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Abstract

Howell, R.R., L.E. Rosier and H.-C. Yen, A taxonomy of fairness and temporal logic problems
for Petri nets, Theoretical Computer Science 82 (1991) 341-372.

In this paper, we d:fine a temporal logic for reasoning about Petri nets. We show the model
checking problzm for this logic to be PTIME equivalent to the Petri net reachability problem.
Using this iryic and two refinements, we show the fair nontermination problem to be PTIME
equivalent to reachability for several definitions of fairness. For other versions of fairness, this
problem is shown to be either PTIME equivalent to the boundedness problem or highly undeci-
dable. In all, 24 versions of fairness are examined.

1. introduction

In the specification and analysis of concurrent systems, some notion of fairness
is often necessary to exclude from consideration certain computations which prevent
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particular events from occurring, even though these events may be possible infinitely
often. Many d.finitions of fairness have been proposed (see, e.g., [5-8, 13, 21, 22,
30]), and each has its merit in particular applications. Several versions of fairness
have been defined (or adapted) for Petri nets [5-8, 30], a powerful formalism often
employed to model concurrent systems [28]. Decidability issues concerning fairness
in Petri nets were considered in [6, 7, 38]. One problem examined in these papers
is the fair nontermination problem [11]; i.e., for a certain definition of fairness,
does there exist an infinite fair computation? Though the decidability of a number
of these problems has been determined, only a few rough complexity bounds have
been given for those known to be decidable [7]. In [16], we examined the complexity
of the fair nontermination problem for conflict-free Petri nets with respect to several
definitions of fairness. In this paper, we extend this study to general Petri nets,
examining the 24 versions of fairness presented in [5-8, 13, 21, 22, 30]. The results
of this study are summarized in Section 5 (Table 1).

In the study of Petri nets, a scarcity of knowledge concerning computation=l
complexity is by no means unique to the fair nontermination problem. For example,
the precise complexity of the reachability problem has remained elusive for many
years. For this problem, the most efficient algorithm is not primitive recursive [20, 25],
whereas the best known lower bound is exponential space [23]). We show in this
paper that there is a close relationship between the reachability problem and several
of the fair nontermination problems. In particular, we show several of these problems
to be equivalent to reachability; i.e., their complexities are equivalent to that of
reachability with respect to PTIME many-one reductions. (Throughout this paper,
we will use the word *‘equivalent™ in this sense when referring to decision problems.)
Thus, to determine the precise complexity of any of these problems (modulo PTIME
reductions), it is sufficient to consider only the reachability problem. For examples
of other (more classical) problems known to be equivalent to reachability, see [28].

Clearly, since some versions of the fair nontermination problem have been shown
to be undecidable [6, 7], not all versions are equivalent to reachability. Rather, one
of the main points of this paper is that most versions are either highly undecidable
(in particular, complete for =}—the first level of the analytical hierarchy), equivalent
to reachability, or equivalent to boundedness (i.e., exponential space complete with
respect to PTIME many-one reductions). In some sense, it is easier to show problems
to be highly undecidable or equivalent to boundedness than it is to show equivalence
to reachability. The reason for this is that highiv undecidable problems and exponen-
tial space complete problems as a whole are fairly well understood. The reachability
problem, however, is not well understood, as is evidenced by the lack of knowledge
concerning its complexity. Hence, as a way to overcome this difficulty, we develop
in this paper a framework based upon temporal logic for reducing fair nontermina-
tion problems to the reachability problem.

For some time, temporal logic has been considered an appropriate formalism for
reasoning about systems of concurrent programs [24, 29]. A typical problem involv-
ing temporal logic is the model checking problem [10]; i.e., determining whether a
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given structure defines a model of a correctness specification expressed in the
temporal logic. The problem can be formally stated in a variety of ways. For the
purposes of this paper, model checking is the problem of deciding whether in a
given Petri net there is an infinite firing sequence satisfying a given temporal logic
formula. This version of model checking (with respect to finite-state structures) was
referred to as “‘determination of truth in a structure” in [33]. What makes the model
checking problem useful for us is that most fairness specifications can be stated in
some temporal logic (see, e.g., [11]). Thus, a fair nontermination problem can be
reduced to a model checking problem. Now in order for this reduction to be useful
(for our purposes), the model checking problem must be no harder than reachability.
Unfcrtunately, we were able to show in [16] that for a fairly simple temporal logic,
the model checking problem is undecidable, even for conflict-free Petri nets (see
also [35]). On the other hand, we were able to show a subset of the logic to be
NP-complete for conflict-free nets. This logic utilizes the predicates ge(p, c) (place
p is greater than or equal to c), en(t) (transition ¢ is enabled) and fi(¢) (transition
t is the next to fire). Call this set of predicates Q'. The operators used are F
(sometime), X (next time), A (and), v (or), and — (not), where — is used only on
predicates. The problem with this logic (which we will call L(Q', F, X)) is that it
can only make assertions about finite portions of (possibly infinite) firing sequences.
Hence, it is only marginally useful for expressing fairness constraints.

With respect to general Petri nets, it is not hard to see that P(Q', F, X) is powerful
enough to express reachability. Thus, the model checking problem for this logic is
as hard as reachability. In this paper, we extend this logic by adding new predicates
which give it the power to specify certain loops. This strategy differs from our
analysis in [16], where we kept the set of predicates fixed but restricted the use of
the operztors in order to develop various logics. With this new logic (which we will
call .SZ’( Q, F, X)) we associate a variation of the model checking problem which we
call the finite model checking problem. This problem is to determine whether there
exists a finite firing sequence that satisfies a given formula. The reason we introduce
the finite model checking problem is to allow us to use predicates asserting that a
firing sequence produces a nonnegative (or zero) net change on a given place; this
assertion would not make sense for arbitrary infinite firing sequences. We are then
able to show that the finite mocel checking problem for .SZ'(Q F, X) is equivalent
to reachability. In so doing, we develop a methodology for admitting new predlcates
to the logic without destroying its equivalence to reachablllty Because £(Q, F, X)
has the power to specify loops, it can specify that certzi: 'vpes of events occur
infinitely often. In pamcular suppose we wish to determire whether a Petri net 2
is a model for a formula f e Z( Q’, F, X). We need only to find a finite ﬁrmg sequence
that satisfies f and ends in a loop. We can specify a path of this type in #(Q,F, X),
hence, the model checking problem for Z( Q F, X) may be expressed as an instance
of the finite model checking problem for Z(Q, F, X). Furthermore, P(Q,F,X) is
powerful enough 10 express formulas of the form “infinitely often g,’ > where g is a
2golean combination of predicates from Q'. (Call this set of formulas £(Q’).)
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Again, we can express the model checkmg problem for £™(Q’) as an instance of
the finite model checking problem for 2(Q, F, X). This answers a question left open
in [16] as to whether the model checking probiem for £*(Q') is decidable for
conflict-free Petri nets. Perhaps the most important property of P(Q,F, X) is its
ability to succinctly express various definitions of fairness—namely, co-fairness [5],
fdp-T where T is a set of transitions [7], and five types of fairness introduced by
Landweber [21] and Carstensen and Valk [8]. As a result, we are able to show the
fair nontermination problems for all of these types of fairness to be equivalent to
reachability. Thus, P(Q,F,X) provides a powerful mechanism for showing
equivalence of certain fair nontermination problems to reachability. Finally, we
might also mention that the existence of such a logic is somewhat surprising in view
of the aforementioned negative results of [16].

Since so many of the decidable versions of the fair nontermination problem are
equivalent to more classical Petri net problems, one might surmise that the undeci-
dable versions are equivalent to containment and equivalence, which have been
shown to be undecidable in [4] and [ 14], respectively. Since reachability is decidable,
it is not hard to see that both of these problems are in II, ; i.e., they are co-r.e. As
Vidal-Naquet [6] and Carstensen [7] have demonstrated, the key step in showing
that any version is undecidable is to show that the Petri net under the given fairness
constraint can simulate zero-testing. Once zero-testing can be performed, the Petri
net can simulate an arbitrary Turing machine. Carstensen [7] has also exhibited
another interesting capability of Petri nets under certain fairness constraints: the
ability to nondeterministically generate any natural number without running the
risk of entering an infinite loop. Thus, unbounded nondeterminism can be simulated.
We use this fact to show that these versions are complete for ;. Hence, these
problems are highly undecidable and not equivalent to contzinment or equivalence.
These results may be compared and contrasted with those of [1-3, 9, 15, 27, 34].

The remainder of the paper is organized as follows. In Section 2, we give the
basic definitions of Petri nets and temporal logic. In Section 3, we develop the logics
that are later used to show various types of fair nontermination problems to be
equivalent to reachability. In Section 4, we examine the fair nontermination problem
for the 24 types of fairness. In most cases, we are able to show the problems to be
either highly undecidable, equivalent to reachability, or equivalent to boundedness.
One exception is with respect to fairness (as defined in [22]) for bounded Petri nets,
as is mentioned in [7]. Although this problem is clearly decidable, we are able to
show it to be nonprimitive recursive. We conclude in Section 5 with a summary of
our results and a discussion of open problems.

2. Definitions

A Petri Net (PN) is a tuple (P, T, ¢, n,), where P is a finite set of places, T is a
finite set oi transitions, ¢ is a flow function ¢ :(Px T)u (T x P)-> N, and Mo is the
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initial marking p,: P> N, where N is the set of natural numbers. A marking is a
mapping u:P-> N. We often establish an order on the places, p,,..., p:, and

designate a marking u as a vector in N¥, where the ith component represents u( p;).

A transition t€ T is enabled at a marking u iff for every pe P, o(p, t)<pu(p). A
transition ¢ may fire at a marking p if t is enabled at . We then write u > u',
where 1 \y} —F.\p)—'q'i(ﬁ, i) rop\l p; for all }76 P A acqueﬁce of transitions o =
t,...l, is a firing sequence from p, iff o L5 py 25 -« - 2, u, for some sequence of
markings u,, ..., p,. We also write uo > u,,and denote t,.. .5, by o[ jlfor1 <j=<n.
We extend these notions to infinite firing sequences in the obvious way.

For a PN @ =(P, T, ¢, i), the reachability set of P is the set R(P)={u|po> u
for some o}. Given a marking u of 2, the reachability probiem (RP) is to determine
whether u € R(2). The boundedness problem (BP) is to determine whether R(%)
is finite. Throughout this paper, we will define several fairness properties for firing
sequences. Given a fairness property x, the nontermination problem with respect to
x (NTP”) is to determine whether there is an infinite firing sequence o in 2 taat
satisfies x.

A labeled Petri net is a triple ? =(2,, 2, h), where ?,=(P, T, ¢, o) is a PN, X
is a finite set of labels, and h: T> X u{e} is a labeling function. We also extend
h:T*> X* by h(e)=¢ and h(ot) = h(o)h(t). Given a marking u of P, we define
the terminal language of ? with respect to u as L'(P, u) ={h(o)| o = u}.

Let & denote the set of all PNs, 7* denote all finite firing sequences of nets in
N, T“ denote all infinite ﬁring sequences of netsin N, and I~ = T*u J“. A predicate
is a partial function g: ¥ x ™ x N - {true, false}. A well- formed Jormula (wff) is
either a predicate or of the form —f, fa g, Xf, or fU g, where f and g are wffs. We
will use the notation (2, o, n)E=f to signify that the wff f holds after n transitions
have fired in the firing sequence o of the PN 2. More formally, for e N, o a
(finite or infinite) firing sequence of 2, n€ N, and a predicate g, we say (%, o, n)=q
iff q(2, o, n) =true. For a firing sequence o of ? and wffs f and g, we say.

e (P, o, n)=f iff not ((?, o, n)Ef),;

e (P, onmE=Xfift (P,o,n+1)Ef;

® (?,0,n)=fUg iff 3r>n such that (?,0,r)=g and Vs, n<s<r, (P, 0,5)E f;
® (P, o,nkEfrgiff (P o, n)kE=fand (P, o, n)Eg.

We also use the following abbreviations:

® fvg=(1fag)

® fog=—fvg;

e Ff=true Uf,

® Gf=Ff.

We say that 2 is a (finite) model for f iff there is an infinite (finite, respectively)
firing sequence o in 2 such that (2, 0, 0)= f. Let F be a set of wffs. The (finite)
model checking problem with respect to , denoted MCP(F) (FMCP(%), respectively),
is to determine whether a given PN @ is a (finite) model for a given formula f€ Z.
Let Q be a sct of predicates. We then define
® 4(Q)={f|fis a wff using predicates from Q};
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e P(Q,F,X)={f|f is a wif using predicates from Q and the operators F, X, A,

v, and 1, such that - is used only on predicates}; and
® ¥*(Q)={GFf|f is a Boolean combination of predicates from Q}.

Fora PN ?=(P, T, ¢, no), a Wit £, and a natural number n, we define the model
language of P with respect to fand n as L™ (2, f, n) ={o | o is finite and (P, o, n)E= f}.
A set & of wfls is said to be RP-decidable iff for all fe F, P € N, we can construct
in PTIME a labeled PN ?'=(2}, X, h), P1=(P", T, ¢', uo), P'=p,,..., px, and
a marking u’ on p,,..., px_, such that for all ne N, L™(2, f,n)=L'(?',(u', n)).
We will refer to p, as the marker.

3. A temporal logic for Petri nets

In this section, we will present a temporal logic for reasoning atout Petri nets
such that if & is the set of all wffs in the logic, then FMCP(%) =prme RP. The
logic will be _‘Z’( Q, F, X) for a set Q of predicates to be defined later. Even though
FMCP(.SZ’(Q, F, X)) is no harder than RP, Q will contain a sufficient variety of
predicates to provide a powerful mechanism for showing fair nontermination prob-
lems to be equivalent to RP. Furthermore, certain restrictions of the logic provide
interesting extensions to the results shown in [16]. The first extension we show is
that MCP(£(Q', F, X)) =prime RP, where Q' is the set of predicates from the logic
developed in [16]. The second extension is that MCP(£*(Q’)) =prime RP. Both of
these extensions may be considered refinements of the main result of this section—
that FMCP(.SZ’(Q, F, X)) =prime RP. All of these logics will be used in the next
section to show various fair nontermination problems to be equivalent to RP. The
main result of this section may thersfore be viewed as an umbrella under which a
number of the subsequent results in this paper are derived.

In order to show that FMCP(Z( Q, F, X)) <prime RP, we will first show that the
reduction holds for any RP-decidable set of predicates whose negations are also
RP-decidable. We will then define Q and show that both Q and Q ={—q|q<c Q}
are RP-decidable. We first state the following lemma, which follows immediately
from the definition of the terminal language of a labeled PN.

Lemma 3.1. Given a labeled PN ? =(%,, X, h) and a marking u, L'(P, u) #9 iff
® € R(2)).

We can now give the following lemma, relating the FMCP to the RP.
Lemma 3.2. For a set of wffs %, if F is RP-decidable, then FMCP(%) <prime RP.

Proof. Given an RP-decidable set & of wfls, let fe€ %, and let 2 be an arbitrary
PN. Since # is RP-decidable, we can construct in PTIME a labeled PN ' =
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(21,2, h) and a marking u such that L'(?', u)=L" (2, £0). Then 2 is a finite
model for f iff L™(P, £,0)#0 if L' (P, u)#0 iff peR(P]). Therefore,
FMCP(%) <prme RP. O

The following theorem now gives a framework for defining our set of predicates.

Theorem 3.3. If a set of predicates Q is RP-decidable and 0o ={q|qe Q} is RP-
decidable, then FMCP(Z(Q, F, X)) <prime RP.

Proof. We will show by induction on the structure of fe P( Q, F, X) that for any
PN 2, we can construct in PTIME a labeled PN %' and a submarking u such that
forallne N, L'(?', (u, n)) = L™ (2, f, n). The theorem will then follow from Lemma
32. If feQu 6, this is trivial. Therefore, assume we have f}, f.€ 2( Q, F, X) such
that for any PN 2, we can construct in PTIME labeled PNs 2}, ?; and markings
i1, i such that for all ne N, L'(2}, (u,, n))=L" (2, f,,n) and L'(P5, (u,, n)) =
L™ (2, f>, n).

Case 1: f=f,nf>. We construct ' from 2| and 2; as follows. Let T,, (T,,) be
the set of all transitions labeled a in 2} (2}, respectively) for all a€ 3 U {&}, where
3 ={a,,...,a,} is the ~Iphabet of L™(2, f, n). We relabel all transitions in #] and
P! as €, and add m + 1 new transitions and 2m + 3 new places, as is shown in Figure
1. We define p as:
® u(p;)=pi(py) fori=1,2,j=1,....,k—1;
® u(pa,)=0 where p; is the marker for 2, i=1,2;
® p(ack;)=1fori=1,2;
® p(en;)=0fori=1,2,j=1,...,m.

Pmark is the marker for 2'. It is not hard to see that for all ne N, o L'(#', (i, n))
if oceLl'(?,,(u,,n))nL(PS, (u2,n)) iff o€ L™(P, fi,n)nL"(P, fr,n) iff
(P,o,n)E= finfs iff e L™(2, f, n).

Case 2: f=f,vf,. ?' nondeterministically chooses to simulate ~ne of ?; or 23;
the other, it brings immediately to its final marking with a zero marker value. P’
can also transfer all tokens from the markers of 2} and 2! to its marker. The details
4ro .eft to the reader.

Case 3: f=Xf,. ?' simulates 2}, but in order to reach its final marking, it must
subtract 1 from the marker.

Case 4: f = Ff,. This is the same as Case 3 except that 2’ can subtract more than
1 from the marker. [

We are now ready to define our predicates. For a PN 2=(P, T, ¢, o), PE P,
te T, c,ne N, and a finite firing sequence o, let:
© (P, 0, n)Ege(p, ¢) iff po " p and pu(p)=c;
® (P, o, n)=fi(t) iff t is the (n+ 1)st transition in o;
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® (P.a, n)EIp(p) iff o> w1, oD w2, and p,(p) < pa(p);

© (P, 0, ME=ZI(p) iff po "> py, po D o, 3d pa(p) = ol p);

® (P, 0, n)=co(p) iff po 5> u, and there is a po€ R(P, T, @, ;) such that p,=> p.
Let Q be the set of all of the above predicates for all places p and transitions ¢,
and (:) ={q|—q € Q}. We wish to show that fMCP(i’(Q, F, X)) <prime RP. From
Theorem 3.3, we need only show that Q and Q are RP-decidable. For most ciements
of Qu é, this is straightforward. The main difficulty lies with —ico(w). In showing
1co(u ) to be RP-decidable, we will construct a PN that will in some sense produce
all markings from which no marking greater than or equali to u can be reached. In
order to construct such a PN, we first construct a modified Turing machine (TM)
that accomplishes the same purpose. This modified TM will be such that using
Lipton’s construction [23], we can transform it to a PN. In order to define the
precise function of the modified TM, we introduce the following notation. Given
an unmarked PN ?=(P, T, ), a marking u, and a positive ¢, let S(P, u)=
{malVe'zp, w'eR(P, T, o,p)}, and S(P,u,c)={u#>"""" |moe S(?, n)},
where n is the number of bits needed tc encode 2 and u. Also, let S(2, 1) and
S'(P, u, ¢) denote the complements of S(P?, u) and S'(2, u, c), respectively. We
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now give two lemmas which define the function of the modified TM and give its
construction.

Lemmia 3.4. There is a positive constant c such that for any unmarked PN ? = (P, T, ¢)
and marking p, we can construct in PTIME a linearly bounded automaton (LBA) M
that accepts the set S'(P, u, c).

Proof. For any fixed constant ¢, we can clearly verify deterministically in linear
space whether the input is syntactically correct and the number of #s is correct.
From [31], if u, bl p1= u, then o= i>= p such that the length of o, is no more
than 22" for some constant d. Thus, any marking produced in this firing sequence
can be stored in size(pu,)+2"'*" bits for some constant ¢. $'(P, u, c) is t-erefore
accepted by an LBA M’ that can be constructed in PTIME. From [18, 36], there is
an LBA M that accepts S'(2, u, ¢). An inspection of the proofs in [18, 36] revea’«
that M can be constructed from M’ in PTIME. O

Lemma 3.5. Let P, u, and n be as in Lemma 3.4, and let k be the number of places
in . We can construct in PTIME an O(2°"'°®") space bounded TM M with no input
tape, augmented with k unbounded increment-only counters such that the set of final
counter values in all accepting computations is S(P, ).

Proof. Let d be the constant from [31] mentioned in the proof of Lemma 3.4. We
define 2 function g mapping markings to markings such that

Sdn[logn]

_fulp)  if p(p)=2-
g(u)(p)= {22""““3"] otherwise.

It follows from [31] that uoe S(P, u) iff g(uo) € S(P, u). We can therefore construct
M to operate as follows. M first nondeterministically generates k nonnegative
integers no larger than 2°“"™"' and stores them on its worktape and on the k
counters. If any of these values are exactly 2>, the corresponding counters may
be incremented arbitrarily many times. M then writes #>""™"' on its worktape,
where c is the constant from Lemma 3.4, and simulates the machine given by Lemma

3.4 on the contents of its worktape. The result follows from Lemma 3.4. [

We are now ready to show the main result of this section, that FMC P(.SZ( Q F X))
is equivalent to RP. From this result we will subsequently derive two refinements
conceining logics developed in [16]; these refinements will be given in Theorems
3.7 and 3.9. We will then use Theorem 3.6 and its refinements in Section 4 to show
seven fair nonterminaiion problems to be equivalent to RP. The reason we can use
a finite model checking problem to encode a fair nontermination problem is that
52’( Q, F, X) has the power to express certain loops which may be iterated to produce
an infinite “fair” path. Thus, Theorem 3.6 is an umbrella under which powerful
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machinery is developed for proving certain fair nonterminzt.on problems to be
equivalent to RP.

Theorem 3.6. FMCP(Z(Q, F, X)) =prime RP.

Proof. Let 2 = (P, T, ¢, o) be an arbitrary PN, and iet u be an arbitrary marking
of 2. Clearly, u € R(P) iff there is a finite firing sequence o such that

(2, o, 0>'=[ A (ge(p, u(p)) A ge(p, n(p)+ 1))]

pe P

vF[ /\P (ge(p, u(p)) A ge(p, u(p)+ 1))]-
pt

Thus, RP <ppme FMCP(Z(Q, F, X)).

In order to show that FMCP(JZ’( Q, F, X)) <ppime RP, we need only to show that
Q and Q are RP-decidable; the theorem then follows from Theorem 3.3. Let
P=(P, T, ¢, no) be an arbitrary PN. We need to show that for any element q of
Qu Q, we can construct in PTIME a labeled PN 2’ and a marking u’ such that
forany ne N, L"(%, g,n)=L'(?',(u', n)). Since most of the cases are straightfor-
ward, we will only show the cases ge(p;, ¢) and —co(u).

Case 1: q=ge(p;, c). We construct ?' asshownin Fig. 2. Let u'(en;) =1, u'(p) =0
if p#en, and p # py.a, Where po.q is the marker. In order to reach (u', n), 2’
must pass through two phases. In the first phase, 2’ simulates n transiiions of a
firing sequence o on two copies of 2. In the s¢cond phase, the remainder of o is
simulated on one of the copies. At any time, the transitions f.,..., ¢, t.,..., 1,
may fire. These transitions enable no new transitions, but allow all places in both
copies of P to be brought to 3 after the simulation of . Furthermore, t,. must fire
exactly once, guaranteeing that p, is at least ¢ after o[n] is executed in 2. It can
therefore be seen that L' (2, q, n)=L'(?', (u', n)).

Case 2: q=—co(u). Before we construct 2, we wiii construct a PN 2" with
designated piaces py, ..., p{,where k is the number of places in 2, and a submarking
1" on the remaining places in 2", such that for any marking u, of 2, (n,, u") € R(2")
iff £,€ S((P. T, ¢),n). Let M be the machine given by Lemma 3.5 to compute
S((P, T, ¢), ). Since the worktape of M is bounded by O(2°"'°¢") space, it can be
simulated by four O(2*""*") bounded counters; furthermore, this construction can
be done in PTIME. From [23], we can construct in PTIME a PN and a marking
w” such that any firing sequence yielding u” simulates an accepting computation
of M without its k unbounded counters. Since the k unbounded counters are
increment-only, they can clearly be implemented by k places in the PN. We have
therefore constructed #" and u". The construction of ' and u' from 2, 2", and
p" is now similar to Case 1 and is shown in Fig. 3. It should be clear that
L"™(P,qn)=L"(P (e, n)). O
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We now will examine two logics developed in [16]. We can show that the MCP
for both problems can be expressed as restrictions of FMCP(fZ’(Q, F, X)). We will
use these two logics in Theorems 4.2 and 4.10 to give succinct reductions from
various fair nontermir:.ztion problems to RP.

Let Q' be the set of predicates ge(p, ¢) and fi(t) extended to infinite firing
sequences, and let Q~’={-1q|qe Q'}. MCP(£(Q', F, X)) was shown in [16] to be
NP-complete for conflict-free PNs. (The logic in [16] also included predicates
asserting that a transition  is enabled; this assertion and its negation can clearly
be encoded in £(Q', F, X).) Although £(Q’, F, X) can only express loops in which
the repeated markings are exnlicitly stated, this is sufficient to encode several of the
types of fairness given by Landweber [21] and Carstensen and Valk [®]. We now
show that MCP(@(Q', F, X)) for general PNs is equivalent to reachability.
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Theorem 3.7. MCP(Z(Q, F, X)) =prime RP.

Proof. We will first show RP <ppme MCP(JZ’(Q', F, X)). Let 2 be an arbitrary PN
and u be an arbitrary marking of ?. We construct a PN #' from 2 by adding a
transition ¢ that does nothing and is always enabled. Clearly, u € R(2’) iff u € R(P),
and any finite firing sequence in ?' can be made infinite. Since we can express
reachability in SZ’(Q’, F,X) as in the ©proof of Theorem 3.6,
RP <prive MCP(Z(Q', F, X)).

We will now show MCP(ZL(Q', F, X)) <prime RP. We will reduce tlic MCP to
FMCP(Z(Q', F, X)); the result will then follow from Theorem 3.6. Let =
(P, T, ¢, o) be an arbitrary PN, and let f be an arbitrary wff in £Z’(Q’, F, X). Let
f'=faF A, plp(p). It is a straightforward matter to show that 2 is a model for
St P is a finite model for f'. O

One question left open in [16] was whether MCP(£>*(Q’)) is decidable for
conflict-free PNs. In Theorem 3.9, we will give a positive answer to this question
by showing the problem with respect to general PNs to be equivalent to RP. Again,
Theorem 3.9 may be viewed as a refinement of Theorem 3.6. Clearly, £*(Q’) can
be used to express fairness constraints for which a certain event must be repeated
infinitely often. We now define the following terminology. A set of wffs ¥ is
Q-pumpable iff there is a PTIME function g: % > H( Q, F, X) such that

(1) for any fe %, and any infinite firing sequence o in 2, if (2, o, 0)= GFf, then
for any infinite set I of natural numbers such that if i € I, then (2, o, i)=f; there is
an infinite subset I’ of I such that for any i, je I', i <j, (?, o[j], i)=g(f); and
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(2) if g> (P, T,e, y.o) is such that (P, o, n)k=g(f) for some finite o =o[n]o’,
then yo——-> py 5 @y - - - such that (P, T, ¢, &), o'[1],0)=f for all j=1.
Before showing Theorem 3.9, we give the following lemma.

Lemma 3.8. The set of all positive Boolean combinations of predicates in Q' Q' is
Q-pumpable.

Proof. Let ? =(P, T, ¢, po) be an arbitrary PN. We will show by induction on the
structure of f that we can construct in PTIME a g( f) satisfying conditions (1) and
(2) above.

Base Case 1: f=ge(p, c). Let g(f)=ge(p, c) A\, p IP(p'). Let o be any infinite
firing sequence such that (2, o, 0)F GFf, and let I be any mﬁmte set of natural
numbers such that if i€ I, then (2, o, i)F f. Let u,; be such thai u, LIUN mi, and let

0 be the sequence u; , iy, . .. such that {i,, i>,...} =1 and ij<i,<---.Since @ is
infinite, there must be an infinite subsequence of 6, 6'=u;, m;,,... such that
M, <p,<---. Clearly, for any natural numbers r and s such that r<s,

(P, oljs), j.)Eg(f). Part (2) clearly holds.

Base Case 2: f=—ge(p,c). g(f)=—ge(p,c)rzl(p)A A, plp(p’) clearly works.

Base Case 3: f=fi(t). g(f)=fi(1) A\, p Ip(p’) clearly works.

Base Case 4: f="fi(t). g(f)=—fi(1) A A, .p1p(p’) clearly works.

Now assume we have f; and f, for which conditicns (1) ar 4 (2) hold.

Case 5: f=fivf.. Let g(f)=g(fi) v g(fs). Let o be any infinite firing sequence
such that (2, o, 0)= GFf, and let I be any infinite set of natural numbers i such that
(P, o, iY=f. There must be some infinite subset I' of I such that either Vie I,
(P,0,d)=f,,orViel', (P, o, i)= f,. Assume without loss of generality that Vie I',
(2P, o, i)~ f,. From the induction hypothesis, there is an infinite subset 1" of I’ such
that for any i, je I", i <j, (P, olj], )= g(f,). Then (P, o[ j], iY=g(f).

Now suppose P =(P, T, ¢, uo) such that (P, o, n)Fg(f) for some finite o=
oin]o’. Then either (2, o, n)=g(f,) or (2, o, n)E=g(f>). Wlthout loss of generallty,
assume the former. From the induction hypothesis, ,uo——* D o5 -+ such
that (P, T, ¢, i;), o[1], 0)=f; for all j=1. Therefore, ((P, T, ¢, ;), o[1],0)= f; v
L=/

Case 6: f=f,rf>. Let g(f)=g(fi) A g(f:). Let o be any infinite firing sequence
such that (2, o, 0)= GFf, and let I be any infinite set of natural numbers i such that
(P, g, i)=f. Then for any i€ I, (%, o, i)E f;. From the induction hypothesis, there
is an infinite subset I’ of I such that for any i, je I', i <j, (%, o[ j], Y= g(f1). Since
I'c I forany i€ I',(?, o, i)= f,. From the induction hypothesis, there is an infinite
subset I" of I' such that for any i, je I, i <j, (%, o[j], i)=g(f2). Consequently,
(2, olj}, D g(f).

Now suppose P =(P, T, ¢, u) such that (%, o, n)=g(f) for some finite o=
o[n]o’. Then (2, o, n)F= g(f)) and (2, o, n)F= g( f>). From the induction hypothesis,
o= 4y B .S -+ such that (P, T,e,u), o'[1],00=f and (P, T, ¢,u),
o'[1], 0= £, for all j=1. Therefore, (P, T, o, u;), o' [1L, O)=finfo=f O
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Theorem 3.9. MCP(¥™(Q’)) =prime RP.

Proof. Let GFf € £7(Q’). We can construct in PTIME an f’= f such that negations
occur only on predicates in f'. Let g be the PTIME function constructed in Lemma
3.8. It now follows immediately from the properties of g that & is a model for f iff
@ is a finite model for g(f’'). Thus, MCP(%) <prime RP. The construction given in
Theorem 3.7 shows RP <ppyme MCP(E*(Q"). O

4. The fair nontermination problem

In this section, we examine the complexities of 24 fair nontermination problems.
We use the machinery developed in Section 3 to prove Theorems 4.2, 4.10, and 4.17,
where a total of seven of these problems are shown to be equivalent to RP. Particularly
in the latter two theorems, this machinery provides for very succinct reducticns to
RP, whereas “brute force” reductions are much longer and considerably more
tedious. In the remainder of the theorems in *his section, most of the problems we
study are shown to be either equivalent toc BP or =}-complete. The results of this
section are summarized in Section 5 (Table 1).

The first notions of fairness we consider were defined in [21] and [8]. These
definitions of fairness are such that a fair firing sequence must visit certain predefined
markings or transitions infinitely often. It is worth mentioning that the notion of
“enabledness’ does not play any role in these definitions (other than the fact that
the definitions deal with firing sequences). Given an infinite firing sequence o =
ht. .., we define inf*(o) (inf* (o)) to be the set of markings (transitions) that occur
mﬁmtely oftenin o (i.e., inf*(o) = { |there are infinitely many i such that g ==> u}
and inf'(¢) ={t;|t; occurs infinitely often in o}). Let &/ be a finite set of finite
nonempty sets of markings. An infinite firing sequence o = t,¢,. .. is said to be
e Ml-fair iff 3Ae ¥, Jie N: p.o-ﬂ p€A (ie, some marking reached by o

is in A).
© Ml'-fair iff 3Ae &, Vie N: p.oL> m;€ A (i.e., every marking reached by o

is in A).
® M2-fair iff 3A ¢ o, inf¥(g) n A# 9 (i.e., some marking reached infinitely often

by o is in A).
® M2'-fair iff 3A e &, inf¥(0) #0 and infM(o) < A (i.e., o reaches some marking

infinitely often and every marking reached infinitely often by o is in A).
® M3-fair iff 3A € o, inf¥'(o) = A (i.e., the set of markings reached infinitely often

by o is an eler-ent of ).
® M3'fair iff 3A€ &, Acinf¥(e) (i.e., every marking in A is reached infinitely

often by o).

Similarly, let & be a finite set of nonempty subsets of transitions. o is said to be:
® Ti-fair iff 3Ae &, Jie N": ,e A.
® Ti'-fair iff 3Ae &, Vie N": t,¢€ A.
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@ T2-fair iff 3Ae o, inf" (o) N A # 0.
® T2'-fuir iff A e &, inf" (o) < A.
® T3-f2ir iff 3A e o, inf" (o) = A.
® T3'-zii ff JAe oA, Acinf'(0).

We will now investigate the complexity of the nontermination problems with
respect to the above fairness constraints. The first theorem gives an exception to
our general classification scheme due to the fact that for M1'-fairness the entire
allowable reachability set is given as input to the problem.

Theorem 4.1. NTPM" is NLOGSPACE-complete.

Proof. The proof method =zre is similar to the proof used in [16] to solve a similar
problem for conflict-free Petri nets. For the sake of completeness, we sketch the
proof in what follows. To show the problem to be in NLOGSPACE, we first guess
an A in . Next, we check to make sure that the initial marking is in A. During
the entire procedure, we will maintain a pointer to keep track of the current marking.
(Note here that the amount of space needed to maintain such a pointer is logarithmic
in the size of the input.) Initially, the pointer points to the initial marking. We then
repeatedly guess a transition ¢ and a marking p in A and verify that u can be
produced by firing ¢t in the current marking. If so, u becomes the current marking.
If the above procedure can be performed for more than |A| times, then there is an
MT1'-fair computation. Clearly, the above procedure is in NLOGSPACE. The prob-
lem was shown to be NLOGSPACE-hard for confiict-free PNs in [16]; thus, it must
also be NLOGSPACE-hard for general PNs. [J

In showing the following theorem, we make use of the tempcral logic results
given in Theorems 3.7 and 3.9. This machinery makes the proof very succinct;
however, this particular theorem is not exceedingly difficult to prove without using
these results. The real power of our logic will be exploited in Theorems 4.10 and 4.17.

Theorem 4.2. NTP* =,1;me RP, for x € {M1, M2, M2', M3, M3'}.

Proof. We first show RP <ppqe NTP". We use a technique from [16]. Let # =
(P, T, ¢, uo) be an arbitrary PN and p be an arbitrary marking of . We now
construct a Petri net 2’ and a set & such that u € R(%) iff there is an x-fair
computation with respect tc &/ in 2’. The new Petri net ?’ is identical to 2 except
that it has an additional transition that is always enabled and does nothing. Now
let & ={{u}}. Clearly, u € R(?) iff #' has an x-fair computation with respect to
&, where x € {M1, M2, M2’, M3, M3'}. Furthermore, the reduction can be done in
polynomial time.

We will now show NTP® <prue RP for xe{M1, M2, M2', M3, M3'}. Let 2=
(P, T, ¢, i) be an arbitrary PN, and let & be a finite set of nonempty finite sets of
markings. For each element A of &/, let A={ma;, a2, .-, par,}. We will give for
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each x a wff f, such that ? has an infinite x-fair path iff 2 is a mode! for f;
furthermore, f, will be in either .SZ’(Q', F, X) or ¥*(Q’). The theorem will then
follow from Theorems 3.7 and 3.9. We define:
® eq(n)=A,.plge(p, u(p)) Age(p, u(p)+1)];
® in(A)=V, . eqn);
® fun=V ey (in(A)v Fin(A)},
® fM2E VAU,, GF“‘(A)9
® fur=V,. ., F(in(A)A X(in(A) A X(in(A)...X(in(A))...)))

(there are k4 X operators);
® fuy=V.cq Fleq(ma) A Fleq(pa) A - - A F(eq(par,) A Feq(pay)).. .)).
In order to define f\,;, we first construct for each A€ of a graph G4 = (A, E,), where
E+={(u, v)|u, ve A and for some t€ T, u > v}. We then let &' ={A| G, is sirongly
connected}. &' can clearly be constructed in PTIME (see, ¢.g., [37]). We now define:
® fmz=V, o Feqpa).
It should be clear that for each x, there is an infinite x-fair firing sequence in & iff
P is a model for f,. 0O

We now turn our attention to the 6 transition-related types of fairness. The NTP*,
for xe {T1, T1', T2, T2', T3, T3'}, has been shown to be decidable in [38]. However,
no complexity analysis was given there. In what follows, we show that these problems
are equivalent to the BP. The proofs require showing the fact that if an infinite
x-fair computation exists, then there must be a short “witness” to this fact. The
proof of such a fact, generally speaking, is based on the method that Rackoff used
in the complexity analysis of the BP in [31] (see also [32]).

A finite firing sequence oo’ is self-covering iff po = u;, > p, and u; = u;. (Note
that ¢’ can be executed infinitely many times.) We define T(o)={t|transition ¢
occurs in o}. (Similarly, T(o')={t|transition ¢ occurs in ¢'}.) Then we have the
following easily shown lemma.

Lemma 4.3. Given a Petri net P and a finite set o of finite nonempty sets of transitions,
there is an infinite x-fair firing sequence, where x € {T1, T1', T2, T2', T3, T3'}, iff there
is a self-covering firing sequence aa’ such that

(1) (T1-fair) 3Ae A, AnT(o)#0,

(2) (T1V'-fair) 3Ae A, T(o)u T(o') < A,

(3) (T2-fair) 3Aed, AnT(c')#0,

(4) (T2-fair) 3Ae oA, T(o')c A,

(5) (T3-fair) 3Ae o, T(o') = A,

(6) (T3'-fair) 3Ac o, Ac T(o').

We now give a lemma that allows us to derive an upper bound on the space
complexity of NTP", where x € {T1, T1’, T2, T2', T3, T3'}. The proof closely parallels
the proof of Rackoff [31]; hence, it is omitted.
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Lemma 4.4. Given a transition t and a set of transitions B, the length of the shortes:
self-covering firing sequence oo’, where t € T(o) and T(o"') = B, is bounded by 2>""*"
for some constant ¢ mdependem of t, B and n.

In order to derive lower bounds for NTP*, x € {T1, Tl', T2, T2', T3, T3'}, we define
the following problems, which are equivalent to BP with respect to PTIME many-one
reductions. (Note that these equivalences are not known to hold for LOG/LIN
many-one reductions.)

e INF:

Instance: Given a Petri net 2,

Question: Is there an infinite firing sequence?
e CP:

Instance: Given a Petri net ? and a marking u,

Question : Is there a u'e R(?) such that u < pu'?

The following lemma follows from results of Rackoff [31] «nd Lipton [23].

Lemma 4.5. INF =pTIME CP = PTIME BP.
We can now show the following.
Theorem 4.6. NTP* =pq e BP, for xe {T1, T1', T2, T2', T3, T3'}.

Proof. To show the NTP* <py e BP, we note that by applying Lemmas 4.3 and
4.4, we have an NSPACE(2”"'*®") upper bound for each problem. Since the BP is
hard for NSPACE(2*") with respect to PTIME many-one reductions [23],
NTPx sPTIME BP.

We now show BP <pryme NTP” for each x. Let 2 =(P, T, ¢, uo) be an arbitrary
PN, and let & ={T}. Clearly, # has an infinite x-fair firing sequence for xe
{T1, TV, T2,T2',T3'} iff it has an infinite firing sequence. Thus,
BP <prime INF <pprime NTP® for x€ {T1, T1', T2, T2', T3'}.

To show BP <ppme NTP™, we will use the fact that CP =pryue BP. Let 2 be an
arbitrary PN, and let u be an arbitrary marking. We construct ' by adding to 2
a new transition ¢ which does nothing but which is only enabled at markings u'= u.
Let £ = {{t}}. Clearly, @' has an infinite T3-fair firing sequence iff thereisa u' € R(2P)
cuch that u <pg'. Thus, BP <prme CP <ppme NTPT. O

We now examine the NTP with respect to several notions of fairness in which
the constraints are imposed in an implicit fashion, instead of by an explicit listing
of the markings and/or transitions that a “fair” firing sequence must visit. We will
first examine three types introduced in [22] and two extensions given in [7] (see
also [8]). Given 2 Petri net ? and a set of subsets of transitions 7, an infinite firing
sequence o is said to be:
© impartial iff every transition in 2 occurs infinitely often in o;
® just iff every transition that is enabled almost everywhere in o occurs infinitely

often in o;
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@ fair iff every transition that is enabled infinitely often in o occurs infinitely often
in o

® fdp with respect to 7 (fdp-7) ift for every T € J, if aimost everywhere in o some
tin T is enabled, then some ¢’ in T occurs infinitely often in o (here, fdp stands
for finite delay property);

® fair with respect to I (fair-J) iff for every T€ J, if some t in T is enabled
infinitely often in o, then some ¢' in T occurs infinitely often in o.

Theotem 4.7. NTP™ =pp e BP.

Proof. It is not hard to see that NTP'™ is a special case of NTP™ (by letting o/
contain only the set of all transitions); hence, from Theorem 4.6,
NTP™ <prime NTP™ <prime BP. In order to show that BP <pqme NTP™, we will
use the fact that CP =ppme BP. Let 2 =(P, T, ¢, o) be an arbitrary PN, and let u
be an arbitrary marking. We construct ?'=(P, T', ¢', uo) by adding to # a new
transition ¢’ such that:

® ¢(p,t')Y=pu(p) forall pe P; and

® o(r,p)=pn(p)+L,.r¢(p 1) forall peP.

Clearly, there is ar infinite impartial firing sequence in 2’ iff there is a u'€ R(%P)
such that u'=zu. O

In order to show the next theorem, we define the single-place zero-reachability
problem, which is equivalent to RP.
@ RP-SO:

Instance: A PN 2 with a designated place p,

Question: Is there a i € R(?) such that . (p) =0?

The following lemma is well known,; see, e.g., [28].

Lemima 4.8. RP-S0 = pTIME RF.

At this time, we are unable to show either NTP"** or NTP/"7 to be decidable.'
The main difficulty, we feel, is due to the fact that these fairness properties are
nonmonotonic in the sense that the existence of a just (fdp-7, respectively) firing
sequence starting in u by no means guarantees a just (fdp-J) firing sequence starting
in any u', where u'= u. At the same time, we are unable to enforce zero-testing

using either of these properties. However, we are able to show the following three
theorems.

Theorew 4.9. RP <pqyme NTP™ 7 even if 7 ={{1}} for some transition 1.

Proof. We will use the fact that RP-SO =,y v RP. Let 2=(P, T, ¢, o) be a PN
with a designated place p,. We will construct 2’ as shown in Fig. 4. There is clearly

' Recently, Jandar [i9] has claimed NTP""7 (and hence NTP"*) to be decidable. The proof is an
exponential-ime reduction to RP; thus, it comes very close to the lower bound that we show.
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P1 t, en

t
Fig. 4. #' for fdp-7, T ={{1}}.

no infinite firing sequence in 2’ in which ¢ fires. Thus, in any infinite firing sequence
that is fdp with respect to {{t}}, ¢ must be disabled infinitely often; i.e., a marking
1 must be reached such that u(p;) =0. On the other hand, if po > u, p(p)=0,
then ot't't'. ... is fdp  with respect to {{1}}. Therefore,
RP <prime RP-SO <ppme NTPP7. O

In [7], Carstensen showed that NTP™” is decidable if |7|=1. We are able to
improve upon this result by showing the problem to be equivalent to RP. In this
proof, as opposed to Theorem 4.2, the real power of the machinery developed in
Section 3 is exploited. Withoui the umbrella of Theorem 3.6 and its subsequent
refinement in Theorem 3.9, this proof would have been much longer and considerably
more tedious. As it is, we are able to give a very succinct proof of an unobvious
theorem.

Theorem 4.10. NTP™7 =1\ RPif |T]|=1.
Proof. From Theorem 4.9, we need only show that NTP™" 7 <1, RP if [7]|=1.

Let #=(P, T, ¢, uo) be an arbitrary PN, T'c T, and 7 ={T'}. An infinite fising
sequence o is fdp with respect to 7 iff

te T

(P,0,0)= GF[( A -1( A ge(p, ¢(p, m)) ( \ ﬁ(r))].
1eT’ pc P 7

Thus, from Theorem 3.9, NTP™ 7 <., RPif |T|=1. O
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The following theorem gives a lower bound for NTP™*,
Theorem 4.11. RP <ppme NTP™,

Proof. We will use the fact that RP <ppme NTPUP U Let @ =(P, T, ¢, o) be an
arbitrary PN, and let t; be an arbitrary transition in 7. We construct ' as shown
in Fig. 5. Suppose o is an infinite path in & that is fdp with respect to {{#;}}. We
construct o' by inserting infinitely often in o ¢t} for all j# i, 1 <j < m; since en is
incremented infinitely often, this can clearly be done. Clearly, ¢’ is an infinite firing
sequence in 2’ that is fdp with respect to {{t;}}. Furthermore, forall j#i, 1<j<m,
t; and t] fire infinitely often, and 4 is disabled infinitely often. Therefore, o' is just.

Now suppose o is an infinite just firing sequence in 2'. In order for ¢ to be
infinite, there clearly must be infinitely many occurrences of transitions from T.
Therefore, by deieting all occurrences of transitions not in T, we construct an
infinite firing sequence o' that is fdp with respect to {{t}}. Therefore,
RP <pprme NTP U < e NTPS, O

In [7], Carstensen showed the NTP™" and the NTP™"7 to be undecidable. In
what follows, we improve this result by showing both to be complete for =} —the
first level of the analytical hierarchy. We will later use these results to show a third

Fig. 5. ' for justice.
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version to be £ }-complete. Our proofs involve certain generalized counter machines.
We dezfine an infinite-branching counter machine (ICM) to be a counter machine
with the added capability to nondeterministically add to a counter any natural
number in one step. The following lemma follows from [9].

Lemma 4.12. The set of all ICMs that contain an infinite computation on € is
21-complete.

We are now ready to show that NTP™" and NTP™"7 are 3!-complete.
Theorem 4.13. NTP™"7 is X\-hard even if T contains only singleton sets.

Proof. Let M be an arbitrary ICM. We will construct a PN ? =(P, T, ¢, u,) and a
set I of singleton subsets of T such that 2 has an infinite firing sequence that is
fair with respect to 7 iff M has an infinite computation on e. ? must be able to
simulate infinite-branching and zero-testing. The way we construct 2, zero-test:ng
will be guaranteed to be coirectly simulated only after some finite (but unknown)
amount of time. Hence, we will first construct an ICM M’ to simulate M such that
for any configuration I of M’ (whether reachable or not), any infinite computation
of M' from I simulates an infinite computation of M. We will then construct 2 to
silnulate M'.

We construct M’ to repeatedly simulate finite subcomputations of M as follows.
M’ will have one set of counters to simulate M, one set of counters to store the
final counter values from the previous simulation of M, two counters to simulate a
clock (one for time remaining, the other for the initial value), and a fixed number
of scratch counters. The finite-state control of M’ will store the state of M in the
current simulation and the final state from the previous simulation. Initially, the
previous final configuration is the initial configuration of M, and the clock value is
zero. M’ iterates the following loop:

(1) Let n be the value of the clock.

(2) Simulate M for n steps; halt if M does.

(3) if the final configuration of M differs from the previous final configuration,

then halt.

(4) Simulate M for one more step.

(5) Save configuration of M.

(6) Reset clock to n+1.

(7) Restore M to initial configuration.

Suppose M’ starts in some aibitrary configuration I, and suppose there is an
infinite computation o from I. Clearly, each o1 the seven steps above must terminate,
so each step occurs infinitely often in o. Eventually, o inust reach Step 7. After this,
when it reaches Step 2, it simulates a computation o’ of M for n steps, where n is
some natural number. Since o is infinite, it will not halt in Step 3. Each subsequent
execution of Step 4 extends o’ by one move; hence, o simulates an infinite computa-
tion o’ of M.
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We now construct 2 to simulate M’ using places to simulate states and counters
in the obvious way, and transitions to simulate all moves except those of the form
“q,: if ¢; =0 then go to ¢,” and *‘q,: add some natural number to ¢, and go to ¢,.”
Carstensen [7] has shown how these moves can be implemented; the constructions
are shown in Figs. 6 and 7, respectively. Regarding Fig. 6, since {t,}€ 7, ¢, can be
fired while ¢;> 0 only finitely many times in any firing sequence that is fair with
respect to J. Likewise, for Fig. 7, if ¢, is enabled, it must eventually fire in any

O

Fig. 6. Implementation of zero-testing for fair-.7.

t)

_.L..(2

q
20 taleT

Fig. 7. Implementation of infinite-branching for fair-.7.
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infinite firing sequence that is fair with respect to J. Clearly, if M has an infinite
computation on &, then 2 has an infinite firing sequence that is fair with respect to
J. Suppose, on the other hand, that 2 has an infinite firing sequence ¢ that is fair
for 7. After some point in o, o correctly simulates M’ from some initial configuration
1. Since this simulation is infinite, M must have an infinite computation. O

Theorem 4.14. NTP™" and NTP™"7 are 3 -complete.

Proof. NTP™"” was shown to be 3}-hard in Theorem 4.13. Carstensen [7] gives a
reduction from NTP™""'" to NTP™"; this reduction easily generalizes to
NTP™"7 <pp e NTP™ if J contains only singleton sets. Thus, from Theorem
4.13, NTP™" is also £ }-hard. See the proof of Theorem 4.15 below for an even more
general version of this reduction.

Since NTP™" is a restriction of NTP™"7 we only need to show that NTP™"7 ¢ 3!,
Let # =(P, T, ¢, po) be an arbitrary PN, and let  be a set of subsets of T. Clearly
an infinite firing sequence o is fair with respect to 7 iff it can be divided into a
sequence of finite firing sequences o0, . . . . such that for some subset 7' of 7, every
set in 7' has at least one element in each o;, i =1, and no transition in any set in
JI\T' is enabled at any time in o after o,. We therefore construct an ICM M to
nondeterministically generate o as follows. M first guesses 7. it thcin guesses (in
one step) n,, the length of o,. Next, M nondeterministically generates a firing
sequence o, of length n,. For i=1,2,..., M then guesses n,, the length of o,, and
generates o,, verifying that it satis’ s the conditions outlined above. Clearly, M has
an infinite computation iff ? has an infinite firing sequence that is fair with respect
to 7. Therefore, NTP™" and NTP™"7 are 2}|-complete. O

In [7], Carstensen a!so considered fairness for bounded PNs. Given a PN 2, we
say an infinite firing sequence o is
® bd-fcir if P is bounded and o is fair.
Although NTP"*™" is clearly decidable and as hard as BP, no tighter bounds have
becn given for the problem. We now show the problem to be nonprimitive recursive.

Theorem 4.15. NTP"*™" is not primitive recursive.

Proof. We first define the following functions:

Si(n) =2n,
L) =£"(1) fori>1,
S(n)=f,(n),

where f)") denotes the nth-fold composition of f; ,. It can be shown that f is not
primitive recursive. Let M be an arbitrary f(n) time bounded TM, and Izt x be an
arbitrary input for M. Clearly, we can construct in PTIME a 2-counter machine M’
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guessing m, the number of steps executed by M, then repeatedly simulating M on
x. If M did not halt in m steps, # wouid hait. ? contained three potentialiy
unbounded places: the one containing m and two containing counter vaiues. Cleariy,
since M’ is f(cn) time bounded, these places need not exceed f(cn) to simuiate M.
In [17], we gave a PTIME construction of a bounded PN which could produce a
value of f(cn) in a designated place (see also [26]). We can clearly use this
construction to bound the three places in question by some number at least f(cn).
The details are left to the reader.

We will now show that given a bounded PN % and a set J of singleton subsets
of transitions, we <an construct in PTIME a bounded PN %’ that has an infinite
bd-fair firing sequence iff ? has an infinite firing sequence that is fair with respect
to J. This construction is a generalization of one given in [7], and is shown in
Fig. 8. Note that the added places, p,,..., p., P1, P>, must always contain a total
of three tokens; hence 2’ remains bounded. Suppose % has an infinite path o that
is fair with respect to J. Prior to each occurrence of ¢, in o, 1 <i<}, we can insert
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Fig. 8. 2’ for bd-fairness.
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the sequence t;t; for some i’, and prior to each occurrence of ¢, j+1<i<m, we
can insert the sequence rit;t;-t] for some i’. It is easy to see that this new firing
sequence is bd-fair. On the other hand, » _ppose there is an infinite firing sequence
o in @' that is bd-fair. Sis e p; must be positive before any transition in ? can
fire, by removing all occurrences of transitions not in 2, we clearly get an infinite
firing sequence that is fair with respect to 7. [

In [5], Best extended the definition of fairness using the notions of i(c0)-enabled-
ness. A transition t is said to be i-enabled (or co-enabled if i =o0) at a marking u
if there is a firing sequence o no longer than i transitions such that x> u’, and ¢
is enabled at u'. For 1 <i=o00, an infinite computation o is said to be:
® i-fair iff for every transition ¢, if ¢ is i-enabled in infinitely many markings in o,

then ¢ occurs infinitely often.

(Note that “0-fairness™ coincides with “‘fairness” as defined in [22]. Also, an
equivalent definition for co-fairness was given in [30].)

In what follows, we show that NTP"™' 0=i<oo, is 2|-complete, but that

NTP* ™" is equivalent to RP.

Theorem 4.16. For every i, 0<i<oo, NTP"™" is Z|-complete.

Proof. To show the lower bound, we will use a reduction from NTP™". Let 2 be
an arbitrary PN. We construct 2’ as shown in Fig. 9. Clearly, 2 has an infinite fair
firing sequence iff 7’ has an infinite i-fair firing sequence. To show the upper bound
we can clearly employ a similar strategy to that of the upper bound in Theorem
4.14, since i-enabledness is clearly a decidable property. O
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Fig. 9. #' for i-fair.
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The following theorem is the last in which we use the machinery developed in
Section 3. In this theorem, we use Theorem 3.6 directly to give a succinct reduction
to RP. As in Theorem 4.10, a direct reduction to RP would have been much more
tedious.

Theorem 4.17. NTP™ ™" =1, e RP.

Proof. We first show NTP ™" <, e RP. Let 2 = (P, T, ¢, po) be an arbitrary PN.
For each t€ T, let u, be the minimum marking in which ¢ is enabled. Consider the
wit

f=F[ A (tco(p) v Fhi(1))a A |P(P)]-

teT peP

Clearly there is an infinite co-fair firing sequence in 2 iff 2 is a finite model for f.
Thus, from Theorem 3.6, NTP™ ™" <_.,ue RP.

We will now show RP <pprme NTPT™', We will use the fact that RP-
SO =pprime RP. Let 2 =(P, T, ¢, uo) be an arbitrary PN with a designated place p..
We construct #' as shown in Fig. 10. Suppose #’ has an infinite co-fair firing
sequence. Since ) is enabled unitil it fires, it must eventually fire. Clearly, 13 cannot

P

t'y
Fig. 10. ** for x-fair, state-fair and pred-fair.
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fire in any infinite co-fair firing sequence. Therefore, there must be a x € R(?) such
that u(p;) =0. Suppose, on the other hand, that there is a marking x € R(?) such
that u(p;) =0. Let o be such that u, > u. Then the firing sequence ot}t5t4ts. . . is
clearly co-fair. O

Queille and Sifakis [30] have extended fairness in two other ways, namely, fair
choice from states, and fair reachability of predicates. Applying these notions of
fairness to Petri nets, we have that for a PN 2 =(P, T, ¢, u,), an infinite firing
sequence o satisfies:
® fair choice from states (state-fair, for short) iff for any marking u reached infinitely

often by o, every transition erabled at u is executed infinitely often from x in o.
® fair reachability of predicates (pred-fair, for short) iff for any (finite or infinite)

set of markings M, if there are infinitely many i such that yo—l—) s pleM

for some o}, then there must be infinitely many j such that p,o—’> mie M.

At this time, we are unable to establish tight bounds for either NTP**¢™" or
NTPP-™ir, NTP**™ seems to be related to the problem of finding a home state,
that is, a marking that is reachable from any reachable marking (see [12], where a
decision procedure was given to determine whether a given marking is a home
state). Because the definition of pred-fair is quantified over all sets of markings, it
appears to be a very difficult problem. The next three theorems give the bounds we
are able to derive for these two problems.

Theorem 4.18. NTP***™" js decidable.

Proof. Let 2 be an arbitrary PN. We first determine whether % is bounded. If 2
is unbounded, there is an infinite firing sequence o which reaches each marking at
most once. o is clearly state-fair. On the other hand, if o is bounded, we "an
construct the reachability graph. Then there is an infinite state-fair firing sequence
iff the reachability graph contains a strongly connected component from which there
is no exit. [J

We now define the following problems, which will be used in giving our lower
bound for NTPstefir,
@ BRP:
Instance: Given a bounded Petri net % and a marking u,
Question: Is pu € R(P)?
e BRP-SO:
Instance: Given a bounded Petri net ? with a designated place p,
Question: Is there a u € R(P) such that u(p)=0?
The following lemma can be shown in a similar manner as Lemma 4.8.
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Lemma 4.19. BRP-SO =p1me BRP.

Although it follows from [31, 23] that BP <ppyme BRP <pyme RP, we do not know
whether either of these reductions can be strengthened to an equivalence.

Theorem 4.20. BRP <ppjpg NTPS# R,

Proof. We will use the fact that BRP-SO =pyyme BRP. Tet 2=(P, T, ¢, o) be an
arbitrary bounded PN with a designated place p,. We construct #’ as shown in Fig.
10. Suppose there is a u € R(P) such that p(p;) =0. Let o be such that pu, > u.
Then the sequence ot 158315, .. in P’ is clearly state-fair. Now suppose there is an
infinite state-fair path o ia ?'. Since 2 is bounded, #’ is clearly bounded. Since
t; is enabled until it is fired, it must be fired in o; otherwise, there would be some
marking reached infinitely often by o in which ¢} is enabled. Since 1] fires, ¢; cannot
fire; hence, there must be a marking u € R(#?) such that u(p;)=0. Therefore,
BRP <pppe BRP-SO <pryye NTP™Y, O

Theorem 4.21. RP <p g NTPPdfir

Proof. We will use the fact that RP-SO=pp e RP. Let 2=(P, T, ¢, uo) be an
arbitrary PN with a designated place p,. We again construct ?' as shown in Fig.
10. Suppose there is a u € R(?) such that u(p,)=0. Let o be such that u, > pu.
We claim that o' = oi}t5t315. . . is pred-fair. To see this, first note that after ¢} fires
only one marking is reachable. Since this marking is reached infinitely often by o”,
o’ must be pred-fair. Now suppose that there is an infinite pred-fair firing sequence
oin P'. Let M={u|u(p’)=0 and u(p})=0}. Since no marking in M can be
reached in an infinite firing sequence, there must be some i € N such that u, =, [T
such that no marking in M is in R(P, T, ¢, u'). Clearly, t; cannot occur in o[i],
nor can it be enabled at u'. Therefore, there must be some u € R(%) such that
#(p:) =0. Thus, RP-SO <pp;me RP <ppye NTPP4RIT

Finally, we examine equifairness as defined by Francez [13]. Given a Petri net #
and an infinite firing sequence o, o is said to be
® equifair iff there exist infinitely many i such that all transitions occur the same

number of times in o[i].

We will show this problem to be equivalent to the BP. In order to show this, we
must introduce some terminology from [31] (see also [32]). Let ? = (P, T, ¢, uo) be
a PN. A generalized marking is a mapping u : P- Z, where Z is the set of integers.
A generalized firing sequence from u, is any sequence of transitions. We then extend
the notation p > u’ to generalized markings. An i-loop is a nonempty sequence o
of transitions p, < u, such that there are i places P1s - - -, pi such that for any j<n,
where n is the length of o, g, <, w; and u;(p;)=0 for 1=<i'=i. Using a strategy
similar to that of Rackoff [31], we can show the following lemma.
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Fig. 11. & for equifairness.

Lemma 4.22. Given a PN ?=(P, T, ¢, o) and an i<|P|, we can decide in space
218" for somz constant ¢ whether there is an i-loop in %.

We can now show the following.
Theorem 4.23. NTP*"™" =1\, BP.

Proof. We first show NTP®lir<__ . BP. Let Z=(P, T, ¢, o) be an arbitrary
PN. We construct ?’ as shown in Fig. 11. Ciearly, ?' has a |P|-loop iff ? has an
infinite equifair firing sequence. Therefore, from Lemma 4.22 and [23],
NTPequifair <prIME BP.

We now show BP <pyme NTP*¥™", We will use the fact that CP =ppyme BP. Let
® be an arbitrary PN, and let u be an arbitrary marking. We construct %’ as in
Theorem 4.7. Clearly, if ' has an infinite equifair path, there is a u'€ R(2) such
that u’= u. Suppose, conversely, that u, = u'= u. (Here, o is a firing sequence,
as opposed to a generalized firing sequence.) Let i be the maximum number of
occurrences of any transition in o. Clearly, o followed by i occurrences of ' is a
firing sequence in #'. This firing sequence can then be followed by enough occurren-
ces of each transition so that each transition occurs exactly i times. This can then
be repeated infinitely many times. Therefore, BP < prjme CP </ yme NTP™, [0

5. Conclusion

We have exhibited a temporal logi~ powerful enough to express certain fairness
constraints, yet whose FMCP is equivalent to the reachability problem for PNs.
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Table 1
NTP Complexity® NTP Complexity®
M1 RP imp BP
MY NL Just =RP
M2 RP fair s
M2’ RP bd-fair NPR
k] RP fdp-J =RP
M3’ RP fdp-T® RP
T1 BP fair-7 b
T BP i-fair =
T2 BP co-fair RP
T2 BP state-fair D, = 3RP
T3 BP pred-fair =RP
T3 BP equifair BP

4 =BRP, as hard as the BRP; =RP, as hard as the RP; NFR,
d=cidable, but not primitive recursive; D, decidable.
® fdp-T, fdp-J with |7|=1.

This logic was instrumental in showing seven fair nontermination problems to be
equivalent to RP. In develcping this logic, we were able to answer a question left
open in [16], namely, is there a decision procedure for £*(Q’')? We were able to
give a positive answer to this question and show that the problem is equivalent to
reachability. One question that remains open is whether there is a decision procedure
for 52’(0', GF); i.e., wffs including predicates from Q' and the operators GF, A, v,
and 1, where — is allowed only on predicates.

Table 1 summarizes the fairness results of this paper.

Most of the problems examined have been shown to be either equivalent to
boundedness, equivalent to reachability, or 2}-complete. Two exceptions to this
general rule are NTPM' and NTP*™", NTPM" can be decided in nondeterministic
logspace because the entire allowable reachability se: is explicitly given as input.
Using the fact that bounded PNs can generate very large numbers, we were able to
show that NTP**™" is not primitive recursive. Aside from the fact that the precise
complexity of RP is still unknown, the precise complexities of four of the fair
nontermination problems we have examined remain open. Actually, Janéar [19] has
recently shown NTP™™ and NTP* to be decidable. These two problems are
particularly interesting because they are related to the open temporal logic question
mentioned above; i.e., they are both expressible in £(Q’, GF). It will be interesting
to see if Jancar's techniques can be extended to ip(Q', GF).
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Note added in proof

After the final revision of this paper was compieted, Jancar extended his work
to show thar £(Q’, GF) is, in fact, decidable. All of Jancar’s results on NTP™*,
NTP“7, and L(Q’, GF) may be found in [19].
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