bf for all j 2 1. 

Before showing Theorem 3.9, we give the following lemma. 

Lemma 3.8. me set of all positive Boolean combinations of predicates in Q’ u 0’ is 

Q-pumpable. 

Proof. Let g = (P, T, cp, ~0) be an arbitrary PN. We will show by induction on the 

structure off that we can construct in PTIME a g(f) satisfying conditions (1) and 
(2) above. 

Base Case 1: f = gd p, c). Let g(f) = ge( p, c) A APeE P lp( p’). Let g be any infinite 

firing sequence such that (‘%a, O)k CFf, and let I be any infinite,;yt of natural 
numbers such that if i E I, then (9, a, i&J Let pi be such that p. - pi, and let 

8bethesequence~il,~i2,...suchthat{i,,i,,...}=~andi,~i~~*...Since8is 
infinite, there must be an infinite subsequence of 8, 8’ = lIj,, ruj~, . . . such that 

@ji 

S@j2S*"* Clearly, for any natural numbers r and s such that r < S, 

(9, a[ jJ, jr) t= g( f ). Part (2) clearly holds. 

Base Case 2: f= lge( p, c). g(f) = lge( p, c) A zl( p) A APfE p lp( p’) clearly works. 
Base Case 3: f = fi( t). g(f) = fi( t) A AptE p lp( p’) clearly works. 

Base Case 4: f= -+i( t). g(f) = lfi( t) A /jPaE ,, ~p( p’) clearly works. 

NOW assume we have$, and fi for which conditions (1) ar 1 (2) hold. 
Case 5: f = f, v f2. Let g(f) = g( f,) v g( fi). Let u be any infinite firing sequence 

such that (g, a, O)+ GFJ and let I be any infinite set of natural numbers i such that 

(9, a, i)b$ There must be some infinite subset I’ of I such that either Vi E I’, 

(9, 0, 5) I= fi , or vi E I’, (9, a, i) t= fi. Assume without loss of generality that Vi E I’, 

(9, o, i)l=fi . From the induction hypothesis, there is an infinite subset I” of I’ such 

that for any i, jE I’, i<j, (g, o[j], i)l=g(f,). Then (9, a[j], i)l=g(f). 
Now suppose 9 = (P, T, cp, po) such that (!Y, c, n)l= g(f) for some finite u = 

o[n]o’. Then either (9, a, n) I= g( f,) or (tY, a, n) t= g( fi). Without loss of generality, 

assume the former. From the induction hypothesis, p. 
flrn1 

z. ctl rr: p2 cr: . . . such 

that ((P, T, 9, pj), a[ l], O)+fi for all j 2 1. Therefore, ((I?, T, 9, &, o[ 1], 0)1= fi v 
h=J: 

Case 6: f =fr A f2. Let g(f) = g(f,) A g( f2). Let a be any infinite firing sequence 

such that (!Y, a, O)I= GFJ and let I be any infinite set of natural numbers i such that 

(9, U, i)tJ Then for any i E I, (9, a, i>I=fi . From the induction hypothesis, there 
is an infinite subset I’ of I such that for any i, j E I’, i <j, { 9, a[ j], i)k g( f,). Since 

I’S I, for any i E I’, (9, u, i) + fi. From the induction hypothesis, there is an infinite 

subset I” of I’ such that for any i, j E I, i <j, (9, a[ j], i)k= g( fi). Consequently, 

(9, UCjl, i)b g(f ). 
Now suppose g = (P, T, 4p, po) such that (9, o, n>l= g(f) for some finite u = 

a[ n]~‘. Then (9, a; n)l= g( f,) and (9, U, n)l= g( f2). From the induction hypothesis, 
drill , 

PO- y,-%p_+=* such that ((P, T,<p,pjWWI, Wfi and (R T, CP,P~L 
d[ 11, O)I= fi for all j 2 1. Therefore, ((P, T, p, pj), a’[l],O)kfi Afi=J q 
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Theorem 3.9. MCP(p( 0’)) =PTiME RP. 

Proof. Let GFf E 5?‘“( 0’). We can construct in PTIME an f’ = f such that negations 
occur only on predicates in f ‘. Let g be the PTIME function constructed in Lemma 
3.8. It now follows immediately from the properties of g that Sp is a model for f iff 
9 is a finite model for g( f ‘). Thus, MCP( 9) swl,, RP. The construction given in 

Theorem 3.7 shows RP +-riME MCP(g”( 0’)). 0 

4. The fair nontermination problem 

In this section, we examine the complexities of 24 fair nontermination problems. 
We use the machinery developed in Section 3 to prove I’heorems 4.2,4.10, and 4.17, 
where a total of seven of these problems are shown to be equivalent to RP. Particularly 
in the latter two theorems, this machinery provides for very succinct reductions to 
RP, whereas “brute force” reductions are much longer and considerably more 
tedious. In the remainder of the theorems in -This section, most of the problems we 
study are shown to be either equivalent to BP or X:-complete. The results of this 
section are summarized in Section 5 (Table 1). 

The first notions of fairness we consider were defined in [21] and [S]. These 
definitions of fairness are such that a fair firing sequence must visit certain prede_fined 
markings or transitions infinitely often. It is worth mentioning that the notion of 
“enabledness’ does not play any role in these definitions (other than the fact that 
the definitions deal with firing sequences). Given an infinite firing sequence o = 
t&. . . , we define inf”( o) (infs( 0)) to be the set of markings (transitions) thytzccur 
infinitely often in u (i.e., inf”( G) = {p 1 there are infinitely many i such that cc,, G g} 
and infT( o) = (ti 1 ti occurs infinitely often in 0)). Let SQ be a finite set of finite 
nonempty sets of markings. An infinite firing sequence CT = t, tz. . . is said to be c .* 

Ml-fair iff 3A~d, 3idV:go~ p E A (i.e., some marking reached by (r 
is in A). 
Ml’-fair iff 3A E 4, Vi E IV: p. 2 pi E A (i.e., every marking reached by u 
is in A). 

M2-fair iff 3A c J& inf”( cT) n A # 0 (i.e., some marking reached infinitely often 
by CT is in A). 
M2’-fair iff 3A E d, inf”( a) # 0 and inf”(a) s A (i.e., o reaches some marking 
infinitely often and every marking reached infinitely often by u is in A). 

M3-fair iff 3A E s&, inf”(a) = A (i.e., the set of markings reached infinitely often 
by o is an eler:ent of -4). 
M3’-fair iff 3A E &, A E inf”( 0) (i.e., every marking in A is reached infinitely 
often by CF). 
Similarly, let ..d be a finite set of nonempty subsets of transitions. u is said to be: 
Tl-fair iff 3A E .J$, 
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T2-f;air iff 3A E SQ, infT(o) n A # 8. 

T2’-f&- iff 3A E d, infT(o) c A. 
T3-f+! ifI 3A E d, infT(o) = A. 

T3’-fair iff 3A E d, A c infT(a). 
We will now investigate the complexity of the nontermination problems with 

respect to the above fairness constraints. The first theore 
our general classification scheme due to the fact that for 
allowable reachability set is given as input to the problem. 

Theorem 4.1. NTP”” is NLOGSPACE-complete. 

Proof. The proof method zre is similar to the proof used in [ 161 to solve a similar 
problem for conflict-free Petri nets. For the sake of completeness, wt sketch t 
proof in what follows. To show the problem to be in NLOGS ACE, we first guess 

an A in &. Next, we check to make sure that the initial marking is in A. During 
the entire procedure, we will maintain a pointer to keep track of the current marking. 
(Note here that the amount of space needed to maintain such a pointer is logarithmic 
in the size of the input.) Initially, the pointer points to the initial marking. We then 
repeatedly guess a transition t and a marking p in A and verify that p can be 
produced by firing t in the current marking. If so, p becomes the current marking. 
If the above procedure can be performed for more than IAl times, then there is an 
Ml’-fair computation. Clearly, the above procedure is in NLOGSPACE. The prob- 
lem was shown to be NLOGSPACE-hard for con!iict-free PNs in [ 161; thus, it must 
also be NLOGSPACE-hard for general PNs. i7 

In showing the following theorem, we make use of the temporal logic n.esults 
given in Theorems 3.7 and 3.9. This machinery makes the proof very succinct; 
however, this particular theorem is not exceedingly diticult to provt without using 
these results. The real power of our logic will be exploited in Theorems 4.10 and 4.17. 

Theorem 4.2. NTP” =mlME RP, for x E {Ml, M2, M2’, M3, 

Proof. We first show RPsWrME NTP”. We use a technique from [16]. Let 9 = 
(I?, T, 4p, p,,) be an arbitrary PN and p be an arbitrary marking of 9. We now 
construct a Petri net Y and a set & such that F E R( 9) iff there is an x-fair 
computation with respect to in 9’. The new Petri net 9’ is identical to !Y except 
that it has an additional transition that is always ena led and does nothing. Now 
let & = ({cc}}. Clearly, p E R (9) 9’ has an x-fair computation with respect to 

.#, where x E {Ml, M2, M2’, M3, ‘}. Furthermore, the reduction can be done i 

polynomial time. 
We will now show NT 

(e K Q, po) be an arbitra 
markings. For each element 
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each x a wff $x such that 9 has an infinite x-fair path ifl[ 9 is a model for fx; 
furthermore, fK will be in either Z?( Q’, F, X) or p( Q’). The theorem will then 
follow from Theorems 3.7 and 3.9. We define: 

eq(~l)~/\,,.[ge(p,~(p~)hige(p,Il(p)+l)l; 
in(A) = V,,, eqW; 
fMt = VAE.d (in(A) v F WW, 
fi2= VAEd GFWU; 
fM2’= VAc.d F(in(A) A X(in(A) A X(in(A). . .X(in(A)). . .))) 

(there are kA X operators); 

fMJ’= V4c.d F(eqbd h F(eqhd I+, 8 l l A F(eqhJ I+ Feq(Ccd). . l )). 

In order to define fM3, we first construct for each A E ~8 a graph GA = (A, &), where 
&={(U,t))lU,uEAandforsomerET,u A 0). We then let SQ’ = {A 1 GA is strongly 
connected}. SQ’ can clearly be constructed in PTIME (see, e.g., 1371). We now define: 

It should be clear that for each x, there is an infinite x-fair firing sequence in g iff 
9 is a model for L. Cl 

We now turn our attention to the 6 transition-related types of fairness. The NTP”, 
for x E (Tl, Tl’, T2, T2’, T3, T3’}, has been shown to be decidable in [38]. However, 
no complexity analysis was given there. In what follows, we show that these problems 
are equivalent to the BP. The proofs require showing the fact that if an infinite 
x-fair computation exists, then there must be a short “witness” to this fact. The 
proof of such a fact, generally speaking, is based on the method that Rackoff used 
in the complexity analysis of the BP in [3 11 (see also [32]). 

A finite firing sequence VU’ is self-couering iff cc0 s pi s ~1~ and Fj 2 pi. (Note 
that o’ can be executed infinitely many times.) We define T(o) = (t 1 transition t 

occurs in a}. (Similarly, T(a’) = {t 1 transition f occurs in o’}.) Then we have the 
following easily shown lemma. 

. Given a Petri net 9 and ajinite set & offinite nonempty sets of transitions, 
there is an incfinite x-fair jring sequence, where x E (Tl , Tl ‘, T2, T2’, T3, T3’), iff there 
is a self-cooering Jiring sequence cd such that 

(1) (Tl-fair) 3A E .sl, An T(V) # 0, 
(2) (Tl’-fair) RAE SQ, T(o)u T(o’)c A, 
(3) (TZ-fair) 3A E LPQ, A n T((T’) # 0, 

E .s.i!, T(o’)s A, 
E sd, T(a’) = A, 

(6) (T3’-fair) 3A E &, A c T(o’). 

rive an upper bound on t 
roof closely parallels 
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Given a transition t and a set of transitions B, the length of the shortes? 

self-coveringjiring sequence UC’, where t E T(o) and T(a’) = B, is bounded by 22rr;‘opn, 
for some constant c independent oft, B and n. 

In order to derive lower bounds for NTP”, x E {Tl, TV, T2, T2’, T3, T3’}, we define 
the following problems, which are equivalent to BP with respect to PTIME many-one 
reductions. (Note that these equivalences are not known to hold for LOG/LIN 
many-one reductions.) 

INF: 
Instance: Given a Petri net 9, 
Question: Is there an infinite firing sequence? 
CP: 
Instance: Given a Petri net 9 and a marking cc, 
Question : Is there a p’~ R( 9) such that ~1 s p’? 
The following lemma follows from results of Rackoff [31] and Lipton 1231. 

Lenoma 4.5. INF = PTIME cp =lTlME BP= 

We can now show the following. 

Theorem 4.6. NTP” = - WIME BP, for x E {Tl, Tl’, T2, T2’, T3, T3’). 

Proof. To show the NTP < -PTIME BP, we note that by applying Lemmas 4.3 and 
4.4, we have an NSPACE(2c”‘og” ) upper bound for each problem. Since the BP is 
hard for NSPACE(2Po’Y) with respect to PTIME many-one reductions [23], 
NTP” +Yr,ME BP. 

We now show BP-= - mlME NTP” for each x. Let 9 = ( P, T, cp, pO) be an arbitrary 
PN, and let & = { T). Clearly, 9 has an infinite x-fair firing sequence for XE 
(Tl, Tl’, T2, T2’, T3’) iff it has an infmite firing sequence. Thus, 
BP +-r,ME INF s-py IME NTP’ for x E (Tl, Tl’, T2, T2’, T3’). 

TO show BP sm,ME NTPT3, we will use the fact that CP =mlME BP. Let 9 be an 
arbitrary PN, and let g be an arbitrary marking. We construct 9 by adding to 9 
a new transition t which does nothing but which is only enabled at markings cc’ a p. 
Let & = ((1)). Clearly, 9’ has an infinite T3-fair firing sequence iff there is a or_’ E R( 9) 
Cuch that ~1 s CL’. Thus, BP sm,ME CP sm,ME NTPT3. 0 

We now examine the NTP with respect to several notions of fairness in which 
the constraints are imposed in an implicit fashion, instead of by an explicit listing 
of the markings and/or transitions that a “fair” firing sequence must visit. e will 

first examine three types introduced in 1221 and two extensions 
also [S]). Given B Petri net g and a set of subsets of transitions 
sequence w is said to be: 

every transitio? in 9 
transition that is ena 

often in a; 
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&ir iff every transition that is enabled infinitely often in u occurs infinitely often 
in 0; 
fdp with respect to Y (fdp-Y) iff for every T E Y, if almost everywhere in o some 
t in T is enabled, then some t’ in T occurs infinitely often in u (here, fdp stands 
for finite delay property); 
fair with respect to Y (fair-Y) iff for every T E 3, if some t in T is enabled 
infinitely often in a, then some t’ in T occurs infinitely often in u. 

.% NTPimP =mIME BP. 

roof. It is not hard to see that NTPmp is a special case of NTPT3 (by letting A! 
contain only the set of all transitions); hence, from Theorem 4.6, 
NTPmP +T,ME NTPT3 sRIME BP. In order to show that BP GmIME NTPimP, we will 
use the fact that CP = PTiME BP. Let 9 = (I?, T, cp, pO) be an arbitrary PN, and let p 
be an arbitrary marking. We construct 9’= (P, T’, p’, pO) by adding to 9 a new 

ansition t’ such that: 
q(p, t’) = F(P) for all PE P; and 

cp(t’, p)=c~(p)+Z,,~~(p, 0 for all PEP. 
Clearly, there is an infinite impartial firing sequence in 9’ iff there is a P’E R( 9) 
such that $2 p. Cl 

In order to show the next theorem, we define the single-place zero-reachability 
roblem, which is equivalent to R 

RP-SO: 
Instance: A PN 9 with a designated place p, 
Question: Is there a FZE R(9) such that p(p)=O? 
The following lemma is well known; see, e.g., [28]. 

. RP-SO = PTIME Rit 

At this time, we are unable to show either NTPj”“’ or NTPfdpm3 to be decidable.’ 
e main difficulty, we feel, is due to the fact that these fairness properties are 

nonmonotonic in the sense that the existence of a just (fdp-3, respectively) firing 
sequence starting in p by no means guarantees a just (fdp-Y) firing sequence starting 
in any CL’, where ~‘a CL. At the same time, we are unable to enforce zero-testing 
using either of these roper-ties. However, we are able to show the following three 
theorems. 

even if Y = (( 1)) for some transition 1. 

e will use the fact that Let 9=(P, T,q& be a PN 
nated place p,. We will construct 9’ as shown in Fig. 4. There is clearly 

ex 
cently, Jantar [i9] has claimed NTP’dp.7 (and hence NW”“) to be decidable. The proof is an 

us, it comes ve:y close to the lower bound t 
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t 

Fig. 4. 9 for fdp-.fT, 9 = ((1)). 

no infinite firing sequence in 9’ in which t fires. Thus, in any infinite firing sequence 
that is fdp with respect to {(t)}, t must be disabled infinitely often; i.e., a marking 
p must be reached such that p( pi) = 0. 0n the other hand, if p. 0, p, p( p,) = 0, 

then at’t’t’. . . . is fdP with respect to {{t 11. Therefore, 

RPS m#ME RP-SO s,,,, NTPfdp-.‘. 0 

In [7], Carstensen showed that NTPfdp-.$ is decidable if ISI = 1. We are able to 
improve upon this result by showing the problem to be equivalent to RP. In this 
proof, as opposed to Theorem 4.2, the real power of the machinery developed in 
Section 3 is exploited. Without the umbrella of Theorem 3.6 and its subsequent 
refinement in Theorem 3.9, this proof would have been much longer and considerably 
more tedious. As it is, we are able to give a very succinct proof of an unobvious 
theorem. 

. NTPfdp-.’ E PTlME RP if ISI = 1. 

From Theorem 4.9, we need only show that 
an arbitr N ‘G r, a 

sequence Q is fdp wi 

eorem 3.9, fdp-.j < 
‘MIME 
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The following theorem gives a lower bound for NTP’““‘. 

eorem 4.11. RP s PTIME NTP’““‘. 

roof. We will use the fact that RP dPTIME NTPfdP-““‘. Let 9 = (P, T, (o, pO) be an 
arbitrary PN, and let ti be an arbitrary transition in T. We construct 9’ as shown 
in Fig. 5. Suppose cr is an infinite path in 9 that is fdp with respect to {{ti}}. We 
construct a’ by inserting infinitely often in u tit; for all j Z i, 1 s j s m; since en is 
incremented infinitely often, this can clearly be done. Clearly, o’ is an infinite firing 
sequence in 9’ that is fdp with respect to {{r,)}. Furthermore, for all j # i, 1 s j G m, 
rj and ty fire infinitely often, and 4 is disabled infinitely often. Therefore, a’ is just. 

Now suppose a is an infinite just firing sequence in 9’. In order for o to be 
infinite, there clearly must be infinitely many occurrences of transitions from T. 
Therefore, by deleting all occurrences of transitions not in T, we construct an 
infinite firing sequence a’ that is fdp with respect to {{ti}}. Therefore, 
RP 6 PT,ME NTPfdp-““’ G PT,ME NTP’““‘. 0 

In [7], Carstensen showed the NTP”” and the NTPf’i”9 to be undecidable. In 
what follows, we improve this result by showing both to be complete for X:-the 
first level of the analytical hierarchy. We will later use these results to show a third 

0 
Pl 

i 

0 
pk 

Fig. 5. 9’ for justice. 
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version to be X:-complete. Our proofs involve certain generalized counter machines. 
We define an infinite-branching counter machine (ICM) to be a counter machine 

the added capability to nondeterministically add to a counter any natural 
number in one step. The following lemma follows from [9]. 

Lemma 4.12. The set of all ICMs that contain an ir$nite computation on E is 
X : -complete. 

We are now ready to show that NTPnir and NTP”““” are X:-complete. 

Theorem 4.13. NTPf”‘“.” is I: :-hard even if 9 contains only singleton sets. 

Proof. Let M be an arbitrary ICM. We will construct a PN 9 = (P, T, q, p,) and a 

set 9 of singleton subsets of T such that 9 has an infinite firing sequence that is 
fair with respect to 5 iff M has an infinite computation on e. 9 must be able to 
simulate infinite-branching and zero-testing. The way we construct 9, zero-testlag 
will be guaranteed to be correctly simulated only after some finite (but unknown j 

amount of time. Hence, we will first construct an ICM M’ to simulate M such that 
for any configuration I of M’ (whether reachable or not), any infinite computation 
of M’ from I simulates an infinite computation of M. We will then construct 9 to 
simulate M ‘. 

We construct M’ to repeatedly simulate finite subcomputations of M as follows. 
M’ will have one set of counters to simulate M, one set of counters to store the 
final counter values from the previous simulation of M, two counters to simulate a 
clock (one for time remaining, the other for the initial value), and a fixed number 
of scratch counters. The finite-state control of M’ will store the state of M in the 
current simulation and the final state from the previous simulation. Initially, the 
previous final configuration is the initial configuration of M, and the clock value is 
zero. M’ iterates the following loop: 

(1) Let n be the value of the clock. 
(2) Simulate M for n steps; halt if M does. 
(3) If the final configuration of M differs from the previous final configuration, 

then halt. 
(4) Simulate M for one more step. 
(5) Save configuration of M. 
(6) Reset clock to n + 1. 
(7) Restore M to initial configuration. 
Suppose M’ starts in some arbitrary configuration f, and suppose there is an 

infinite computation u from I. Clearly, each OI the seven steps above must terminate, 
so each step occurs infinitely often in u. Eve tually, ef must reach fter this, 

when it reaches Step 2, it simulates a computation G’ of for n steps, where n is 

some natural number. Since o- is infinite, it will not halt in Step 3. ach subsequent 
execution of Step 4 extends CT’ by one move; hence, Q simulates an infinite computa- 
tion cr’ of M. 
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We now construct 9 to simulate M’ using places to simulate states and counters 
in the obvious way, and transitions to simulate all moves except those of the form 
“ql : if ci = 0 then go to q2” and “ql : add some natural number to ci and go to q2 .” 
Carstensen [7] has shown how these moves can be implemented; the constructions 
are shown In Figs. 6 and 7, respectively. Regarding Fig. 6, since (t2) E Y, 1, can be 

fired while Ci > 0 only finitely many times in any firing sequence that is fair with 
respect to 9. Likewise, for Fig. 7, if t2 is enabled, it must eventually fire in any 

q1 

t1 

int 

t3 

q2 

Fig. 6. Implementation of zero-testing for fair-.X 
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infinite firing sequence that is fair with respect to 9. Clearly, if has an infinite 
computation on E, then 9 has an infinite firing sequence that is fair with respect to 
9. Suppose, on the other hand, that 9 has an in ite firing sequence 0 that is fair 

for 9. After some point in a, a correctly simulates ’ from some initial configuration 
1. Since this simulation is infinite, M must have an infinite computation. 0 

NTPrair and NTP”“‘.’ are I: i-complete. 

was shown to be $hard in Theorem 4.13. Carstensen [7] gives a 
reduction from NTP’“““(‘)} to NTP’““; this reduction easily generalizes to 
NTpfair-.J s pT, M E NTpfair if 9 contains only singleton sets. Thus, from Theorem 
4.13, NTP”” is also C f-hard. See the proof of Theorem 4.15 below for an even more 
general version of this reduction. 

Since NTPfair is a res riction of NTP’“‘“*‘, we only need to show that N 

Let !F=(P, T,cp,po) b an arbitrary PN, and let 9 be a set of subsets 
an infinite firing sequence o is fair with respect to 9 iff it can be divided into a 
sequence of finite firing sequences ~~0,. . . . such that for some subset 9’ of Y, every 
set in 9’ has at least one element in each ai, i 2 1, and no transition in any set in 
fl9’ is enabled at any timlt in u after ao. We therefore constrttct an IC 
nondeterministically generate o as follows. M first guesses 9’. It then guesses (in 
one step) no, the length of a(). Next, M nondeterministically generates a firing 
sequence a0 of length no. For i = I, 2,. . . , M then guesses n,, the length of u,, and 
generates a,, verifying that it satis!Q s the conditions outlined above. Clearly, M has 
an infinite computation iff 9 has an infinite firing sequence that is fair with respect 
to 9. Therefore, NTP’“” and NTP”irm.’ are X:-complete. q 

In [7], Carstensen also considered fairness for bounded PNs. Given a PN 9, we 
say an infinite firing sequence CT is 

bd-fiir if 9 is bounded and a is fair. 
Although NTPbd-‘“” is clearly decidable and as hard as BP, no tighter bounds have 
been given for the problem. We now show the problem to be nonprimitive recursive. 

. NTPbd-‘“” is not primitive recursive. 

Proof. We first define the following functions: 

_t(n)=.fSU) for i> 1, 

S(n) =.L(n), 

where .f,‘!‘,’ denotes the 
primitive recursive. IL 
arbitrary input for 
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that simulates A.4 in f (cn) time for some constant c. Carstensen [ 7] gave a PTI 
construction of an unbounded PN 9 with a designated transition t such that 9’ had 
an infinite firing sequence that was fair with respect to t iff M’ halted on X. (In his 
construction, 9 simulated an arbitrary 2-counter machine.) 9 operated by first 
guessing m, the number of steps executed by M, then repeatedly simulating 
x. If M did not halt in m steps, 9 would halt. 9 contained three potentially 
unbounded places: the one containing m and two containing counter values. Clearly, 
since M' is f (cn) time bounded, these places need not exceed f (cn) to simulate 
In 1171, we gave a PTIME construction of a bounded PN which could produce a 
value of f( cn ) in a designated place (see also [ 261). We can clearly use this 
construction to bound the three places in question by some number at least f(cn). 

The details are left to the reader. 
We will now show that given a bounded PN 9 and a set 9 of singleton subsets 

of transitions, we can construct in PTIME a bounded PN 9’ that has an infinite 
bd-fair firing sequence iff 9 has an infinite firing sequence that is fair with respect 
to 3. This construction is a generalization of one given in [7], and is shown in 
Fig. 8. Note that the added places, pi, . . . , p;, , pr, p:, must always contain a total 
of three tokens; hence 9’ remains bounded. Suppose 9 has an infinite path m that 
is fair with respect to 9. Prior to each occurrence of t, in a, I G i pi, we can insert 

Fig. 8. 9’ far bd-fairness. 



Fuirness and temporal logic problems for Petri nets 365 

the sequence t:~: for some i’, and prior to each occurrence of t,, j + 1 s i G m, we 
can insert the sequence r:t~~~~t~ for some i’. It is easy to see that this new firing 
sequence is bd-fair. On the other hand, b -i-pose there is an infinite firing sequence 
a in 9’ that is bd-fair. Sib :e pz must be positive before any transition in 9 can 
fire, by removing all occurrences of transitions not in 9, we clearly get an infinite 
firing sequence that is fair with respect to K 0 

In [ 51, Best extended the definition of fairness using the notions of i( +enabled- 
ness. A transition f is said to be i-enabled (or m-enabled if i = 00) at a marking p 
if there is a firing sequence u no longer than i transitions such that ~1 s p’, and t 

is enabled at y’. For 1 s i s 00, an infinite computation u is said to be: 
0 i-fair iff for every transition 1, if t is i-enabled in infinitely many markings in a, 

then t occurs infinitely often. 
(Note that “O-fairness” coincides 
equivalent definition for a-fairness 

In what follows, we show that 
NTP”-fair is equivalent to RP. 

with “fairness” as defined in 1221. Also, an 
was given in [30].) 

NTP’-““, 0~ i < 00, is X:-complete, but that 

Theorem 4.16. For every i, 0 s i c 00, NTP”“” is Z: -complefe. 

Proof. To show the lower bound, we will use a reduction from NTP’““. Let 9 be 
an arbitrary PN. We construct 9” as shown in Fig. 9. Clearly, 9 has an infinite fair 
firing sequence iff 9’ has an infinite i-fair firing sequence. To show the upper bound 
we can clearly employ a similar strategy to that of the upper bound in Theorem 
4.14, since i-enabledness is clearly a decidable property. Cl 

0 
Pl 5 

t 
e 
. 

@ 0 

0 h 
!P 

Fig. 9. .9’ for i-fair. 
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The following theorem is the last in which we use the machinery developed in 
Section 3. In this theorem, we use Theorem 3.6 directly to give a succinct reduction 
to RP. As in Theorem 4.10, a direct reduction to RP would have been much more 
tedious. 

Theorem 4.17. NTP”-fai’ E WI ME RP. 

roof. We first show NTP”““’ < ‘m1ME RP. Let g = (f, T, q, pO) be an arbitrary PN. 
For each t E T, let CL, be the minimum marking in which t is enabled. Consider the 
Wff 

A (lco(p,)v Ffi(l;) n A lp(p) . 
IE T tJcp 1 

Clearly there is an infinite a-fair firing sequence in 9 iff 9 is a finite model for jI 
Thus, from Theorem 3.6, NTP”““’ s_rME RP. 

We will now show RP GRIME NTP”-““. We will use the fact that RP- 
SO +-rPTIME RP. Let 9 = (P, T, p, po) be an arbitrary PN with a designated place pi. 

We construct 9’ as shown in Fig. 10. Suppose 9’ has an infinite a-fair firing 
sequence. Since t; is enabled until it fires, it must eventually fire. Clearly, fi cannot 

0 
PI 

t’3 

Fig. 10. .P’ for -l---fa%, state-fair ecd pred-fair. 
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fire in any infinite m-fair firing sequence. Therefore, there must be a p E R( 9) such 
that p( pi) = 0. Suppose, on the other hand, that there is a marking p E R( 9) such 
that p( pi) = 0. Let a be such that go s ~1. Then the firing sequence oti fG@i. . . is 
clearly a-fair. 0 

Queille and Sifakis 1301 have extended fairness in two other ways, namely, fuir 
choice from states, and fair reachability of predicates. Applying these notions of 
fairness to Petri nets, we have that for a PN 9 = (P, T, p, po), an infinite firing 
sequence u satisfies: 
@ fair choice from states (state-fair, for short) ifI for any marking p reached infi 

often by a, every transition enabled at p is executed infinitely often from p in cx 
fair reachability of predicutes (pred-fair, for short) ifI for any (f&ite or, infinite) 
set of markings M, if there are infinitely many i such that p. y pi 2 p: E M 
for some o:, then there must be infinitely many j such that cc0 s pj E M. 
At this time, we are unable to establish tight bounds for either NTPst’te-f”F or 

NTppred-fair 
. 

NTpstate-fair seems to be related to the problem of finding a home state, 
that is, a marking that is reachable from any reachable marking (see [ 121, where a 
decision procedure was given to determine whether a given marking is a home 
state). Because the definition of pred-fair is quantified over all sets of markings, it 
appears to be a very difficult problem. The next three theorems give the bounds we 
are able to derive for these two problems. 

Theorem 4.18. NTPS’are-rair is decidable. 

Proof. Let 9) be an arbitrary PN. We first determine whether 9 is bounded. If 9 
is unbounded, there is an infinite firing sequence u which reaches each marking at 
most once. G is clearly state-fair. On the other hand, if a is bounded, we Tan 
construct the reachability graph. Then there is an infinite state-fair firing sequence 
iff the reachability graph contains a strongly connected component from which there 
is no exit. 0 

We now define the following problems, which will be used in giving our lower 
bound for NTPState-rai’. 

BRP: 
Instance: Given a bounded tri net 9 and a mar 
Question: Is p E R(9)? 
BRP-SO: 
Instance: Given a bounded 

there a PE R( 
lemma can be s 
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mma 4.19. BRP-SO smIME BRP. 

Although it follows from [31,23] that BP SLIME BRP +ri~E RP, we do not know 
whether either of these reductions can be strengthened to an equivalence. 

Theorem 4.20. BRP d PTIME NTPStaremfair. 

Proof. We will use the fact that BRP-SO =miME RP. Let 9=(P, T,cp,pd be an 
arbitrary bounded PN with a designated place pi. We construct 9’ as shown in Fig. 
10. Suppose there is a g E R( 9) such that p( pi) = 0. Let (or be such that cc0 + ~1. 
Then the sequence gf#s?$. . l in 9’ is clearly state-fair. Now suppose there is an 
infinite state-fair path n ii1 9)‘. Since 9 is bounded, 5@’ is clearly bounded. Since 
ti is enabled until it is fired, it must be fired in o; otherwise, there would be some 
marking reached infinitely often by m in which t: is enabled. Since f’, fires, ti cannot 
fire; hence, there must be a marking JL E R( 9) such that p( pi) = 0. Therefore, 
BRP +rlME BRP-SO +rPTIME NTPStatC-fair. 0 

Theorem 4.21. RP s P1’iME NTPp~d-fai’. 

f. We will use the fact that RP-SO = -mrME RP. Let s=(f, T, ~,p~) be an 
arbitrary PN with a designated place pi. We again construct 9’ as shown in Fig. 
10. Suppose there is a JL E R(9) such that JL( pi) = 0. Let o be such that cc0 * ~1. 
We claim that v’= ut’,titit$. . . is pred-fair. To see this, first note that after 1’1 fires 
only one marking is reachable. Since this marking is reached infinitely often by g’, 
a’ must be pred-fair. Now suppose that there is an infinite pred-fair firing sequence 
u in 9’. Let M = {y 1 y ( p! ) = 0 and ~1 (pi) = 0). Since no marking in M c;n be 
reached in an infinite firing sequence, there must be some i E N such that p. L CL’, 
such that no marking in M is in R( P, r, Q, p'). Clearly, f$ cannot occur in o[ i], 
nor can it be enabled at p’. Therefore, there must be some p E R(S) such that 
g( pi) = 0. Thus, RP-SO sPrlME RP s mIME NTPpred-fair. 0 

Finally, we examine equifairness as defined by Francez [ 131. Given a Petri net 9 
and an infinite firing sequence a, o is said to be 

equifrir iff there exist infinitely many i such that all transitions occur the same 
number of times in o[i]. 
We will show this problem to be equivalent to the BP. In order to show this, we 

must introduce some terminology from [31] (see also [32]). Let 9 = (P, T, cp, po) be 
a PN. A generalized marking is a mapping p : P + 2, where 2 is the set of integers. 
A general~zed$ring sequence from cl0 is any sequence of transitions. We then extend 
the notation p A cc’ to generalized markings. An i-loop is a nonempty sequence a 
of transitions cl0 s p. such that there are i places pl , . . . , pi such that for any j s n, 
where n is the length of cr, luo s pj and pj( pi*) 2 0 for 1 s i’ G i. Using a strategy 
similar to that of Rat off [31], we can show the following lemma. 
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Fig. 1 I. 9 for equifairness. 

Lemma 4.22. Given a PN 9 = (P, T, cp, ~1~) and an i G 1 PI, we can decide in space 
2 cn log n for som constant c whether there is an i-loop in 9. 

We can now show the following. 

Theorem 4.23. NTPeqUifa” s m[ME BP. 

ProOf. we first show NTPCqUif’ir SmlME BP. Let g = (P, T, tp, p,,) be an arbitrary 
PN. We construct 9’ as shown in Fig. 11. Clearly, 9’ has a IPI-loop iff 9 has ar! 
infinite equifair firing sequence. Therefore, from Lemma 4.22 and [23], 
NTPCqUifai’ s m,ME BP. 

We now show BP +rIME NTPCqUifai’. ‘We will use the fact that CP = m[ME BP. Let 
9 be an arbitrary PN, and let ~1 be an arbitrary marking. We construct 9’ as in 
Theorem 4.7. Clearly, if 9’ has an infinite equifair path, there is a P’E R( !Y) such 
that ~1’ 2 cc. Suppose, conversely, that cl0 % $2 CL. (Here, u is a firing sequence, 

as opposed to a generalized firing sequence.) Let i be the maximum number of 
occurrences of any transition in U. Clearly, B followed by i occurrences of t’ is a 
firing sequence in 9’. This firing sequence can then be followed by enough occurren- 
ces of each transition so that each transition occurs exactly i times. This can then 
be repeated infinitely many times. Therefore, BP s mIME C 

. Conclusion 

We have exhibited a temporal logi? werful enough to express certain fairness 

constraints, yet whose F lent to the reachability 
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Table 1 

NTP Comi;lex!ty” NTP Complexity” 

Ml 

Ml’ 
M2 
M2’ 
i I3 
M3’ 
Tl 
Tl’ 
T2 
T2’ 
T3 
l-3’ 

RP 
NL 
RP 
RP 
RP 
RP 
BP 
BP 
BP 
BP 
BP 
BP 

imp 
just 
fair 
bd-fair 
fdp-9 
fdp- Th 
fair-9 
r-fair 
m-fair 
state-fair 
pred-fair 
equifair 

BP 
>RP 
z 
NPR 
>RP 
RP 
z 
\I )“I 
RP 
D, 2 i3RP 
zRRP 
BP 

a 2 BRP, as hard as the BRP, 3 RP. as hard as the RP; NrR. 
dxidable, b;t not primitive recursive; D, decidable. 
h fdp-T, fdp-5 \\ith ISI= 1. 

This Logic was instrumental in showing seven fair nontermination problems to be 

equivalent to PP. In develcping this logic, we were able to answer a question left 

open in [ 161, namely, is there a decision procedure for Z”(Q’)? We were able to 

give a positive answer to this qtiestion and show that the problem is equivalent to 
reachability. One question thal remains open is whether there is a decision procedure 

for p( Q’, GF); i.e., wffs including predicates from Q’ and the operators GF, A, v, 

and 1, where 1 is allowed only on predicates. 

Table 1 summarizes the fairness results of this payer. 

Most of the problems examined have been shown to be either equivalent to 

boundedness, equivalent to reachability, or X:-complete. Two exceptions to this 

general rule are NTP”” and NTPbd“““. NTP”” can be decided in nondeterministic 
logspace because the entire allowable reachability se; is explicitly given as input. 

Using the fact that bounded PNs can generate very large numbers, we were able to 

show that NTPhd-“” ’ IS not primitive recursive. Aside from the fact that the precise 

complexity of RP is still unknown, the precise complexities of four of the fair 

nontermination problems we have examined remain open. Actually, JanEar [ 191 has 
recently shown NTP’““’ and NTPrdp-*’ to be decidable. These two problems are 
particularly interesting because they are related to the open temporal logic question 
mentioned above; i.e., they are both expressible in 2?( Q’, GF). It will be interesting 
to see if Jantar‘s techniques can be extended to L&Q’, GF). 

We would like to than 
CO ents. 

+a 

Carstensen for is suggestions and encouraging 

for suggesting that model checking with 
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respect to general PNs might be decidable for Z&Q’, 
thank the referees for their helpful comments. 

). We would also like to 

After the final revision of this paper was completed, JanEar extended his work 
to show that L?( Q’, GF) is, in fact, decidable. All of JanEar’s results on NTPj”“‘, 
NTPfdp-3, and f(Q’, GF) may be found in 1193. 
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