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Abstract

First-order unification can fail either while simplifying two subterms with distinct head function symbols, or by a
so-called positive occur-check for some variable. In this paper we address the problem of classifying these occur-checks.
We introduce the notions of elementary and derived occur-checks. The finite basis of elementary occur-checks for a
given unification problem is obtained by a linearszation process of the input. We first establish that linearization gives
unification problems that possess a single positive occur-check. Next, we establish the completeness of an equational
deduction system well-suited for cyclic equations (= positive occur-checks). Finally, up to permutations, there exists
a minimum equational deduction associated to an elementary positive occur-check. We give a deterministic algorithm
computing this deduction. This problem was encountered while dealing with instances of higher-order unification
problems. This technical analysis should also be of interest in symbolic debugging for systems where unification is

involved, e.g., the programming languages ML, Prolog, proof-checkers...

Sur les Tests d’Occurrence de ’Unification

Philippe Le Chenadec
INRIA B.P. 105 78153 Le Chesnay Cedex France

Résumé

L’unification de deux termes peut échouer soit par un conflit entre symboles de fonction ou par un “occur-check”
positif. Dans ce rapport nous classifions ces occur-checks en les divisant entre élémentasres et dérivés. La base finie des
occur-checks élémentaires est obtenue en linéarisant les équations de 'input. Dans un premier temps, nous établissons
que cette linéarisation permet d’obtenir des problémes d’unification possédant un unique occur-check positif. Puis
nous établissons la complétude d’un systéme de déduction équationnelle, bien adapté 3 la dérivation des équations
cycliques représentant ces occur-checks positifs. Enfin, 4 permutation prés de sous-déductions, il existe une déduction
équationnelle minimum pour les occur-checks élémentaires. Nous donnons un algorithme déterministe qui calcule ces
déductions. Ces problémes ont été rencontrés lors de ’étude d’instances d’unification & Pordre supérieur. Cette
analyse technique peut s’appliquer au “debugging” de systémes formels ol intervient ’unification du premier ordre,
tels que les langages ML, Prolog, ou des vérificateurs de théordmes.
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1 Introduction

Let & be a unification problem, i.e. a set of equations on some free algebra of terms. If the
simplification step does not fail while the set £ is not unifiable, the algorithm generates a positive
occur-check or an equation of the form z = C[z] where C[.] denotes a non-trivial context. We
may incrementally remove such failure cases by linearizing the set £: if the variable x possesses at
least two distinct occurrences in £, one among those can be replaced with a fresh variable. Also a
good definition for an “elementary positive occur-check” is a set of equations that possesses at least
one positive occur-check, but such that removing one equation or linearizing one variable yields a
unifiable set of equations. The first result of this paper establishes that under this definition the
positive occur-check is uniqgue. We also address the problem of equational deductions for reasoning
about these occur-checks. The principal result here is the existence of a minimum deduction
associated to an elementary positive occur-check.

A word on the origin of the problem: it arose while studying instances of higher-order unification
in connection with the full-fledged problem of type inference for Girard’s higher-order polymorphic
A-calculus F,,. Higher-order unification is undecidable already at order 2 [5,7). However, the
unification problems involved in type inference possess a shallow first-order structure, given by the
constants and the head variables of a unification problem. Also, a natural idea is that a regular
structure underlies this search tree, as positive occur-checks are closely related to regular trees.
Omitting details, a first step towards this goal is the separability result of section 3. To such
elementary occur-checks is canonically associated a finite automaton recognizing derived sets of
equations, where the notion of derivation is borrowed from higher-order unification [7]. But, as
is easily seen, in presence of several occur-checks, such a language can be non-context-free. The
next step is to ensure that the first-order cyclic equations (with infinite solutions) are protected
by type lifting: some first-order variables become functional, e.g., an equation z = f(z,y) becomes
X(z) = f(X(t),y). Notice that this latter equation has a trivial solution X = Az.z and z = f (t,y).
Type lifting is handled through equational deductions: we establish soudness and completeness of
an equational deduction system for cyclic equations. Further, for a given elementary cycle, there
exists essentially a unique deduction of a cyclic equation associated to the cycle. Therefore, from
this deduction, it is sufficient to check that the associated higher-order equation is protected in the
way mentionned above.

This paper is organized as follows. Section 2 recalls the definitions and basic results on unifica-
tion. Especially, we establish technical lemmas relating occurrences of variables in the “unification
graph” to occurrences of variables in the input set of equations. We hope that these results will
prove useful in other studies of unification. Section 3 establishes the separability result mentionned
above. Section 4 proves the soudness and completeness of the equational system. We also define
reduced forms for the deductions. As far as we know, a detailed study of this kind of equational
reasoning does not appear in the literature. Section 5, the principal part of the paper, proves the
unicity of the minimal deduction by providing a deterministic algorithm that finds such a deduc-
tion. We conclude by giving an example that will support the intuition of the reader through the
technical proofs.

By structuring the set of positive occur-checks, the paper provides a (theoretical) means for
debugging in symbolic system involving unification, such as PROLOG, ML or theorem-provers: the
basis of elementary cyclic sets is the set of “bugs” introduced by the user in an attempt to prove
some formula.



2 First-Order Unification

Throughout the paper, terms in T are built up over a single binary infix function symbol, denoted
by an arrow — and a denumerable set of variables §. By the well-known bijective correspondance
between k-ary and binary trees, the general case is reducible to this one. We assume known the
theory of regular trees and unifying substitutions [2,8]. We first remind a well-known fact about
first-order unification of regular trees. These trees are finite or infinite labeled trees with a finite
number of distinct subtrees. A unification problem is a set £ of equations of the form ¢ =71, ¢ € §,
7 € T. The equation is strict when 7 € §. The set of variables that occur in ¢ is noted S¢. The
size of a term is its number of occurrences of the binary function symbol.

Lemma 2.1 Any set of equations £ has a most general unifier, mapping variables from §¢ to
regular trees. ‘

Proof. Direct consequence of theorem 4.9.2 p.141 of [2]: if r and 7' are unifiable regular trees,
then their most general unifier is regular. It can be effectively computed and is unique up to a
renaming of variables. Presently, we have only one function symbol. Hence the simplification step
of unification never fails and two terms always are unifiable as regular trees. O

This theorem tells us nothing about the fine structure of the substitution. A useful tool here is
Huet’s version of first-order unification [8]. This algorithm computes an equivalence relation on
terms, then it checks that the “subterm” relation computed is acyclic. The relation is represented
by a graph ¢ = (Ve , E¢ ), whose vertices are congruence classes of terms and egdes encode the
subtree relation.

2.1 The Algorithm Ratio

We present the algorithm Ratio from [8]. The input is the set of equations £. The graph §¢ is
computed incrementally. To each non-variable subterm of the right-hand sides in £ we associate
a unique auxiliary variable from a denumerable set R, disjoint from §. In an obvious way, this
defines two maps (subscripts are dropped):

suc(wi) = wa — ws, w; € R,wa, w3 € RUS,
val(w) = w, we S,
val(w;) = val(wz) — val(ws), w; € R, suc(w;) = wy — ws.

Occurrences are sequences of 0’s and 1’s. The concatenation of occurrences O, and O is noted
01.03, |O| denotes the length of occurrence O. We use the context notation C[] for terms. The
occurrence of the hole is noted O¢. The contexts Cj[.] and Cz[.] are equivalent, noted Cy[.] ~ C;[.],
iff O¢, = O¢,. When Og, is a prefix of O¢,, we write Cy[.] < Cz[].

Definition 2.1 A graph § is a pair of sets (V, E) such that:

e V is a finite set of finite subsets of $ U R,

e E is a finite set of triples e = (byw,w') withb=0o0rl,w e veEV, w' € v' €V, subject to
the condition that if (b, w,w') € E then there exists w" € v € V such that (b,w,w") € E
where b =0 (resp. 1) if b=1 (resp. 0), and (b, w, w'), (b, w,w") € E implies w' = w".



By the abstract graph associated to § we mean the usual underlying graph as a set of vertices
together with a edge multiset of pairs of vertices. The vertex v of the variable w is noted V(w).
We also write V(r) if r = val(w). The source and target of an edge (f,w,w') are V(w) and
V (w') respectively. The algorithm is first-order unification without occur-check. We set Vo =
{{w}jw € S U R} and E° = {(0,w,w'), (1,w,w") | suc(w) = w' — w"}. Each vertex has a
representative, initialized to its unique variable. The representative of w is noted w. We define
Ey={wi =wyJwy € S, w2 € SUR, vy = val(w;) € £}. Each equation e in Ep has a level I,
initially set to 0.

RATIO
Input Ep; VO; EC;
1 :=0;
Step 1 it E;=0
Then Stop;
Else E;:= E; — {e: w; = wp} with e € E;, I, maximal;
If w = we

Then V'tl.=V¢; Etl.= E; B, = E;
{ := 1+ 1; Return to Step 1I;
Step 2 If suc(;) = ws — wy and suc(ivz) = ws — we
Then Ej;:= E;U{e1:ws = ws,€3: wy=wg};
le, =1, =l.+1;
Bt = B — {(0, Wz, ws), (1,®2,%e)};
Else E't!:=E;
Ei1 = E;
v =V (w1) UV (ws);
Vit m (Vi - {V(wa), V(wa)}) U {o);
The representant & of v is w; if suc(iy) is defined, @ otherwise;
Replace i) and i by @ in E*tY
{ ;=14 1; Return to Step 1 []

The proofs of termination and correctness of Ratio can be found in [2,7]. The equations €; (e2)
possibly created in Step 2 will be refered to as the left (right) equation created at iteration 1.

2.2 Ratio Properties

In the sequel N denotes the number of iterations of Ratio. The level /; of the ith iteration is the
level of the equation selected by this iteration, with {y = 0. To an iteration § < N we associate
the first iteration 7 > ¢ such that I; < l;, this iteration is noted it. The graph at sth iteration is
defined by G* = (V¥, E¥), the values of these sets are taken at the beginning of the ith iteration.
Here are some immediate properties of these graphs:

i. Vu,v' € V¥, v# 0 if v # v then v v’ = §;
2. VeV, M eV, 7>, vC 0

3. Y(i,w1,w2) € B, (i, w},wh) € E* k > j, such that V¥(w;) C V*(w}) and, if k > 57,
Vi(wz) € VH(w));



4. |EF| < |B9|, |VH| < VI if 5 <45

5. V¢ € S U R, the vertex of ¢ in G* is uniquely determined and noted Vi(8); Vo, ¥, Vi(g) =
Vi(¢) implies V3(g) = V3(y), Vi(¢) CVI(4), 5 2 5;

6. The outdegree of a vertex is 0 or 2; Ve; = (b1, w,w1), e2 = (b2, w,w3) € E*, by = by implies
w; = wz. The edges have the form (b, @,%'),b=0,1;

7. if v € V* possesses two successors, a left one u and a right one v", then there exists w €
v, w' €', w" € v" such that suc(w) = w' — w';

8. If suc(w) = w; — wy, suc(w') = wg — wy and V¥ (w) = V¥ (v'), there are two equations
e, €' in Eg such that w (resp. w') occurs in the right-hand side of e (resp. ¢€'). Let i be the first
level O iteration such that e, ¢ do not belong to E;, then V*(w) = V*¥(w'), V¥(w1) = V*(ws)
and Vi(ws) = V¥(wy).

We define S, = $ Nv (resp. R,). A path is a pair p = (v,0), vo a vertex and O an occurrence
by -+ by such that if v; = V(w) and bi4; = k, 0 < { < n, then suc(ib) is defined and vi+1 = V' (w)
where suc(i) = wp — w;. The source (resp. target) of p is the vertex vo (resp. vy). The length
|p| of the path is equal to n, its sets of variables are the unions S, = U,, Sv;» Rp = Uy, R.,‘ We
shall identify the path with its sequence of vertices vp,...,v,. A (fundamental) cycle c is a path
such that vo = v, and v; # v;, 0 <1 < 5 < n. Concatenation of paths p; and pz such that the
final vertex of p; is the initial vertex of p, will be noted py;pz. For each w in R., we define the
leaf occurrence O(w, c) of val(w) along ¢ as b} - -- b, where, if w € v;, bJ = b;4+; and the occurrence
by --- b is an occurrence of val(w). We also use the notation O(r ¢) if r = val(w). Let B¢ be the
set of fundamenta.l cycles of G¢ [1]. For each cycle c in Bg, S is non-empty: the cycle ¢ contains
at least one vertex with a variable w. If w is in § we are done. Otherwise the term val(w)/O(w,c)
is an S-variable and belongs to the cycle. This merely restates the fact that a cycle corresponds
to a positive occur-check in first-order unification. A vertex v is a predecessor (resp. ancestor) of
a vertex v if there is an edge (resp. path) from v to v', resp. successor (resp. descendant). We
also use the notation v/O meaning the final vertex of the path (v,0) if well-defined. We say that
a vertex v is initial if v is not the target of any edge, terminal if v is not the source of any edge,
and internal if it is neither initial nor terminal. Let e = (b, @, @') be an edge in §G. We say that e
is incident to the vertex V(w').

Lemma 2.2 Let v be a vertex of G* such that wy # w; are in v. There exists an iteraton j < §
that selects an equation w = w' with Vi(w) = V¥(w;) and V?(w') = VI(w;). Assume that
suc(w;) = ws — wy and suc(wz) = ws — wg, then either (i) V*(ws) = V*(ws) or (ii) there exists
w} € V(ws) and wg € V(ws) such that wy = w§ belongs to E;, with a positive level (resp. for wy
and wg).

Proof. Let j be the first iteration such that Vi(w;) = VI(wz). We have 5 > 0. There exists w}
and wh such that w} = w) € Ej_; and VI~ (w}) = VI~(w;), i = 1,2. If both suc(w;) and suc(w,)
are defined, we have necessarily suc(@}) = w} — w) and suc(@j) = wg — wg. Then E;;; contains
wh = w} of positive level. Let k be the iteration that selects this equation. If j < ¢ < k, we are in
case (ii), if k < { we are in case (i), the case 5 < j is impossible. O



Definition 2.2 Let G = (V,E) be a graph and v be in V.. The graph G | v below v defined by
(Vy, Ey) where V, = {¢' €V |Ip=v,...,v'} and E, = {(i,w,v') € E | V(w),V(v') €V} }.

The graph G 1 v = (V?, E¥) above v is defined by V¥ = (V — V,)U {v} and E* = {({,w,v') €
E|V(w),V(v') eV}

We will now establish a technical result relating the local structure of the graph §s to the
occurrences of variables in the equations E. Notice that the representant @ of w may change
according to the iterations. However, due to the context, the notation is non-ambiguous.

Definition 2.3 The two edges e; = (b;,w;, w!) € E%, i = 1,2, are congruent, noted e; = e, iff
by = by and the source and target of one edge are included in respectively the source and target of
the other edge.

Every edge in E*t! possesses a congruent edge in E*. The following observation will be useful
throughout the paper. If the level 0 equation w; = w; is selected at iteration s, then the graph
G | V¥(w;) “starts” with the “tree” val(w;). The non-terminal vertices of the tree are R-singletons,
the internal ones possess a unique predecessor, and the vertex V*(w;) is initial if wy € R. The
equality between S-variables generated by the strict equations of the input set £ is noted by =,.

Lemma 2.3 If the equation e : w; = w; is created at iteration j and selected at iteration i, then
any equation created at iteration k such that j < k < 1 is selected at iteration 1 such that k <l < 1.
Reciprocally, any equation selected at iteration ] such that j <l < 1 is created at iteration k such
that j < k < 1.

Proof. If € is created at iteration k, ¢ € E* implies I > l.. Hence €' is selected before e. If € is
selected at iteration /, then I, > [,. But when e was created, it was of maximal level in Ej4,, also
¢ is created after iteration 7. O

The non-set variables of Ratio will be superscripted by iterations, thus denoting their value at this
iteration.

Lemma 2.4 Assume that the equation e : w} = w} is created at iteration j and selected at iteration
i, then V*(w}) possesses V*(w]) = V*(w}) as predecessor.

Proof. i = j+ 1 or if the edge ¢; = (b,w{,ﬁ){) is not deleted between iterations 5 and 1, this
is immediate. Otherwise, if the edge e; is deleted at iteration I, j < | < {, suc(w}) contains w,
suc( ﬁ)’z) contains w', and € : w = w' is created at iteration . Further, V!(w}) = V!(w') and
Vi{w)) = Vi(wl). We have VI+1(wl) = Vi+l(wl) = VI+1(w}) and e; = (b, ], @) € E**1. The
equation e; is selected strictly before iteration i by Lemma 2.3. Also, there exists an iteration
k, | < k <14, such that V¥(w}) = V¥(uw') = V¥(w) possesses an incident edge, which is eg =
(b, @], @!) € E*. That is e; = ez = es. In turn, if this last edge is not deleted we get the result.
Othe}'wi§e the same reasoning applies and some edge e, = (b, @, @}), congruent to ey, is incident
to V*H{wy). O

Corollary 2.5 Assume that the equation e; : wi = w} is created at iteration j and selected at
iteration i, then the vertex Vi+!(w}) = V*+!(w}) possesses as predecessor the vertex Vitl(wl) =
V'.'H(w%).



Proof. Consequence of Lemma 2.4, the last two vertices are merged at iteration 5 + 1, the first two
onesats++ 1. 0

Lemma 2.6 Assume that the equation e; : w} = w} is created at iteration j, selected at iteration
i, and that V7 (w}) possesses a unique incident edge, then V7 (w}) = V*(w}).

Proof. The edge (b, ﬁ)‘; ,i}) is suppressed at iteration 7, and is by hypothesis the only edge incident
to V7 (wd). If § = 5 + 1, the result is true. Otherwise, at iteration j+ 1, the other equation created
at iteration j is selected. Assume that V7(w}) = VI+1(w}) # V¥(w}) and let k be the first iteration
such that V7 (w$) # V¥(w}). The equation e : w = w' selected at iteration k — 1 is such that
VE1(w) or V¥ 1(w') is VF~!(w}) = V(w}). But equation e has been created at iteration  such
that 5 < I < k — 1 by Lemma 2.3. Also, at iteration /, V*(w}) is non-initial. But V7(w}) is not.
This is possible only if V*(w}) # V7(w}), which contradicts the minimality of k. O

Corollary 2.7 Assume that the equation e : w = w} is created at iteration j and selected at
iteration ¢, then every edge incident to VI(w}) is congruent to an edge incident to V*(w}), | = 1,2,
with the exception of the edge (b,VI(w}),V7(w})) that creates the equation e.

Proof. Consequence of Lemmas 2.3, 2.4 and 2.6. O
Lemma 2.8 Let v be an initial vertex of V¥, then V¢,v € Sy, ¢ =, ¥.

Proof. By induction on Ratio’s iterations. It is true initially as S, # 0 implies that this set is
singleton. Otherwise, let v be in V¥, ¢ > 0, if this set is empty or singleton the result is trivially
true. It still is true by induction hypothesis if there exists v' in V*~! such that ¢,4 € v' C v.
Finally, we have two distinct vertices V*~!(¢) and V*~!(4) that are merged in V*. By Lemma
2.4 the equation selected at iteration ¢ — 1 is of level 0. By the observation preceding Lemma 2.3
on the selection of level O equations, this equation is strict. The result follows by transitivity and
induction hypothesis. (I

Lemma 2.9 Let v be a non-initial vertex of V¥, then V¢ € S, ¢ € Sy, ¢ =, ¥ and ¢ occurs by
some edge incident to v.

Proof. By induction on the iterations. Initially, the lemma is true for variables that occur in some
non-strict right-hand side. Assume it true at iterations < i+ 1. Letve V**'and ¢ € §,. If v
also belongs to V* or if v = V¥ (w}) UV*(w}), where e : w} = wj} is the equation selected at iteration
1, and if ¢ belongs to a non-initial member of this union, we apply the induction hypothesis. Hence
remain the non-trivial cases:

1. ¢ € Vi(wi), this vertex is initial but V*(w}) is not.
2. ¢ € V¥(w}), this vertex is initial but V*(w}) is not.

In case 1, the equation e is of level 0 by Lemma 2.4. It is strict as V*(w}) is non-initial (cf.
observations before Lemma 2.3). Hence we apply the induction hypothesis to this vertex and the
S-variable w}: there exists ¢ in V*(w}) that occurs by some edge and ¢ =, w =, wi. By Lemma
2.8 we have ¢ =, w'i. Hence ¢ =, 9.



In case 2, if e is of level 0, it is strict as X V'(w‘) Applymg ‘the induction hypothesis to the
vertex V‘(wl) and wi € § gives ¢ =, w} =, w}. But ¢ =, wy by Lemma 2.8. Otherwise let j
be the iteration that creates e. By Corollary 2.7 ¢ € V7(w}). But this vertex is non-initial. By
induction hypothesis and Corollary 2.5 we get the result at iteration ¢ + 1. O
Let e = (b, w, w') be an edge incident to a vertex v. We say that ¢ € S, occurs by e iff there exists
w” € V(w) N R such that suc(w") = ¢ — w" and b = 0, or suc(w") = w" - pandb=1 A
vertex is shared iff it is the target of two distinct edges. Notice that if v is shared, ¢ can occur
by distinct edges. The following Proposition introduces chains of variables, these are sequences of
variables that possess multiple occurrences and belong to the same vertex. A weak consequence
of the second part of this Proposition can be termed the unique incident edge property for §-free
vertices.

Proposition 2.10 Let E be a set of equations, input of Ratio, and i be some iteration of Ratio,
then:

1. For all edges e = (b, w,w') in E* such that V(w') N S # 0, there exists a variable ¢ in this
set that occurs by e.

2. For all verticesv in V* and for all pairs (e, ¢) of distinct edges in E* incident to v, there exists
a sequence of pairs (¢;, ;) of variables in Sy, j =0,...,n — 1, and a sequence of edges (e;)
incident tov, k =0,...,n, eo = e, en = €', such that ¢; =, ¢;, #; occurs by e; and t; occurs
by €j41.

Proof. The two propositions are simultaneously proved by induction on the iterations. Their truth
at iteration O follows from: non $-free vertices are terminal, such vertices are non-initial iff their
single S-variable occurs in some non-strict right-hand side, and a terminal vertex is shared iff its
S-variable possesses as many occurrences in E as the number of distinct incident edges.

Assume the two propositions true at iterations 5 < ¢ + 1. We first prove 1 at iteration ¢ + 1.
Let e = (b, w,w') in E**! such that V+1(uw') is not S-free.

Kec E a.nd Vi(w') N S # 0, we apply the induction hypothesis.

Otherwise, there is no creation of edges. Hence either v = Vi*1(w) or v* = V""l(w') (where v*
is the value of v in Step 2 of Ratio), in both cases there exists an associated edge in E.

In the former case, we have at least one of suc(@?), auc(t’bg) well-defined. We apply the induction
hypothesis to an edge of E': (b, i}, w') if suc(i}) is defined and suc(@}) is undefined, (b, @}, v')
otherwise, in both cases V*(w') = V‘+1(w') is not S-free.

In the latter case, when (b, w, @) € E* and V(w}) N § is non-empty, { = 1 or 2 we apply the
induction hypothesis. Otherwise we are ied to the non-trivial cases:

1. (b,w, @) € Ef, Vi(wl) is S-free, V*(w}) is not S-free.
2. (b,w, @) € E°, Vi(wi) is S-free, V*(w}) is not S-free.

Let 7, if it exists, be the iteration that creates the equation e1: wi = wz' selected at iteration 1.

In case i, the equation e; cannot be of level 0, for this implies w} € §. Also, we claim that
Vi(wi)n$ ;ﬁ . Otherwise, by 2 true at _7 by induction hypothesis, this vertex possesses a unique
incident edge. By Lemma 2.6, we have V7 (w}) = V*(w}) which is S-free, in contradiction with the
hypotheses of case 1. Hence we may apply 1 to the edge e = (¥, w;,wz) € EJ with VI (wz) NS #0.

There exists ¢ in V7(w}), w" in V7 (wz) N R such that ¢ occurs in suc(w"), according to ¢'. Next we



claim that the edges e and €' are congruent. This follows from Lemma 2.4 and the unique incident
edge property as V*(w}) is $-free. We conclude this case by Corollary 2.5.

In case 2, the equation e; cannot be of level 0. For, by the observations preceding Lemma 2.3,
this equation would be strict as V*(w}) is non-initial. But this strictness should imply that this
vertex is not S-free, contradiction. Thus e; has been created at iteration 5. We have V7 (w}) is
S-free. Hence by 2 and Lemma 2.6, V7(w}) = V¥ (w} ) Consequently the vertex (b,w, o) € E*
also belongs to 7, perhaps with w replaced by some w" such that V7 (w") C V‘(w) Thus, V7 (w})
possesses two dlstmct incident edges. By 2, this vertex is not S-free, which is again a contradiction.

We prove 2 at iteration 1 + 1. Let v € V"+1 and the two distinct incident edges e; = (b1, w1, w)
and e3 = (b2, wy, w) be in Bt w € v. If both edges are in E* or if ¢}, €} belong to E* that differ
from e;, ez by wy or wa such that Vitl(w;) = V'+1(w') or Vitl(wy) = V"“l(wz), we apply the
induction hypothesis. Otherwise v is the vertex in Step 2 of Ratio at iteration ¢. Let e : w} = w}
be the equation selected at iteration 1. If the edges (b1, w;, w,) and (b2, wa, w,) for | = 1 or 2 exist
in E*, we apply the induction hypothesis. Otherwise, we have:

e'1 = (bl:wl’wi) € E‘.’

¢y = (bg, wp, @}) € E'.

If the equation e is of level 0, then it is strict as V*(w}) is non-initial. We apply 1 to the edges
€} and €}, this gives us ¢ and ¢ that occur by €| and e, respectively. By Lemma 2.9 applied to
the two non $-free vertices V¥(w}), V*(wi), and to the S-variables w}, w}, we get ¢1 =, w} and
Y1 =, wh, where ¢; occurs by €} and ¢; by €j. By induction hypothesis applied to the pairs of
edges (e},€e]) and (e}, ¢€h), we have two sequences of edges and pairs of variables according to 2.
They can be appended by transitivity of =, and give the result for iteration ¢ 4 1.

Otherwise the equation e is not of level 0. Let 5 be the iteration that creates the equation e.
We know that all edges incident to V7(w]) are also incident to V*(wj), ! = 1,2 by Corollary 2.7.

If both €} and €}, are such edges, we apply the induction hypothesis at iteration j to the two
vertices Vi(wi) and V7(wi), with respectively the pairs of edges (¢},es), es = (b, @}, ®}), and
(es,€3), €4 = (b,fizg ,5)). The sequences thus obtained give the sequences for iteration ¢ + 1, by
Corollary 2.5 and the congruences e; = €] = €}, e3 = €4, true at ¢ + 1.

Otherwise, we apply a first time the induction hypothesis to the first iteration k < ¢ + 1 such
that e} is incident to V*(w}) and to the pair (€}, es), notice that e3 € E*. The only trouble comes
from the other vertex V' (w}). Let I be the first iteration such that ¢} € E' is incident to V'o(w}),
J <lp < 1+ 1. The equation selected at iteration Iy — 1 has been created at iteration kg such that
7 < ko < lp by Lemma 2.3. If the edge in E*°, incident to V*o (wg), is not congruent to some edge
in E7 incident to V7 (w}), then we consider the first iteration !; so that such an edge is incident to
V‘l(wg), 7 <1 < kg, and so on.

This gives a sequence (kp), m =0,...,n, k, = j. At iteration ks, 0 < m < 7, the new vertex
that will increase V'=(w}) and add a new edge incident to this last vertex, possesses two incident
edges d:nﬂ and d,. The edges dmy) and dj,,, are congruent and identified at iteration ky,. This
creates the equation selected at iteration l,,. Hence we apply 2 to these new vertices at iterations
km, m = 0,...,n — 1 and to the pairs (d},,1,dm). The resulting sequences can be appended by
the identification of edges. We also apply 2 to the vertex V7(w}) and the pair (eq,d,). Finally we
append the sequences to get the result at iteration ¢« + 1. O



3 Elementary Cyclic Sets of Equations

To a set £ of equations we associate its directed graph G¢ = (VE ,E€ ) computed by Ratio with
input £. We shall consider “subgraphs” Gg for E C £ that separate the cycles in Bg.

Definition 3.1 The set E' is a one-step linearization of a set E of equations iff E' is equal to
E where some occurrence of a variable in Sg that occurs at least twice in E has been uniquely
renamed. The set E' is a linearization of E iff there is a non-void sequence of one-step linearizations
from E to E'.

An elementary cyclic set E of a set of equations £ is a linearization of some subset of { such

that

1. g contains at least one cycle,
2. the graph Gg is cycle-free for every linearization E' of E,
3. the graph g is cycle-free for every proper subset E' of E.

A variable a € § is needed iff a possesses at least two distinct occurrences in E.

A variable a € § is cyclic iff a is needed and V (a) belongs to some cycle.

A variable w € R is needed iff val(w) contains at least one occurrence of a needed §-variable.
A vertex v is needed iff it contains at least one needed § -variable.

If Gg is a dag, sois g for E' a linearization of E. Linearization stepwise removes the cycles. We
establish a separability lemma for positive occur-checks.

Theorem 3.1 Let E be an elementary cyclic set of equations, then Bg contains a unique cycle.
Let ¢ be the cycle of Bg, then each vertex of ¢ contains a unique needed R-variable.

Proof. Without loss of generality, we assume that the set E does not contain strict equations. We
consider two cases: either §g contains some initial vertex or it does not.

In the latter case, we establish that each equation in E possesses exactly one marked occurrence
in its (non-strict) right-hand side. We select a non S-empty vertex vp. By Lemma 2.9, there exists
some variable ¢y in vy that occurs in some non-strict right-hand side of an equation eg. Let vy
be the vertex of the left-hand side ¢; of this equation. As we do not have strict equations, by
the same Lemma the variable ¢; occurs in some non-strict right-hand side of equation e;, and
so on. The number of equations being finite, let j,n be the smallest integers so that ¢; = ¢;;4.
This subsequence defines a cycle. By definition of E, each equation occurs exactly once in this
subsequence and each left-hand side has exactly two occurrences: one as left-hand side of ¢; and
one in the right-hand side of ¢;1;. No other variable occurs twice in E, and this cycle is obviously
the only one in Gg. o

In the former case, by the preceding observations, for any cycle, there exists some cyclic vertex
that possesses at least two incident edges. Such vertices are non S-empty by Proposiiion 2.10.
There exists at least one such vertex v such that some S-variable ¢ € v occurs by an edge not
belonging to any cycle. To see this, let v be some initial vertex. The set E being elementary, there
exists at least one path from v to some cyclic vertex. Let p = v,...,v' be such a path, minimal in
the sense that for no subpath p' = v,...,v" of p we have v" cyclic. Then v’ is shared and is the
required vertex. Let ¢ be a cyclic variable in this vertex, so that ¢ occurs by an edge not belonging
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to the cycle. This occurrence belongs to the right-hand side of equation e : ¢ = C[¢]. We may
further assume that ¢ possesses at least two distinct occurrences by Proposition 2.10. Without loss
of generality we assume the equation e has a single variable occurrence in its right-hand side whose
variable possesses multiple occurrences, namely 4. If not so the equation e can be replaced by two
equations without altering the abstracts graphs of the set E. The resulting set still is elementary
cyclic. Such an equation will be said linearized. By definition of an elementary cyclic set, the graph
SE- ~{c} is a dag. We assume that the equation e is the last level 0 equation to be selected by Ratio,
say at iteration n. Notice that the occurrence O¢ is needed: if E is linearized at O¢, then Gg is
acyclic. 4

Finally, concerning the existence of cycles in the graphs of Ratio, we note that the graph
G**! is cyclic while all G7 are dags for § < i iff there exists some path V*(w}),...,V*(w}) or
Vi(wh),...,Vi(wi). In order to complete the proof, we need some technical lemmas on the existence
of paths in the graphs G;.

Lemma 3.2 Let s < j <1t be three iterations of Ratio. There exists two paths
p1=Viwi),...,Vi(w]), k=1 o0r2, and p; = V*(wj),...,Vi(w}),l =1 or2.

Proof. By induction on n = 5 — 1. If n = 1 the equation selected at iteration j has been created at
iteration 1. The two paths are defined by the function succ.

Assume the lemma true for m < n—1. Let w’ = wj be the equation selected at iteration j such
that 7 — ¢ = n. This equation has been created at some iteration ko with ¢ < kg < 5. Without loss
of genera.lity we assume that this equation is the left one. By induction hypothesis, we have two
paths p] ending in V’(w, °), I = 1,2. At iteration ky these two vertices POssess SUCCessors. If each

vertex V'(wk°) also possesses a left successor that include the variable w], the result is immediate.
Otherwise, one of the vertices, say V*(w¥®) does not possess w] in its (possibly non-existent) left

successor. Let k; be the first iteration such that wJ is in the left successor of V"‘“(w °). We apply
the induction hypothesis to iteration k; and conslder the path ending in the vertex 1400 (wf‘) that

does not contain wy° but possesses two successors, the left one containing w{. If V‘(w,’“) possesses
a left successor containing wj, we get the result. Otherwise we iterate the construction. This halts
as1 <.+ <ki<ky<yj O

Lemma 3.3 Let ¢ < j < it be three iterations of Ratio and assume there exists a path p; =
Vi(wl),...,Vi(w), k=1 or 2. There exists a path p; = V*(w}),...,Vi(w), I =1or2.

Proof. By Lemma 3.2 there exists a path p; = Vi(wf),. ..,V‘(w‘i), !l = 1 or 2. If there exists
a path p; = Vi(wl),...,V¥(w), we take p; = p1;p2. Otherwise, let ko, { < ko < 7 be the first

iteration so that there exists a path V¥+1(w]),... ,V*+1(w). By Lemma 3.2, there exists a path
p1 = Vi(wf),...,Vi(wk), m = 1 or 2, together thh a path V¥o(wke) ..  V¥o(w). If there exists

a path p; = V'(wf,{’),. .. ,V‘(w), we take Pi = p1; p2. Otherwise we iterate the construction. This
haltsas1 <---<ky < ko< j. O

Lemma 3.4 Let e : ¢ = C[y)] be as in the proof of Theorem 3.1, then there exists an occurrence O,
prefix of O¢, and a path p = vy, ...,vp in G™, n the iteration that selects e, with vo = V"(w)/O and
vh = V"(4)/0, or vo = V"(4)/O and vy, = V*(w)/O, where w € R is associated to the (non-strict)
right-hand side of e.
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Proof. Assume the lemma false. At iterations following the nth one, we assume that equations
not along O¢ in the “tree” val(w) are first selected by Ratio. By hypothesis, VN(4) is cyclic,
while G” is a dag. If the vertex V"($)/O¢ is undefined, or if one of the vertices V"(#)/Oc¢ and
V() = V*(w)/O¢ does not possess successors, then GV still is acyclic. This is so as 1) the
occurrence of ¢ in e is needed in the elementary cyclic set E, 2) the lemma is assumed to be false
and 3) e is linearized.

Hence, let 1 be the iteration that selects wi = w} such that { > n, no equation selected at
iteration j, n < j < i, satisfies V¥ (w]) = Vi(w') and V¥(w}) = Vi(y), w' some variable in
V"(¢4)/Oc. We have Vi(w}) = V¥(w') and V¥(w}) = V¥(¢). The lemma being assumned false, G* is
acyclic. Also, let 7, § < j < ¥ = N be the first iteration so that Vi +1(4) is cyclic. There exists a
path p between the vertices of w] and wj, e.g. p =V¥(w}),...,Vi(w}), such that Vi(¢) € p. By
Lemma 3.3 we have a path p; = V"(wf), ...,Vi(¢). Necessarily w,‘ = w{ as G' is acyclic. From
the observation preceding Lemma 2.3 and the fact that e is linearized, p; belongs to G™. This
contradicts the assumed falsity of the lemma. O

Lemma 3.5 Let O be the smallest occurrence satisfying the conditions of Lemma 3.4, then there
exists a unique path from vp to vj.

Proof. First of all, notice that there does not exist a path from vy to vo as G™ is acyclic. Further,
notice that there does not exist a path from V*(¢) to V"(¢) by our choice of equation e. Otherwise
¢ would be cyclic. Consequently, |0 > 0. Let p; be a path from vg to vj. By O’s minimality,
the edge of p; incident to v} is distinct from the edge incident to vf, along the path V*(g),...,v
or V*(w),..., v}, ie. along O¢. Otherwise, we have a path between the predecessors of vo and
v) along Oc¢, which contradicts O’s minimality. Therefore, vy posseses two distinct incident edges
and is non S-empty by Proposition 2.10. Let p2 be another path from vp to vy. Let v be the first
vertex above v so that the path ps=v, ..., vj is the maximal suffix path common to both p; and
p2. Then v possesses two distinct incident edges e; and ez, €1 € p1, €2 € pz. Let ¢o € S,,:, that
occurs by the common path ps. Let eg : ¥o = Co[do] be the associated equation. We have two
cases: either the path V™(yy),...,V™(¢o) along Oc, includes ps or it does not. In the second case,
by Proposition 2.10 and Lemma 2.9, we have a sequence of multiple occurring variables starting
with ¢y and ending with a variable ¢; that occurs by ps. Hence this second case ends up in the
first one after a sequence of multiple occurring variables along pg.

The last equation so construed ¢m = Cmn[¢m] defines a path V*(¢),...,V"($m) including one
of ey or ez, e.§. ei. Then one occurrence, given by Proposition 2.10, of a variable occurring by e
can be linearized. The resulting set still is cyclic as the path p; always exists in G" (details left
out, the equations involving multiple occurring variables found along ps implies that the path still
exists).

If the last equation is such that V(1) = v, then one variable occurrence either by e; or e;
can be linearized without destroying one of the two paths p; or ps.

In both cases we get a contradiction with E an eilementary cyclic set. Hence there exists a
unique path from vp to vj. O

We conclude the proof of Theorem 3.1. By the previous Lemmas, there exists an occurrence O

such that we have a unique path between V"(¢)/O and V"(w)/O. The two graphs G" | v and
G™ | v}, are trees. Otherwise they are dags such that at least one vertex, distinct from both vy and
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v}, has multiple predecessors. Linearizing one variable in this vertex does not modify the unique
path between vo and v}, contradiction. The same observation implies that the trees are disjoint.
Therefore g contains a unique cycle as the iteration that merges vo and v} creates a unique cycle,
and afterwards two disjoint trees are merged. This does not create any new cycle.

The second part of the Theorem follows from the unicity of the path p = vo,...,vy. We first
build a chain of needed variables as follows. As v} is shared, we may choose some needed S-
variable ¢ that occurs in v} by the last edge eo of p by Proposition 2.10. There exists an equation
€® : 4o = Co[do] such that the last edge of the path po = (V(%),Oc,) is €o. Let V1 be the initial
vertex of the maximal common suffix path of p and pg. Either V(10) = V; or not, in this latter case
V, is shared. In both cases V; contains at least one needed variable and we can iterate the process
with (11,¢1) by Proposition 2.10, first part. This stop as soon as Vy is above vg. The sequence
selects for each vertex in p a single needed R-variable. The sequence (¥;, #;) so constructed is rigid
in the sense that there exists a chain as in Proposition 2.10 that links ¥;—1 to ¢;.

Assume that some vertex in p contains two distinct needed R-variables w; and w;. One of
them, say wy, is not captured by the above sequence. Then the needed occurrence in val(w;) is
necessarily the occurrence of a variable ¢ such that V(¢) € p by the unicity of the cycle in GV.
Linearizing this occurrence of ¢ preserves the sequence (#;, ;) hence the unique path p, and finally
the resulting graph still is cyclic, contradiction. O

Let £ be a unification problem. As the powerset of £ is finite and there is a finite number of
possible linearizations from a given set, the effectiveness of the base of elementary cyclic sets is
trivial.

4 Equational Deductions

Under the azioms & and equational inference rules, an equational deduction D - val(w) = val(w')
will be associated to each pair of distinct variables w, w' in a vertex of G¢. To any cycle ¢ will
be associated a set of equational deductions: D + ¢ = C[¢], C|[.] a non-trivial context, ¢ € S,
O¢ = O(C[4],c). The set of hypotheses or axioms of D is noted A(D). The form ¢ = 7 of the given
equations will be important for the second inference system that we present.

4.1 Inference Rules, Completeness

We introduce inference rules of symmetry, transitivity, simplification and substitution, ¢, ¢ denote
variables, the other greek letters denote terms.

T=9 T=¢ ¢=p
@) o= O —F=—

p—=20=T—V p—O0=7T—V

e
¢=1 $=Cl¢|
(o) Ty =cir

The following derived rules will be used:

(dl) ¢=o‘—p;=tzu—>x (dr)¢::a'——r;'=i=v—>x
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Notice that this set of inference rules is not complete for equational reasoning. We do not need
reflexivity nor congruence (or equivalently the full substitution rule).

Lemma 4.1 Let w; # wy; be two variables in $ U R, then D + val(w;) = val(wz) where D is
(su)-free, iff V(w1) = V(wz) in Ga(p)-

Proof. The proof of adequation is straighforward by structural induction on deductions. If D is
restricted to an axiom, it is immediate. Otherwise, by cases on the last inference of D. If this rule
is (s), the result is immediate by induction hypothesis. If this rule is (), the result is immediate by
using twice the induction hypothesis. If the rule is (s!) with premisses ¢ =71 — 72 and ¢ = 13 — 74,
then by induction hypothesis we have V (r; — r2) = V(rs — 7). By observation 8 of section 2.2,
we have V' (r;) = V(rs). The cases of other rules are similar.

The proof of completeness is by induction on the cardinality of £ = A(D). With a single equation
e : ¢ = r, the only non-singleton vertex is V' (¢), the deduction reduces to an axiom. Assume the
lemma true for £, we add an equation e : ¢ = 7. If ¢ does not occur in §¢, there is nothing to
prove. Otherwise, in V' (¢) we have D |- val(w;) = val(w;) for all pairs of distinct variables w; and
ws by induction hypothesis. Especially, D I val(w;) = ¢, which gives the deduction D':

D
val(w)) =¢ ¢=r
val(w) =7

and D"+ 7 = val(w;) with an instance of the symmetry rule. If 7 € § or if the vertex V(¢) is not
predecessor, there is nothing more to prove.

Otherwise, 7 = 1, — 7 and V€(¢) has two successors. We construct new deductions, say for
the left successor v and the term ;.

If S, # 0, by Lemma 2.10 there exists w € R N V¢(¢) and ¢ € §, such that suc(w) = ¢ — v'
for some w'. By induction hypothesis there exists a deduction D ¢ = ¢ — val(w'). We have a
deduction D':

D
p=¢—oval(v') ¢=r—-n
®) Yv=n

Now, for all w" in v, we have deductions for the equations val(w") = r; and r; = val(w"), with D',
transitivity and symmetry.
ODthorurica € 30 nmr\f" B" T.ao emma ‘7 10

Otherwise, §, 18 emp L 13 t pes..w.,.,., a C
quently, for all wy in v, w; is in R and there exists wgin RNV (¢) such t suc(wg) = wy — wy
for some w;. We apply the rule (sl) as above.

In turn, if v is not predecessor or if i, € §, there is nothing more to prove. Otherwise the same
proof is carried on. O

he vertey ©
Qe Verex v

r0<i<n=lpl & #

V@ € Suo, Y € Su,,, 3w € Ryy, D F ¢ = val(w), val(w) = Cly], O¢c = O(w,p), |Oc| =n.

— 0
vy, — ¥ ior

Proof. By Lemma 2.10 there exists w; in Ry, , and ¢ in §,, such that suc(w;) = ¢ — w' or
suc(wy) = w' — ¢. By the unique incident edge property for S-free vertices, there exists w in vo
such that val(w) = C{y], O¢ = O(p,w). The conclusion follows from Lemma 4.1. O
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Corollary 4.3 Let p = (vo,0) be a path such that both S, and S,, are non-empty, n = |pl,
then for all ¢ € Sy, and for all € S,, there exists a deduction D + ¢ = C[¢] with O¢ = O.
Reciprocally, for all deductions D + ¢ = C|y], there exists a path from V£(¢) to V¢(y), where
& = A(D).

Proof. By successive applications of Lemma 4.2, using the substitution rule. Let v be the vertex of
¢ containing the variable ¢. The inference tree has the following form:

Dl DO
Dy ¢1=val(§1) ¢ = val(9)(= Col¢1])
¢2 = val(42) (su) ¢ = Co[val(1)](= C1[42])
(su) T ¢=Cifval(@)](=""")
Dn+1 : _
Pnt1 = val(w) ¢ = Cn—1]val($n)](= Cn[Pn+1])
(su) % = Culval(w)](= C[4])

This inference successively substitutes vertex representatives for variables. The contexts are de-
termined by the occurrence of the path p. The intermediate equations are the conclusions of
the inference step (su). The new context Cit1[.] is defined by the occurrence Oc;.0(¢, $i+1) in
Ci[val(¢i+1)]. D

The deductions D;,0 < ¢ < n+ 1, are the auziliary deductions of this cycle deduction.

Corollary 4.4 For each cycle ¢ in Bs and each ¢ in S., there exists a deduction of a cyclic equation
D + ¢ = C[¢)] with |O¢| = |c|, Oc = O(c,C|[4]), and reciprocally.

Proof. Immediate consequence of the previous Corollary. O

4.2 Reduced Deductions

We introduce reduced forms for deductions. In fact, we only need deductions of marked equations,
an equation being marked iff one and only one among its right-hand side occurrences is marked.
Such equations have the form ¢ = C[¢]. The reductions may replace the context C[_] by an
equivalent one. They introduce a simpler inference system.

Proposition 4.5 The following inference system is sound and complete for path deductions, where
¢, ¥ denote $-variables:
p=¢ ¢p=9¢ ¢=r1

0) y=¢ O 4=

$=Cily] ¢=Calr] Ci[]~Cal] p=1 ¢=C[4]
9 v=r1 — (ew) Ty =cp
Proof.  Soudness is immediate. For completeness, we establish that any deduction under

the first inference system can be transformed into a deduction under the above inference system
according to the following reductions (we omit reductions involving the derived rules (d!) and (dr)).
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Instances of the symmetry rule can be lifted up to axioms. Two successive applications of (s)
can be removed and we have the following reductions for (), (sl) (resp. (sr)):

D p! D! D
= = p=p T=¢
(,)%u (6) =—5 (o) 3=
(s) @) 2 ¢
p=r p=1
) )
(sl)r—»v=p—»¢r (s)r-—vv=p—»v
T=p p—=O0=T—>v
() ——5= — () —L2Z3

We assume that all deductions are in this (s)-reduced form.

Next, instances of (t) such that the leftmost term of the premisses is of positive size cannot be
the last inference of a path deduction. Further, it can only be followed by (t), (sl) or (sr). This
allows us to define a reduction on deductions that contain such an instance of (t). We give three
reductions, the others are deduced by symmetry. In each rule r; is of positive size.

D D, Dy Ds
n=¢ ¢=v¢ p ) ¢=¢ ¢=n
(®) - 2 24 @ =
@) 1 - i _ V=12 — @™ ¢ — Tz¢ T2
D
¢=n p,
t (e) n=¢ ¢=rm Dy D,
(¢) T =13 p=n ¢=rm
(81) T{ = 1'.:; = (dl) r{ = r,";
D Dy
N —T3=¢ 174 Ds . TN T3=¢ 74
(sl) n=¢ $=rs p—o14=11—713
() L =12 (1) p=r11 p=rm
“ A= = @ f=1

In the last two reductions, the existence of an inference above the left premiss of (t) exists due to
the form of axioms. If the left premiss of (t) were the conclusion of an instance of (), the first
reduction would apply. We used the derived rules. Redexes containing them are easily deduced
from the above reductions. This reduction is well-defined as the number of (t)-rules whose left
premiss is of positive size strictly decreases.

By inspecting reduced deductions, we see that the (s)-instances applied to non-strict axioms
occur as intances of the second rule left-hand side. Also, they cannot occur. In turn, instances of
(t) are as in the second system. Then, any subdeduction involving only rules (dl), (dr), (s!) and
(sr) must end up in an equation of the form ¢ = r for ¢ € §. Further, such a subdeduction starts
necessarily by an instance of (dl) or (dr). Hence, such deductions are instances of the rule (d). The
substitution rule remains unchanged. This establishes the completeness of the above system. [J

The size of an instance of (t) is the size of the right-hand side of its conclusion, the size of
an instance of (su) is the size of the right-hand side of its left premiss. We introduce some other
reductions. Their effect is:
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1. Localization of the inference of strict equations (variable equals another variable, rule 1).
2. Diminution of the number of substitutions (rules 2 and 3).

3. Cancellation of internal 0-sized subsitutions.

D D Y
v=0 0=r =9 oY=
b2y O 5= O —§=i— o2,
0 — I .
Dy Dy Da D
v=r ¢=v 4=% w=r
(ow) ==, = O 3= —
42y 0=0l 20 42
» =% 6= ¢=v $=1
v=r ) oo O —%=r  s=cly
(su) 6 = Clr] = (su) 8 = C[r]

Hence, left branches of length greater than one in auxiliary deductions are sequences of (d)-rules.
Observe that the number of (su) decreases, and if constant, the sum over the deduction of the size

of the inferences decreases.
Finally, we can remove O-sized instances of (d), and sucgessive instances of (t) and (d) such that

the conclusion of (t) is the rightmost premiss of (d).

D
D D ¢=v% p,
4=v ¢ (8)¢=¢ p=r
@ e = 0=
D,
Dy Ds ¢ 4 Dy
D ¢=¢ ¢= 02[7'] () =74 v=¢ ¢=0Cuff) D
¢=cijo) @ T g=c] (¢) ¥ =C1lf] ¥ = Calr]

(4) EL = (4 f=r
For (su)-free deductions, we have a subformula property: both sides of the conclusion are subterms
of the axioms.
Definition 4.1 Let D + ¢ = C[y] be a path deduction. We define marked occurrences in terms
occurring in D:

e The occurrence O¢ of the conclusion and the left-hand side are marked.

e If in the conclusions, displayed occurrences are marked, then in the premisses:

Yv=¢
(8) 3=% 4 and ¢ are marked;
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$=0 0=Cly]

®) ¢ = C[y] ¢ and 0, 0 and O¢ are marked,
6 =Ciy] 0=0CyClY]
¢ =Cly] T and OCI , T and OCZC are marked,
0 =Ci1ly] ¢=0Cyl0)
(o) T g—cilawl]  randOg |» ¢ and O, are marked.

Therefore, in any path deduction D, every equation ¢ = 7 is such that ¢ and one and only one
occurrence of 7 are marked.

Lemma 4.6 Let D be a path deduction of ¢ = C[y|, then for any S-variable § that possesses
some marked occurrence in D, there exists a path from the vertex V () to some vertex of the path

V(4),...,V(¢) in the graph of A(D).

Proof. Immediate by structural induction on D. O

We conclude this section by a description of reduced deductions. Such a deduction has the form
of the deduction in the proof of Corollary 4.3, where for all (su)-rules, except possibly the last one,
the right-hand side of their left premiss is of positive size. Further the auxilliary deductions are such
that the right-hand sides of the premisses of (d)-rules are of positive size, and the right premiss of
both (t)- and (d)-rules is not the conclusion of a (t)-rule. Consequently, the following observation
will be useful in the next section: each inference rule (except the symmetry rule) eliminates a
variable. If one of the two occurrences of the eliminated variable is extracted from a non-strict
right-hand side in the axioms, then this extraction is performed by a sequence (right branch) of
consecutive instances of (d)-rules.

5 Minimum Deductions are Deterministic

We now address the problem of effectively finding an equational deduction of an equation ¢ = C|¢]
given an elementary cyclic set S so that its cycle is equal to (V(¢),0¢). We first establish that
in a minimal deduction, the auxiliary deductions do not eliminate cyclic variables. Next, we prove
unicity properties for chains in vertices of the graph §s. These two results imply the correctness
of a deterministic algorithm finding a minimal deduction. In turn the existence of this algorithm
proves that, up to permutation, there exists a minimum deduction.

5.1 Auxiliary Deductions are Cycle-Free

We first establish that a minimal deduction doest not involve unneeded variables. The left-hand
side of the conclusion of a cyclic inference is its main variable, the variables that are eliminated by
substitutions are its proper variables.

Lemma 5.1 Let D be a minimal reduced cyclic deduction from an elementary cyclic set S. All
marked variables of D are needed variables of S.
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Proof. Firstly, any left-hand side is marked in D. Otherwise, some equation is redundant, which
contradicts S an elementary cyclic set. Secondly, we will prove that if the variable « is eliminated
by some inference rule in D and the two occurrences of a in the premisses are equal occurrences
in some right-hand side of S, then D is not minimal. This establishes the result but for the main
variable of D (the same question for left-hand sides is trivial). This in turn follows by the same
technique. These claims are proved in the three following (technical) lemmas. O

Lemma 5.2 Let D and £ be the two following deductions:

D, Do
D, fo = 011[01] 0p=Cq- --Ck[T]
01=C%[92] ( 01=Cz"'Ck[T]
(9) 62= Cs -+ C[7]
Ds :
0;,_1 = C,i[o,,] 0k_1 = Ck[T]
O =171
& o
&, o = Di[th] o= Di1---Di[g]
1 = Di[¢,] 1 = Dy -+ Difp]
2 = D3 -+- Dyp)
& :
¥i—1 = D} ] thi-1 = Dj[p]
9) Yi=p

such that the two equations Y = D;--- Di[p] and 8g = C) :--Cj[r] are the same axiom (up to
strict equality of the left-hand sides). Assume that Dy - Dy < Cy---Cy. There exists a deduction
D A& + oy = CP|6;], where i is such that Cy---Ci_y < Dy---Dy < Cy-+-C; and C} = C}C}.
Further this deduction does not contain Dy nor o as subdeductions.

Proof. Without loss of generality, we assume that ¢o = 8p and that both Dy and £, are axioms
(in the general case we have an axiom w = Dj---Dy[p] = Cy-+-Ci[r] and Do, o decompose in
(t)-proofs 8o = w and ¢ = w, completed by this axiom). The proof is by induction on I. Notice
that when deductions are reduced, if some right-hand side occurrence is eliminated, there exists a
subdeduction of the form D or £, i.e. a right branch of (d)-rules.
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For | = 1, we have D} = E; - - - E; with E; ~C},j= 1,...,i—1and C} = C?C} with C? ~ E;.
We build the deduction:

D &

1
D, 6o = Ci[61] o= E1---E;[¢1]
6, = C}[6,) 01 = Ep -+ Ei{t1]
(4) 02 = Eg- -+ E;[1]
Di—1 . :
0i—2 = CL [0;-1] 8i—2 = Ei1E;[th1] D;
(4) bi-1 = E;[41] 8;-1 = C}C}[8;]
@ ¥ = C1lo]

Assuming the lemma true for [ — 1, let ¢ be such that Cy---C;—y < Dy-+-Dyj_y £ Cy1---C;. By
induction hypothesis, we have C} = C?C} and a proof D' - 1 = C?[§;] without using Dy nor
&o. There exists j such that Cy---Cj_; < Dy---D; < Cy---C;. We have D,l = Ey--- E;_; with
Ey~C} B ~Clip, k=1,...5—i-1, and C} = C}C} with C} ~ E;_;. We build the deduction:

D! &
-1 =C3[0:i] vi—1= Eo-- Ej_i[yi]
0iv1= Ey--- Ej_i[h]

D; :
0j-2 = C}_l[o,-_l] 02 = Ej—i—lEj—i[¢l] D;
(d) 0i—i = Ej—i[th] 8i-1 = C;Cjl4;]

The reader may check that the presence of (t)-proofs merely complicates the above argument. O

Lemma 5.3 Let S be an elementary cyclic set. Assume that in some cyclic deduction D, a rule
eliminates the variable ¢ and that the two occurrences of ¢ in the premisses come from the same
occurrence in some right-hand side of S. Then the deduction D is not minimal among cyclic
deductions for S.

Proof. Given such a deduction, we reduce it according to the kind of the eliminating rule. In each
case we have two left (d)-branches, defining two subdeductions D and £ as in Lemma 5.2. Also,
we use this Lemma to get a deduction DA E F ¢ = Cf[Oj]. As usual, the possible presence of
(t)-subproofs does not invalidate the argument.

Case of (d)-rule. Without loss of generality the deduction is:

D ' D, 2 &
Or = Er[¢] 6r = E2E3[y)] 1= Ey¢| = EsEgEq[r|
¢ = Es[y)] 9) ¢ = EgEq[7]
@ ¥ = Bl
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We have the following equivalences of contexts, as both E;[¢] and E4[$] come from the same axiom
by assumption (with the notations of Lemma 5.2):

Dy--+DEg=C,-+-CpEr.

But D1 ser D; = Cl °°-CJ'_1C}, 012013 = Cj, hence E4 ~ E5 ~ C?Cj+l . --CkEl. With abuse of
notations with respect to contexts, we build the deduction:

D' &1
v = C3l6;] i = EsEsEx]r]

Djn1
6; = Cly1[0541] (@) 79, =Cji1- - ChE1EsErl7]
(d) 0j+1 == CJ‘+2 s CkE1E6E7[T]
- D :
Dy O0p—1= Ci[ﬂk] Op—1 = CkE1E6E7[T]
0, = E3E3[y) (d) 0y = EyEgFEq|r]
¥ = Eqfr]
Case of (t)-rule. Without loss of generality we have the configuration:
Dy D £ &1
0 = Ez[a] 6 = Eq[g] Vi = Eq[¢] th = Eslr]
“ a=¢ ‘ $=r
(t) —
a=r1

We have D' ¢ = C?[0,-] and Fs ~ C’ij_,.l -+ CpE;. We build:

D! &
th=C}[6;] = Eslr]

Dit1
8; = C},4[05+1] (@) =4, =Cia---CuElr]
() 811 =Cj42- - CrE[r]
Dy :
D, Ok—1 = CL[604] 8x_1 = CrEy[r]
b = Eylo) @ ' 0 = Eq[r)
(4) a=T

Case of (su)-rule. We have four subcases. First,

D Dy
0 = Ey[¢] Or = Ep[r] £
p=r R AL
(sv) ¥ = Ealr
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With D' I ¢ = C3[9;] and Eq ~ C}Cjy1 -+ Cp Ey, we build:

Dj+1 D'
8; = Ch,[0ira] i =C}l6)]
(s9) Ty = 630 B41]
D . : .
D 0k—1 = C§[0k] '/’l = C$Cj+1 o C,‘_l[();,_l]
1
0 = Ealr] () %1 = CiCL,-+-CHlii]
(su) W= C;.’C}H ++-CLEy[7]
Second, p &
Vi = E4l¢] = Es[r] )
p=r1 0, = Er[¢]
(su) 0 = Ea[r]
With D' oy = C‘}"[o,-] and E3 ~ C}’Cj.ﬂ ««+CyE;, we build
D' &

¥ =C3[0;] = Es[r]

Dj1 @
6; = Cj11(0j+1] 8; = Cjs1-++CiBrlr]
() 8i+1 = Cjsz -+ CrE]r]
0, = Ealr]
Third, ’ b . ‘,
O = Ei[¢] i = Ea[r] = Eql¢] o= Es[yi]
¢ =T (su) a = E3E4[¢]
() a = EsE4[r]
With D' -y = C38;] and By ~ C3Cj41 -+ CiFy, we build
D' &1
Din1 1 =C}[6;] o= Esly]
8; = C}1[05+1] (sv) a = EsC} 6]
(su) a = EsC3CH,[0541]
Dk 31l 1
D Ox-1 =CLi6:] a = EsC}C},, - Chqlf-1]
; (su) = EgC3CL, , -+ C}[0k-1]
Or = E;[7] a= E3C;Cjiy el0k—1
(su) a = EsCiCL,, - CLE[r]
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Fourth,

£ & D D
Vi = Eql¢] = Es]r] O = Er[¢] o= E3(6y]
p=r ot a= EE 4]
(su) a = EyE[7]
With D' -y = C}[8;] and Es ~ C3Cjy1 -+ CiE1, we build
D! &1

W =C}6;] th = Esr]
0; = Cjt1+--CiEy|r]

: D
0 = Ex[r] o = By[8s]

(su) a = EE[r]

Notice that new deductions are reduced. O

Lemma 5.4 Let S be an elementary cyclic set. Let D ¢ = C|4] be a cyclic deduction such that
both occurrences of ¢ are the same in S. Then D is not minimal among cyclic deductions from S.

Proof. The proof is similar to the previous one. Once more, if ¢ comes from a single left-hand side,
the result is trivial. We have two cases. First,

& &1
A th = Ey(@] i = EsFo[wo]
wo = Fifw;] ¢ = Folwo)
(su) ¢ = FoFy[wy]
Fm :
D Wm-1 = leok] ¢ = FO“'Fm—l[wm—I]
o= g () = Fo- Fulls)
(su) ¢=Fo--- FnEy|d] |
With the previous notations we have Eg ~ C3Cj1 - CiEy and D' F ¢y = C}[6;]. We build
D' €1
Di+1 = C3[8;] = EsFolwo]
8; = C},[05+1] (@) =5, =Cjr1-- Cu B Foluo]
(4) 0j+1= Cjy1+-- C E1 Folwo]
A :
wo = Fl[‘”l] 0* = ElFo[wc)]
(su) 0r = EyFoFi[w]
Fn :
Wm—-1 = Fm[alc] 0): = EIFO"'Fm-Ilwm—I]
(su) . 0 = E1Fo--- Fon[04]
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Second,

D D
A 0r = E1[¢] 0r = EzFolwo)
wo = Fyfw] (4) ¢ = Fo|wo
(au) ¢ = FoFy[w]
Fn :
¢ Wm-1 = F[th] ¢=Fo+ Fn_1[wm-1]
w=Edg) ) 6= Fo-- Fmltl
(eu) $=Fo-- FmEald]
As usual E4 ~ C}Cjt1++-CyEyand D'F ¢y = C;[95]. We build
A D
wo = Fl[wl] 0, = EzFo[wo]
(su) 0 = E2 FoFy[w]
Fm :
D! Wm-—-1 = Fm['/’l] ek = E2F0"'Fm-1[wm—1]
Djs1 i = C7[6;] (su) O = ExFo- - Fult]
AR o= oo FnCl0]
(su) 8 = E3Fy -+ FnCIC},,[0;]

0= EyFy--- FpC3CJ ;- Ci[0i]
Notice that new deductions are reduced. The conclusions are not preserved in these two reductions.
But the new deductions still are cyclic, and smaller than the previous ones. O

Lemma 5.5 Let D - ¢ = C|[¢] be a minimal reduced deduction from some elementary cyclic set
S. Then D does not eliminate cyclic variables above some (d)-rule (in its auxiliary deductions).

Proof. The deduction D being minimal, all marked variables are needed by Lemma 5.1. If the
variable ¢ is eliminated by a (t)-rule above some (d)-rule, the variable eliminated by the first (d)-
rule below this (t)-rule is also cyclic. Also, assume that the cyclic variable 4 is eliminated by a
(d)-rule:
¥ =Cia] ¢ =CCs[f]
o = Gelf]

The deduction being reduced, the contexts C; and C, are non-trivial and, if Cs is trivial then
a # B, as deductions are reflexivity-free. This means that the cyclic vertex V(¢) contains two
needed R-variables, namely w; such that val(w;) = Ci[a] and w; such that val(wz) = C;:C3[f]. By
the unicity of R-variables occurrences, wy # w;. But this contradicts the second part of Theorem
3.1. 0
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Therefore, we know the “external” structure of a minimal deduction. This is a reduced deduction
as described at the end of section 4.2. Further, let (vo,...,vs) be the sequence of needed vertices
of the unique cycle ¢ of the elementary cyclic set S, vy being the first needed vertex above v;
along the cycle. By Proposition 2.10, for each vertex v; there exists a variable ¢; that occurs by the
cycle in v;, this variable may be chosen needed. By Theorem 3.1, this variable is the unique needed
variable occurrence of val(w;;;), wi+1 the unique needed R-variable that belongs to v;;;. Hence
the deductions must prove ¢; = val(w;) for each vertex v;. Further, the auxiliary deductions are
“out of” the cycles. Also there is some hope here to find a deterministic algorithm that searches a
proof.

5.2 Chains in Elementary Cyclic Sets ;

In this section, all variables are assumed to be needed. Let ¢ be some needed variable of an’
elementary cyclic set S, and assume that ¢ occurs by an edge e in §s. Then an occurrence O of ¢
in some non-strict right-hand side e : ¢ = C|[¢] is said to be associated to e iff the edge e is the last
edge of the path p = (V(¢),0c¢). ‘

B

Lemma 5.6 Let S be an elementary cyclic set. Let o; and az be two needed variables that
occur by the edge e in V(a;) = V(o2) according to two distinct equations e; : ¢ = Ciley] and
e : Y3 = Clas]. Assume that S is linearized into S' at occurrence Oc, by substituting a) to ay.
Then, in s we have V () = V(az). ‘

Proof. Notice first that the edge e is not cyclic by Theorem 3.1. Let v = V(a1) =V (a2) and v’ be
the first needed vertex above v along e. This vertex is well-defined by (i) the unique incident edge
property for S-free vertices and (ii) if v” is non S-empty and unneeded, then v” also has a unique
incident edge by Proposition 2.10.

Then V (1), V(¥2) € Gs 1 v' as these two vertices are needed. Further §s T v' = Gsr 1 v' as
the graph above the source of ¢ is a dag and we rename a variable whose vertex is the target of e.
Hence V(¢1), V(¥2) € Gs' T v' and v' =V (¥1)/(Oc¢,/0) = V(¥2)/(Oc,/0O) in Gs where O is the
occurrence defined by the path p=1v'....,v = (v',0). This establishes the result. Ol
For any R-variable, there exists a unique associated equation. This fact is also true for S-variables
when we require that the variable occurs in its vertex by some edge.

Lemma 5.7 Let S be an elementary cyclic set and ¢ be some needed variable. If ¢ occurs in V(¢)
of Gs by an edge e, then there exists a unique associated equation e' : ¢ = C[@| such that e is the
last edge of the path (V (¢),0¢). The occurrence Oe,) will denote Oc.

Proof. This is true if the edge e is cyclic by Theorem 3.1. Assume that we have two distinct
equations so that ¢ occurs in V(¢#) by e according to these two equations. By Lemma 5.6, we can
linearize S by substituting ¢' to one of these occurrences so that V' (¢') = V'(¢) in the new graph.

If V(¢) had a unique incident edge, this is also true in the new graph. Hence for every variable
¥ in V(¢) from the old graph we have ¢ =, 8, @ occurs by e, by Lemma 2.9. Either § = ¢ or
not. In each case, we have V(¢) = V(¢) in the new graph. This establishes that the two abstract
graphs are equal, contradicting S an elementary cyclic set.

Otherwise, by considering an edge ¢’ distinct from e and a chain between ¢ and ¢’ we also have
that V() = V(¢) in the new graph for all variables ¢ € V() in the old graph. Once more this
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gives a contradiction. [J
We precise the notion of chain, with the same notations of Proposition 2.10:

Definition 5.1 A chain as defined in Proposition 2.10 is an open chain. A closed chain is a triple
(a, ¢, ) where c is an open chain, a occurs by ey and B occurs by e,. We also define in an obvious
way left (resp. right) closed and right (resp. left) open chains.

By extension, a closed chain of length 0 is a pair (a, 8) of variables such that @ =, . A closed
chain of length 1 is a triple (a, ¢, 8) such that both a and 8 occur by the edge e. Such chains will be
used in proving strict equations. Given two consecutive edges of a chain, the variable pairs (;, 5;)
of a chain are unique:

Lemma 5.8 Let S be an elementary cyclic set and v be some vertex of Gs such that e; and e; are
two distinct edges both incident to v. Assume that c, B occur in v by e, and o/, ' occur in v by
e2. Then a =, o and B =, ' implies = 8 and o = .

Proof. We establish o = 8 by contradiction. Assume a # B. By Lemma 5.6, if we linearize §
into S' at O(e, @) by substituting o for a, we have V(o) = V() in the new graph. But g =, §'
implies V(8) = V(B'). Further a =, o' and o' still occurs by e; implies

Vie)=V()=V(8)=V(B) =V(a").

Hence the vertices of « and o are equal in the new graph. This means that the abstract graphs
underlying §s and §sr are equal, which contradicts S an elementary cyclic set. O
The argument detailed in the above proof will be frequently used in the following lemmas.

Corollary 5.9 Assume that in §s, S and elementary cyclic set, we have two open chains in a
vertex v that share their sequence of edges, then the chains are equal.

Proof. Direct consequence of Lemma 5.8. O

Definition 5.2 Let E be a set of equations. Let v be some vertex in Gg. A block of v is a set B
containing at least three edges incident to v so that there exists a S-variable ¢ that occurs by e,
for all e in B.

Let ¢ be a chain of v, then if ¢ contains (ey,...,e,) that forms a block, any permutation of
(e2,...,en—1), any subsequence (e, €;,,..-,¢€,,¢en) also defines a chain. We are interested in mini-
mal chains. Notice first that such a chain does not repeat any edge. Further a minimal chain does
not contain any subsequence of edges defining a block. According to the equality that is to be
proven, the chain will be open, closed or left-open and right-closed. These situations are detailed
in the following lemmas.

Lemma 5.10 Let c; and c; be two minimal open chains between the edges e; and e; both incident
to v. If their sets of edges are equal, then their sequences of edges also are equal.
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Proof. Let (eo,...,en+1) and (eh,...,eh ;) be the two sequences of edges. Let i be the first index
so that ¢; # €} and j, k be the indices such that ¢} = ¢; and ex = e!. The two chains are

c1 = (‘ .. :ai—l:ﬂi-lteitab s )ak-l,ﬂk-ly €k, Ak, ﬂk’ .. ')’

’
C2 = ( .. :ai—lxﬂf—lae:')a:')' . )aj—l)ﬂ;'—lxe_'i’a;"ﬂ;a .. )

They share a common prefix, including the same variables, up to a;_1, by Lemma 5.6. We have
(1) o # o,

(i) Bi-1# Bi-1>

(iii) (¢4] $ ﬂl-—la l= 1, ceey T,

Otherwise, each one of (i), (ii) implies that a chain is not minimal, e.g., &; = o; implies that the
chain
(- .o ’ﬂi—l) €, at';ﬂ_"i’ e;'+l, a"f-i-ls .. )

does not contain the edge €/, while (iii) implies the existence of some block in a minimal chain.

Next, we claim that §;_, = a; implies a; = B;-1. Otherwise, o5 # a; by (i), Bi-1 # B;_; by
(iii) and B;_, = a; (contradictory hypothesis), and f;_; # o); by contradictory hypothesis. Hence
we have three distinct variables, namely o;, a'j and fB;-1, that occur in v by ¢;. Next, we have the
strict equalities

1. a; =, B; that occurs by €41,
2. o =, B; that occurs by €t
3. Bi-1 =, a;—1 that occurs by €;_1.

By the absence of repetitions in chains, we have ;1) # €;—1 and €}, # €;—1. If ;41 = €415 by
Lemma 5.6 applied to 1 and 2, we have o = a;- which contradicts (i). Hence these three vertices are
pairwise distinct. We claim that, among the three variable occurrences by e;, one can be linearized
without modification of the abstract graph. The edge e; is not cyclic by Theorem 3.1, and we can
apply Lemma 5.6 to see that this does not modify the abstract graphs (details left out, we have a
vertex v with four incident edges, one among them is associated to three distinct variables, each
other one is associated to a variable strictly equal to one of the preceding ones).

We have proved that either o; # B;_, or, o = p;_, and o), = f;—1. We conclude the proof by
a case analysis.

In the former case, as o; # f;_; and f;_1 # Bi_1 by (ii), the chain ¢, still exists as e; is not
cyclic (same proof as previous Lemma).

In the latter case, we get a chain cs without ex: ¢3 =(...,0-1,8j,€11,---) a8 &j_1 =, fi1 =
o} =, ,3;-. This concludes the proof. O

Corollary 5.11 Two minimal chains c; and c; with the same sets of edges are equal.

Proof. By application of Corollary 5.9 and Lemma 5.10. (0
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Lemma 5.12 Let ¢; and ¢z be two minimal chains between e; and e; incident to v. Then they
have the same edges.

Proof. Assume that c) and c; differ by say e € c1, € & c3. Both ¢1 and c2 being minimal, §; and
;41 that occur by e in v are distinct. Hence e is not cyclic, we can linearize S at the occurrence
of B; or i1 by Lemmas 5.6 and 5.7 without modifying the abstract graph. O

Proposition 5.13 Let S be an elementary cyclic set and v be a shared vertex of Gs. For all pairs
(e1, e2) of distinct edges incident to v there exists a minimum open chain between e and e;.

Proof. Consequence of Lemma 5.10 and Corollaries 5.9 and 5.11. O

Lemma 5.14 Let S be an elementary cyclic set and a, B be two distinct variables. If a =, f there
exist a minimum (t)-proof of this equality.

Proof. A reduced (t)-proof is a sequence of variables a;, § = 0,...,n with ap = @, ap = f and
o; = a;1 € S. Assume that there exists two distinct sequences (o;) and (o). Let j be the first
index such that a; # oj. Then as a =, aj, a =, o}, f =, a;, B =, o; we can remove, say the
equation a;_; = a; without modifying the abstract graph, contradiction. O

Proposition 5.15 Let S be some elementary cyclic set and o, B be two variables with V(a) =
V(B). Then there exists a minimum closed chain between a and 8.

Proof. We first establishes the existence of such chains. If a =, B8, there exists a (t)-proof of this
equation by definition of =,. Otherwise v = V(a) = V() is non-initial. By Lemma 2.9, there
exists 4 and & such that '1 =, a, 4 occurs by some edge ¢; in v, § =, 8, § occurs by some edge
e2 in v. By Proposition 5.13, there exists a minimal chain between e; and e;. This establishes the
existence of a chain proving 4 = §, hence a = 8.

We now establishes the unicity. Assume @ =, §. By Lemma 5.14, there exists a minimum
(t)-proof of a =, B. Otherwise, we firstly assume that in minimal chains only one edge is involved
and that (1) v and § occur by e, with y#, §, @ =, v and 8 =, §, (2) v’ and §' occur by ¢, with
o #, 8, a—,'y and 8=, §'. If e = ¢, but say v # ', we can linearize e.g. 7 by ¢, as y =, 7.
But ¢ # ¢! is impossible by Lemma 5.8, as v =, 7' and § =, §'.

Secondly, assume that n + 1 edges, n > 0, are involved in minimal chains and that we have two
closed minimal distinct chains proving the equality a=f:

c= (7’30) aO:ﬂO) v ’au-—lyﬂn—l) en,s)a

d= ('7',66, a:)’ ﬂ(’)’ cee ’a:n—l’ n—l’en’ 6’)

Then if eo = €} and e, = €!,, by Proposition 5.13, we have v # 4' or § # §', say v # 9. But v =, '7
and we may lmea.nze say the occurrence of 4 by €g. Otherwise ep # ¢€;. Then we have v =, 7 ,
ag #» v and ofy #, 4’ by minimality of the chains. As 7, ap occur by e and 4/, of occur by e,
once more we may linearize. [J
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Proposition 5.16 Let S be an elementary cyclic set. Let o € v and e being incident to v. Then
there exists a minimum left-closed and right-open chain that starts with a and ends with B, for
some f that occurs in v by e.

Proof. Existence: by Proposition 2.10, v being non $-empty, there exists at least one variable 8
that occurs by e in v. For every such 8 there exists a minimum closed chain that proves o = f by
Proposition 5.15.

Unicity: if a occurs by e the unicity follows from Lemma 5.7. Next, assume firstly that o is
strictly equal to some variable that occurs by e. If there exists two such variables 8 and B, then
a# B, a#p and B £ B imply that we may suppress some equation involved in the (t)-proof
of, e.g., & =, B, contradiction. Secondly, assume that we have two minimal left-closed right-open
distinct chains:

c= (7’ €0, @0, ﬂO) RN} an—l:ﬁn-l: en):

c' = (’1',8:), aa) /3('): s 7a:;—-1’ﬂ:;—1, e:;)'
If eg = €}y then the open chains are equal by Proposition 5.13. We are in the previous case: v, 7'
occur by e, both are strictly equal to o, we may suppress some equation of S involved in e.g.
a =, 4. Finally, if ey # €0, then we may also suppress the same strict equation, the abstract graph
still are equal by Lemma 5.6 and the existence in the new graph of the two open chains associated
tocand ¢'. O

These three propositions detail the three cases where we will need the unicity property in the next
section. In addition we have

Proposition 5.17 Let v be some cyclic needed vertexin Gg, S some elementary cyclic set. There
exists a maximum open chain in v.

Proof. Direct consequence of Corollary 5.11, as we do not have any block in a needed cyclic vertex.
Hence all open chains are minimal and there trivially exists at least one maximal chain. [J

5.3 Computing the Minimum Deduction

Definition 5.3 A cyclic variable ¢ of the vertex v is the proper variable of v iff ¢ is the (unique)
variable that occurs in v by the edge incident to v belonging to the cycle.

Theorem 5.18 Let ¢ be some proper variable of the elementary cyclic set S. There exists a
minimum deduction D + ¢ = C|¢)] of the cyclic equation associated to ¢. The minimum deductions
for other proper variables are obtained from D by a cyclic permutation of the auxiliary deductions
of D.

Proof. We establish the result by giving a deterministic algorithm that searches such a proof.
The inference rules are denoted by function symbols of arity 2: SU for the substitution, T for
the transitivity and D for the simplification rule. The algorithm includes a main body and three
recursive procedures. The first one Connect returns a proof ¢;4+1 = C;[¢;] where ¢;;1 (resp. ¢;)
is the proper variable of the cyclic needed vertex v;4+; (resp. v;). The procedure Chain takes an
open chain from ag to fn-1 (with the usual notations) and returns a proof of ap = Bn-1. Finally,
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the procedure Edge takes an edge and two (distinct) variables that occur by this edge (either R-
or S-variables) and returns a proof of their equality. The intuition behind this last procedure is:
the equations associated to these variables are unique. Also, we have three distinct cases according
to the relative position of the paths defined by these two equations: they are equal, one is suffix of
the other, or they diverge at some vertex. One of the three Propositions 5.13, 5.15 or 5.16 applies
to each case.

CYCLE DEDUCTION

Input: an elementary cyclic set S, its graph §s, some needed cyclic vertex vp;
Let vp,...,v, be the sequence of needed cyclic vertices of §g,
v;+1 the first needed cyclic vertex above v; aldng the cycle, with v,41 = vp;
For i =0,...,n Let T; = Connect(v;,vi+1);
Return (S(To,S(-- S(Ta-1,T) -++))).

Procedure Connect(vy,vs)

If v, possesses a unique incident edge

Then Let e: a = C[f] be the unique non-strict equation of v;;

Let v be the variable of v, that possesses an occurrence by the cycle;
Let D be the minimum (t)-proof of 7=, a;
Return(T'(D,¢€) or e if D is void);

Else Let ¢ = (e, a9, Bo,€1,---,€n,¥n—1,Pn-1,6n) be the maximum chain of v,
such that w, the unique needed R-variable of vz occurs by e,
and ey is the cyclic edge incident to wv;3;

Let D) = Chain(vz,¢);
Let D; = Edge(fn-1,6€,w);
Return(T' (D1, D;)) .

Procedure Chain(eo, o, Bo, €1, . - - ] €n0tn_1,Pn—1,¢n)
For 1 =0,...,n—1 Let D! be the minimum (t)-proot of o; =, fi:
For 1=0,...,n—1 Let D2 Edge(v,B;, €41, ®i+1):
For 1=0,...,n-1 If D1 is void Then D? = D}? Else D} =T(D},D?);

Let D Dl »
For § =2,...,n—1Let D= T(D D?);
Return T( ,i/‘,{ 1) or D if DA, is void).

Procedure Edge(a,e,B)
Let €;: ¢ =Cla] and ez : ¢y = D[f] be associated to O(a,e) and O(B,¢);
Let p be the maximal common suffix of p; = (V(¢),0c¢) and p; = (V(¢),0p);
It p=p=p
Then If ¢=¢
Then Return(D(ey,e3));
Else Let c¢= (¢’30)a0,-" sﬂn—l)ern ¢) be
the minimum closed chain between ¢ and ¢;
Let Dy = Edge(y, ey, ao);
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Let D = C'hain(eo,ao, eeesBn~1, e,,) :
Let D3 = Edge(Bn-1,¢€n,¥);

Let Tr = T(T(D1,D0:),Ds):
Return(D(T(T'r, 1), €2));

If p=pm

Then Let

eo be the edge of p; incident to V(¢);

Let w be the R-variable associated to D[8] that occurs by ep in V(4);
Let ¢= (eO’aO)"')ﬂn-—l,en,¢) be
the minimum left-open right-closed chain between ¢y and é;
Let D; = Chain(eg,ao,.-.,Pn~1,6n);
Let D; = Edge(fn-1,6n,9);
Let D3 = Edge(cg,ep, w);
Let Tr=T(D1,Ds):
Return(D(T(Tr,e1),Ds)) ;
If p=p
Then Let e, be the edge of p; incident to V(¢);
Let w be the R-variable associated to C|a] that occurs by e, in V(¢);
Let ¢= ('Ab: €0, &0, - - - ’ﬂn—ly en) be
the minimum left-closed right-open chain between ¢ and en;
Let Dy = Edge(,eo,0):
Let D; = Chain(eg,0p,...,0n—1,6n);
Let D3 = Edge(Pn-1,¢én,w);
Let Tr = T(Dy, D2);

Return(D(T(Tr, Ds), e2)) ;

Else Let
Let
Let
Let
Let
Let
Let

v' be the source of the path p;

e, ¢ be the two edges of the paths p; and p; that occur in v';
wp, w; be the two corresponding R-variables;

¢ = (€0, ®0,---,Pn—1,€,) be the minimum open chain between €' and e;
D, = Edge(cg, €9, wy);

Dy = Chain(eo, a0, - . .,Pn-1,6n):

Dy = Edge(Pn-1,6n,w0):

Return(D(T(Dz, Ds), Dl)) .

The correction of the algorithm follows from the Lemmas in section 5.1, i.e. the algorithm
terminates and computes a cyclic deduction. The computed deduction is minimum by Propositions
5.13, 5.15, 5.16 and 5.17. O

We conclude by giving an exemple of an elementary cyclic set S, the needed variables are
represented by greek letters, the other ones by latin letters:

v=p—a ¢=v-obdb ¢=(c—>((f-od—e€)—f
=v—yg, 0:1\—)ﬂ, 0=(i—)(j—*‘7))—->k
w=¢-ol, w=A-m

¢=B—-n, p=(0—7)—p, A=¢—(a—a)
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Figure 1: Graph §s

The graph is represented in Figure 1. The minimum cyclic deductions for the two variables # and
~ that occur by the cycle in their vertices. are given by the following two auxiliary deductions:

Y=p—a YP=v—d b=v—g 0=A—h

u=v v=2 w=A—m  w=¢—l
H=2a A=¢
b=¢ $=p—n
i=h-n u=(o=s2)+p
B=o0—9
0=2—h O=v—g P=v—=b P=(c—~((f—d)—e))=S
0=A—h O0=(i—(5—1))—k A=p v=c—((f—d)—e)
A=i—(j—1) A=¢g—(a—a) A=g—(a—a) A=c—((B—d)—e)
= a=p—d
1=p—d
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