Data Distribution and Loop Parallelization
for Shared-Memory Multiprocessors *

Eduard Ayguadé, Jordi Garcia, M. Luz Grande and Jesis Labarta

Computer Architecture Department, Polytechnic University of Catalunya
cr. Gran Capita s/nim, Modul D6, 08034 - Barcelona, Spain

Abstract. Shared-memory multiprocessor systems can achieve high per-
formance levels when appropriate work parallelization and data distribu-
tion are performed. These two actions are not independent and decisions
have to be taken in a unified way trying to minimize execution time and
data movement costs. The first goal is achieved by parallelizing loops
(the main components suitable for parallel execution in scientific codes)
and assign work to processors having in mind a good load balancing. The
second goal is achieved when data is stored in the cache memories of pro-
cessors minimizing both true and false sharing of cache lines. This paper
describes the main features of our automatic parallelization and data dis-
tribution research tool and shows the performance of the parallelization
strategies generated. The tool (named PDDT) accepts programs written
in Fortran77 and generates directives of shared memory programming
models (like Power Fortran from SGI or Exemplar from Convex).
Keywords: High Performance Compilers, Loop Parallelization, Static
and Dynamic Data Mappings, Cache Behavior, Shared Memory Multi-
processors

1 Introduction

Parallelization and data distribution are two topics closely related when paral-
lelizing loops for cache-coherent shared-memory parallel systems. In these sys-
tems, cache miss penalties can be significantly large and false sharing, invalida-
tions and excessive data replication can have negative effects in performance. In
some cases, these effects can easily offset any gain due to parallel execution.

Most, current shared-memory compilers choose a loop in each nest for paral-
lelization, and it is interchanged as far out as data dependence analysis allows.
Inner loops are strip-mined and blocked to exploit all possible data reuse in the
processor cache. Tterations in each parallel loop are distributed across the par-
allel threads according to a fixed scheme. Some compilers also ensure that each
major data structure in the program is aligned on a cache line boundary and
make the contiguous dimension of an array (i.e., the first dimension in Fortran)
an integer multiple of a cache line. This is useful to avoid false sharing of cache
lines so that each processor works with complete cache lines.

* This research has been supported by the Ministry of Education of Spain under
contract TIC-429/95 and by the CEPBA (European Center for Parallelism of

Barcelona).

Ayguadé, E. [et al.]. Data distribution and loop parallelization for shared-memory multiprocessors. A: International

Workshop on Languages and Compilers for Parallel Computing. "Languages and Compilers for Parallel Computing,
9th International Workshop, LCPC'96: San Jose, California, USA, August 8-10, 1996: proceedings". Berlin: Springer,
1996, p. 41-55. ISBN 978-3-540-69128-0.

The final authenticated version is available online at https://doi.org/10.1007/BFb0017244

Some researchers [AL93] have focussed on better determining which loop to
parallelize with the purpose of obtaining maximum parallelism while minimizing
sharing of cache lines (true sharing). They analyze data and computation de-
composition without regard to the original layout of the data structures. A more
recent work [AAL95] proposes to enhance spatial locality, reduce false sharing
(access to different data items co-located on the same cache line) and conflict
misses among accesses to the set of data assigned to each processor. This is done
by applying some data transformations making data accessed by each processor
contiguous in the shared address space. [JE95] have also proposed algorithms
to transform data layouts to improve memory performance; they analyze per-
process shared data accesses in parallel programs, identify data structures that
are susceptible to false sharing and choose an appropriate layout transformation
to reduce the number of false sharing misses. These data layout transformations
require that all accesses to the arrays in the entire program use the new layout;
programming languages (such as Fortran) can make these transformations dif-
ficult and the compiler has to guarantee that all possible accesses are updated
accordingly and optimized.

In the past years, other researchers have targeted their efforts to automatic
data distribution for distributed-memory multiprocessors [BCG195, AGGT95,
KK95, SSGC95], according to the array access patterns and parallel execution of
operations within computationally intensive phases. The objective is to specify
the mapping for the arrays used in these computational phases, and it can be
either static or dynamic. In a static mapping, the layout of the arrays does not
change during the execution of the program; in a dynamic mapping, remapping
operations are performed in order to change the layout of arrays in different
computational phases.

A basic observation of this paper is that this technology developed for dis-
tributed memory compilers is useful for shared memory architectures in which
each processor has access to a high-capacity private cache (for instance, 4 Mbyte
in each processor of a R8000 SGI Power Challenge or between 512 Kbyte and 16
Mbyte in each processor of a R10000 SGI Power Challenge architecture [SGI96]).
In these systems, the cache behaves as an attraction local memory that stores
data referenced by the processor. Trying to minimize true and false sharing re-
duces data motion through the interconnection network. The techniques we have
developed represent the application of the owner computes rule, frequently used
in distributed-memory systems, to shared-memory machines.

In a parallel loop, a chuck of iterations is assigned to each processor. The
execution of this chunk will bring any remote data to its cache. Notice that data
remapping is implicitly done by the caching mechanism itself. We propose to
parallelize loops taking into account the data that is stored in the private cache
of each processor, either because it has been previously computed or fetched in
other loops, or that needs to be stored in the cache because it will be useful in the
following loops. PDDT keeps track of the array sections that are accessed during
the execution of the different computational phases in an application in order to
decide, with a global view, the parallelization strategy for each loop. This is done

by analyzing the reference patterns inside computational phases and predicting
the cache behavior that different parallelizations would imply. The generation of
code for the target shared-memory programming models makes intensive use of
well known techniques, such as loop tiling and loop limit adaptation to partition
the iteration space, loop interchange to reduce the overhead of parallel thread
creation and improve spatial locality, and parallel synchronized execution of
dependent loops to minimize execution time.

In cache-coherent shared-memory systems, false sharing might also introduce
additional data motion. Since data is transferred in cache lines (for instance,
128 bytes long in SGI Power Challenge multiprocessors), different processors
may share the same cache line and never access to the same data items. Every
time a processor writes a data item in the line, other copies of the same line
are invalidated. When another processor re-uses a data item (col-located on the
same cache line), the item may no longer be in its cache due to the access by
the other processor. Therefore, spatial locality may be lost and additional data
movement may happen. PDDT also addresses the problem of minimizing false
sharing by synchronizing the access to cache lines shared by different processors
in parallel loops. In addition to that, PDDT also pads the contiguous dimension
of arrays to make it multiple of cache line size and aligns major data structures
to cache line boundaries.

Other techniques oriented to the optimization of code for uniprocessor cache
performance are left to the native compiler of the target parallel machine and
they are out of the scope of this paper.

PDDT is a research tool in the sense that it is flexible to specify machine
dependent characteristics and to specify different compilation options and strate-
gies. In addition to automatic parallelization, PDDT is also a performance pre-
diction tool that may help the user in the task of writing parallel code for the
target machine; it accepts directives in the source program which narrows the
search space of solutions and provides the user with information about the be-
havior of the program.

The paper is organized as follows. Section 2 shows the main aspects that
are considered in PDDT to generate parallelization strategies based on data
distributions. Section 3 summarizes the main modules in PDDT that perform
the parallelization process. More details about specific modules can be found
elsewhere [AGGT94, AGG™95]. Section 4 evaluates the parallelization strategies
explored by PDDT and compares them against the ones generated by a commer-
cial compiler. Finally, Section 5 states our conclusions and summarizes future
work.

2 Parallelization for Coherent Caches

In this section we show the feasibility of using information about data distribu-
tion to drive the parallelization process of a program in a coherent cache-based
multiprocessor system. Keeping track of data motion among the caches in the
system is useful to decide parallelization strategies in which both computation

time and data movement costs are minimized. We also show further optimiza-
tions to reduce the negative effect caused by dependences and false sharing. In
this section, we use an excerpt of the Alternate Direction Implicit (ADI) inte-
gration kernel®. The full kernel is evaluated in Section 4.

2.1 Using Data Mappings

The behavior of coherent caches is modeled when flowing from one computational
phase to another within the execution of a procedure and inter-procedurally. We
can model either distributed network caches (like in the Globally Shared Memory
Convex SPP systems [Con94]) or private caches in bus based symmetric multi-
processor systems (like the Power Challenge SGI systems [SGI96]). To perform
this modeling, we assume that capacity and conflict misses never happen?.

In this section we analyze the two phases (P4 and P7) shown in Figure 1.a,
and assume for each of them a parallelization strategy: the i loop in phase P4
and the j loop in phase P7 are fully parallelized. Figure 1.b shows the elements
of the arrays that will be stored in the private cache of one of the processors
(assuming 4 processors). Notice that, due to the parallelization of the inner i
loop in phase P4, a set of consecutive rows of arrays a, b and x will be stored
in the cache of each processor. Since arrays b and x are written, these elements
will be owned by it and other copies will be invalidated, if existed. In phase P7,
the outer j loop is parallelized. After executing this phase, each processor will
own a set of columns of arrays b and x (since the rows that it owned have been
invalidated by the other processors) and will have in its cache a set of rows and
columns of array a. When these phases are executed again (because of the outer
iterative iter loop), processors either have a set of rows or columns of arrays b
and z, and a set of rows and columns of array a.

The parallelization strategies that we consider lead to cache contents that
can be characterized in terms of HPF-like array alignments and distributions.
So for instance, for phase P4 and the first iteration of the iter loop, one could
say that arrays a, b and z are perfectly aligned and distributed across the caches
in a (BLOCK, %) way. In phase P7 and for arrays b and z, a (¥, BLOCK)
distribution characterizes the contents of the cache. However, for array a the
contents of the cache can not be characterized with a single distribution func-
tion; instead, one could say that it is the union of two distribution functions:
(BLOCK,*)U (x, BLOCK).

To estimate data movement costs, PDDT detects that the three arrays are
moved when transitioning from phase P4 to phase P7 in the first iteration. After
that, and for the rest of iterations, only arrays b and x are moved when alter-
nating between these two phases; array a is not moved because each processor
holds the rows and columns it needs to perform the computations.

2 We use two different data sets: small (NUM=64 and MAXITER=1000) and large
(NUM=256 and MAXITER=100).

This assumption holds along the paper; some comments about handling these misses
and including them in the parallelization process are given in Section 5.

program adi
doubl e precision x(NUM NUM
doubl e precision a(NUM NUM, b(NUM NUM

d04] :2, NUM Phase P4
do4i =1, NUM
(i, j)y =x(i, j) - x(i, j - 1) * a(i, i) [b(i, j - 1)
b(i, y) =b(i, j) - a(i, j) *a(i, j)/ b, j-1)
4 conti nue
do 7 =1, NUM Phase P7
do 7 i =2, NUM
(i, j) =x(i, j) - x(i - 1, j) * a(i, i) [b(i -1,)
b(i, 1) =b(i,) - a(i, j) o a(i, j) / b(i -1, j)
7 conti nue
10 conti nue
end
(a)
El ements stored in
cache for processor P;
iter = 1 iter = .. MAXI TER

X, b: a:
[| I
X, b: a: X, b: a:
Phase P7

(b)

Fig. 1. (a) Excerpt of the ADI kernel. (b) Cache contents after executing phases P4
and P7.

For these two phases two other parallelization strategies would be possible:
to execute phase P4 sequentially (because of data dependences) and phase P7 in
parallel, or vice versa. If a single processor executes the sequential phase, then
this processor will perform additional data movements and invalidations with
the associated overhead. In the next section it is shown how PDDT minimizes
the effect of this movement. Table 1 compares the execution time for the three
parallelization strategies and for different number of processors (P). Notice that
in this case, it is better to execute both phases in parallel.

NUM=64 NUM=256
P=2 P=4 P=8 P=2 P=4 P=8
P4,q, and PT7pq, 3.89 2.10 2.71 6.18 3.32 1.74
P4yar and PTgeq 6.02 5.06 6.16 9.45 8.11 7.50
P4seq and PTpar 5.94 5.04 4.70 9.45 8.10 7.49
P4seq and PT,eq 6.57 10.61

Table 1. Phases P4 and P7 - Execution time on a Power Challenge of different par-
allelization strategies and sequential execution time.

Parallelization strategies where chunks of iterations are cyclically assigned to
processors lead to data distributions that can be modeled using the CYCLIC
or BLOCK _CYCLIC attribute in the HPF distribution directive.

2.2 TIteration Space Partitioning

In most commercial compilers, the iteration space of each parallel loop is par-
titioned in equally sized chunks trying to obtain a good load balancing. We
propose to partition the iteration space of each loop in a sequence of phases
so that each processor executes chunks of iterations that access the same array
sections (when possible). This is useful to partition the iteration space when the
bounds of the iteration space change from a phase to another, when offsets are
used in array subscript expressions, or when we have a sequential loop that ac-
cesses distributed data. In all these cases, an adequate assignment of iterations
to processors might reduce or eliminate data movements. The compiler has to
insert code so that each processor computes its lower and upper bound of the
iteration space that it has to execute. The owner computes rule is used to drive
this iteration partitioning; this rule states that the owner of a piece of data is the
responsible for its update along program execution. The ownership can change
dynamically if considered profitable. We name this feature chunk affinity par-
titioning. The compiler has to detect if this partitioning lead to a loss of load
balancing and decide an intermediate solution.

NUM=64 NUM=256
P=2 P=4 P=8 P=2 P=4 P=8
P4y, and PTgeq 6.02 5.06 6.16 9.45 8.11 7.50
P4,4r and PT7chunk 5.28 4.82 7.36 8.14 6.91 6.58

Table 2. Phases P4 and P7 - Execution time on a Power Challenge with static row
distribution.

For instance, assume that we execute phases P4 and P7 in ADI with a static
row distribution (BLOCK, x). In this case, and due to data dependences, phase
P4 can be executed fully in parallel and phase P7 must be executed sequen-
tially. In most programming models, sequential phases are executed by a single
processor; if so, additional data movement and invalidation overheads have to be
paid in order to change the ownership of the data being computed and to bring
to its cache all data needed to perform the sequential computation. To avoid
these overheads, PDDT partitions the iteration space and inserts synchroniza-
tion to preserve data dependences. In this way, each processor works with data
it owns but it does not start execution until the previous processor completes
its execution. The effects of this partitioning are shown in Table 2 and they
reflect the trade off between synchronization and data movement; the first row
shows the execution time when phase P7 is executed sequentially by a single
processor; the second row shows the execution time when this phase is executed

in parallel ensuring that a processor does not start execution until the previous
one has finished. The decrease in the execution time is due to the overhead of
data movements and invalidations that are avoided?, and it is more noticeable
when the arrays that are moved are bigger.

2.3 Pipelined Computation

In this section we show how parallelization strategies can benefit from pipelined
computations. In a pipelined computation, a processor cannot bhegin execution
until its predecessor has partially finished its computation. For instance, this is
useful to reduce the negative effects of data dependences. Although pipelined
computations are well known, most of the currently available compilers do not
apply them. In this section we also show how pipelined computations are useful
to minimize overheads due to false sharing of cache lines.

In the previous section we have noticed the benefits of executing phase P7 in
a synchronized way preserving data dependences. However, there exists room to
improve the performance of the execution if we pipeline the execution of the loop.
In this case, once a processor finishes the computation of a chunk of iterations
of the j loop, the next processor can start its computation using data previously
computed. The size of the chunk determines the amount of overlap and the
overhead of synchronization incurred due to the pipelined execution. Figure 2
shows the execution time of this phase for different sizes of the chunk. Notice
that with small chunks we are obtaining near optimal performance; this means
that the synchronization overhead we are paying compensates the negative effect
of the sequential execution. In addition, this model of computation also reduces
the overheads due to data motion, since they are overlapped with computation.

We also propose to use pipelined computations to minimize the overheads
introduced by false sharing. For ADI, false sharing appears when we use the data
set with NUM=64 and P=8. In the Power Challenge, cache lines are 128 bytes
long; therefore each cache line holds 16 elements of the arrays if they are double
precision. So notice that when we distribute the arrays in a (BLOCK,) way,
each cache line is shared by two processors. Figure 3.a shows the distribution of
cache lines among processors. Therefore, additional movement and invalidation
happen due to false sharing. The negative effect of false sharing can be observed
in Table 1 for the two parallelizations strategies that execute phase P4 in parallel;
notice that the execution time with P=8 is greater than with P=4. The same
effects can be observed in the first plot in Figure 2, where one can see that the
execution time of the phase has an anomalous behavior for P=8.

The main idea behind the pipelined execution is that a processor starts us-
ing a set of cache lines when another conflicting processor finishes using them.
To reduce the overheads of false sharing, we propose to independently pipeline
the computation of all the processors that share cache lines. This synchronized
execution model also allows PDDT to perform an estimation of the additional

* The experiment with NUM=64 and P=8 shows a performance degradation due to
the false sharing; this situation is considered in the next section.

6
/
54 g
i
/
o 4t _______ i
g 4 /777" o NUM=64,P=8
= ;oo -0 NUM=64, P=4
c g — NUM=64, P=8, non_pipelined
9O 3 R — = NUM=64, P=4, non_pipelined
= _—
L g
i /-
24 et
P
as

1 2 4 8 16 32 64
Chunk Size
6 .
777777777777777777777777777777777777 'a
,l,"
17
~ 5 /"
]
N ‘/‘
UE) AE / -0 NUM=256, P=8
= 8* -0 NUM=256, P=4
c B — NUM=256, P=8, non_pipelined
2 34 // - - NUM=256, P=4, non_pipelined
§ B
.a
ux_l L d'/
24 .
-a- i

T T 1
4 8 16 32 64 128 256
Chunk Size

Fig. 2. Phase P7 - Using pipelined computations to minimize the negative effect of
dependences on the execution time.

data movement that appears due to false sharing; if the execution is not syn-
chronized, the additional costs become unpredictable at compile time. So for
instance, in the previous case, PDDT would decide to pipeline the execution of
processors 0 and 1, 2 and 3, and so on, as shown in Figure 3.b. Figure 4 shows
the execution time of phase P4 for different sizes of the chunk. Again, notice
that the overhead introduced by synchronization and the reduction of parallel
execution in the pipelined model clearly compensates the negative effect of false
sharing. For chunks smaller than 32, the pipelined execution improves over the
fully parallel execution. However, for chunks bigger than 16 the sequentialization
of the execution is worse than the negative effect of false sharing.

Table 3 shows the execution time of phases P4 and P7, when pipelining is
used to minimize the negative effects of dependences and false sharing. In cases
where false sharing does not occur (NUM=256 and P=8), pipelining reduces
performance; the overheads introduced by synchronization and the loss of paral-
lelism in the pipelined model are the causes of this degradation. However, when
false sharing happens (for NUM=64 and P=8) these overheads compensate the
additional data movement costs. Figure 5 shows the code generated by PDDT
for phases P4 and P7; loops have been parallelized and pipelined (chunk size 4)
for a static (BLOCK, %) distribution.

" > Po synchronization
Pl 4/ pingpong effect P,],- ,,,,,

Py ~ o,

P3 & 5

P4 - o,

Ps & 5

Pg ~ oy

Py & o

(a) (b)

Fig. 3. Phase P4 - (a) False sharing of cache lines in phase P4 and (b) Pipelined

execution to minimize its negative effects.

-0~ NUM=64, P=8, pipelined
-0 NUM=64, P=8, non_pipelined

Execution Time (secs.)

T T T T T 1
1 2 4 8 16 32 64

Chunk Size

Fig. 4. Phase P4 - Using pipelined computations to minimize the negative effects of
false sharing on the execution time.

In order to reduce false sharing in the access to synchronization objects, they
are padded to the size of the cache line and aligned to cache line boundaries. If
not done, several elements of the synchronizing object are located on the same
cache line; when a processor writes to one of these elements, the other elements
co-located on the same cache line are invalidated and new invalidation misses
appear when the waiting processors re-read their status.

3 Parallelization and Data Distribution Process in PDDT

Our research tool (PDDT - Parallelization and Data Distribution Tool) analyzes
Fortran77 programs and annotates them with directives and executable state-
ments of shared memory (Convex Exemplar, SGI Power Fortran) programming
models. The structure of loop nests may be changed in order to minimize data
motion, improve locality of references and minimize false sharing. These deci-
sions are done so that the amount of remote accesses is reduced as much as
possible, while maximizing the parallelism achieved.

NUM=64 NUM=256
P4y4r and PTpar 2.71 1.74
Plyipe and PTpar 1.61 1.93
P4par and PTpipe 3.28 1.57
Plyipe and PTyipe 2.25 1.75

Table 3. Phases P4 and PT7 - Execution time on a Power Challenge (P=8) using
pipelined computation in phase P4 to minimize false sharing and in phase P7 to
minimize the effect of dependences (chunk size 2). Rows 1 and 2 correspond to the
dynamic solution; rows 3 and 4 correspond to static (BLOCK, %) distribution.

do 10 iter = 1, MAXITER

dojj =1, NUM 2
token(jj) = NUM 2

token(jj+1) =

enddo

L(i, j, jj, nmy$p, IbS%i, ub$i, next$p)
do ny$p ; 0, 7 Phase P4

Ib$i = max((nmy$p * NUM/ 8) + 1, 1)
ub$i = min((nmy$p + 1) * (NUM/ 8) NUM
next$p = 1
dojj =2, NWM 4
444 if (next$p .gt. token(nmy$p+1)) goto 444
do4j =jj, n1n(JJ + 3, NUM
do 4 i | bi, ubi
4 conti nue
token(ny$p + 1) = oken(ny$p +1) +1
next$p = next $p +
enddo
enddo
dojj =1, NUM
token(jj) =0
enddo
C$PAR PARALLEL DO LOCAL(i, j, jj, ny$p, |b$i, ub%i)
do ny$p = 0, 7 Phase P7
I'b$i = max((ny$p * NUM/ 8) + 1, 2)
ub$i = m ((ny$p + 1) * (NUM/ 8) NUM
do jj =1, NUM
777 if (toke n(]j) .ne. ny$p) goto 777
do 7§ =jj, nin(jj + 3, NUM
do 7 i = 1b%i, ub
7 conti nue
token(jj) = token(jj) + 1
enddo
enddo

10 continue

Fig. 5. Transformed code for phases P4 and P7 according to (BLOCK, %) distribution;
phase P4 has been parallelized with pipelining to minimize false sharing. Phase P7 has
been parallelized for chunk affinity and pipelined to minimize the sequentilization due
to dependences. Chunk size is 4 in both phases.

PDDT is targeted to generic Non-Uniform Memory Access Architectures
(NUMA) with local and remote memory accesses. Each processor has its own
memory hierarchy and can access the memories in other processors through the
interconnection network. Data movement costs are estimated as the number of
cache lines that need to be transferred multiplied by the remote access time.
Given a parallelization strategy, computation costs are estimated from a profile
of the sequential execution on a workstation based on the same processor and
with the same memory hierarchy than the parallel machine (which is a common
fact in most of the hardware vendor product lines).

All cost estimations in PDDT are done numerically assuming some problem
and machine specific parameters. Profiling the sequential execution of the orig-
inal Fortran 77 program is required in order to obtain these problem specific
parameters, such as array sizes, the number of iterations for the loops and their
execution time, and the probabilities of the different branches in conditional
statements. A configuration file allows the user to specify some machine specific
parameters (number of processors, overhead of parallel thread creation, local and
remote memory access costs, ...), to restrict the kind of solutions explored by
PDDT (number of distributed dimensions and loops to parallelize, static or dy-
namic solutions, number of candidate mappings for the phases and procedures,
...), and to specify the target programming model.

PDDT has evolved from our automatic data distribution tool (DDT) targeted
to distributed-memory machines. Details about its implementation can be found
elsewhere [AGGT94, AGGT95]. The main steps of the parallelization process
performed by PDDT are outlined below:

— Detection of phases or computationally intensive portions of code, which
mainly correspond to nested loops and calls to procedures. Phases are con-
sidered at this level as portions of code that modify the contents of the cache.
The definition of phase by [KK95] is used.

— Selection of candidate solutions for the previously detected phases and es-
timation of their cost. Each solution represents a particular distribution of
the elements of the arrays across the private caches and a parallelization
strategy. For each phase, PDDT decides which loops to parallelize, which
loops must be executed sequentially, and which ones benefit from pipelining.
Detection of false sharing and minimization of its effects using pipelining are
done at this stage of the parallelization process. The decisions are done based
on an estimation of the computation and movement costs, which are both
affected by the chunk size selected when the pipelined execution model is
used. To do that, an analysis of the reference patterns and data dependences
within the scope of phases is done.

— Analysis of compatibility among phases, and selection of solutions for each
of them. This selection is done by exploring a search space composed of
the different candidate solutions for each phase and estimating the data
movement costs due to the remapping of arrays between phases. This analysis
is done by characterizing cache contents in terms of HPF-like data mappings;
in a cache-based system more than one mapping function may be needed to

characterize it after the execution of a phase. The phase control flow graph
drives the process and identifies the different sequences of phases that might
appear during the execution of a procedure.

— Code restructuring: generation of shared-memory parallelization directives
that specify loops that are run sequentially or in parallel. In addition to
that, PDDT also specifies the partitioning of the iteration space for the
loops, changes in the structure of loop nests to improve spatial locality and
introduces synchronization to guarantee the correct behavior of the program
and to minimize false sharing. In this step, some changes in the declaration of
data structures are also performed: (i) dummy arrays are inserted in order to
guarantee that all major data structures are aligned on cache line boundaries;
(i) if the first dimension of an array is distributed, it is padded with "unused”
elements in order to have an integral number of cache lines allocated to this
dimension.

The process described above is done under control of the inter-procedural
analysis module; this module builds the call graph for the entire program and
records information about call sites and actual arguments. Once built, a bottom-
up pass over the call graph decides the order in which procedures are ana-
lyzed, analyzes them and records information into the PDDT inter-procedural
database.

The native compiler for the target machine is used to translate the annotated
Fortran77 code generated by PDDT into an efficient code, taking care of all the
aspects related to scalar optimizations, further locality exploitation and proper
storage of the arrays.

4 Experimental Results

PDDT can be used either as a parallelizing tool or as a prediction tool able
to help the user in writing parallel programs for cache-coherent shared-memory
multiprocessors. In both cases, PDDT hides all the main architectural features of
the target machine and guides the user during the parallelization process, show-
ing him the sources of inefficiency. Given a (partial or complete) parallelization
strategy for the program, PDDT estimates the cost of executing the program
on the target machine, both in terms of computation and data motion costs. If
the parallelization strategy is not complete, PDDT parallelizes those loops not
specified by the user according to the user supplied parallelization for the rest
of the loops.

In this section we analyze two programs: the Alternate Direction Implicit
integration kernel ADI, and swm from the SPEC92 benchmark set. For the first
one, we will show how PDDT generates parallelization strategies that are better
than the ones generated by compilers that perform the parallelization process
without caring about data distribution. In particular, we compare with the pfa
compiler for the Power Challenge SGI architecture. For the second one, we will
analyze the accuracy of the performance estimations performed by PDDT.

4.1 Alternate Direction Implicit ADI

The ADI kernel has a two-dimensional data space and has a set of computational
phases that perform forward and backward sweeps along rows and columns of the
data space. Three different array distribution strategies are evaluated (static row
(BLOCK, %), static column (¥, BLOCK) and dynamic in which some phases are
executed with row distribution and some other phases with column distribution);
for each of these strategies, different optimizations are turned on in order to
evaluate their impact on performance (chunk affinity and pipelined computation
to minimize dependences and false sharing). Table 4 shows the speed up obtained
over the sequential execution on a single processor. The target architecture is a
Silicon Graphics Power Challenge with eight R8000 processors, and 4 Mbyte of
private cache per processor.

w/o Chunk Affinity and w/o Pipelined Execution
NUM=64 NUM=256
P=2 P=4 P=8 P=2 P=4 P=8
(BLOCK, *) 1.18 1.37 1.12 1.18 1.39 1.52
(*, BLOCK) 1.18 1.38 1.50 1.18 1.39 1.51

Dynamic 1.77 3.30 2.49 1.79 3.40 6.50
w/ Chunk Affinity and w/o Pipelined Execution
NUM=64 NUM=256

P=2 | P=4 | P=8 P=2 | P=4 | P=8
(BLOCK, *) 1.24 1.33 0.87 1.30 1.52 1.60
(*, BLOCK) 1.30 1.52 1.59 1.32 1.58 1.72

Dynamic 1.77 3.30 2.49 1.79 3.40 6.50
w/ Chunk Affinity and w/ Pipelined Execution
NUM=64 NUM=256

P=2 P=4 P=8 P=2 P=4 P=8
(BLOCK, *) 1.75 2.94 3.22 1.92 3.66 6.51
(*, BLOCK) 1.80 3.03 4.50 1.94 3.71 6.70

Dynamic 1.77 3.30 4.47 1.79 3.40 6.50

Table 4. ADI - Speed up for different program sizes and number of processors. Three
data distributions are evaluated: static row, static column and dynamic distribution.
Chunk affinity and pipelined computation are turned on and off to show their effect
on performance.

The following conclusions can be drawn from the figures in Table 4. First of all
one can see that in the static solutions it is important to partition the iteration
space so that data are re-used by the same processor as much as possible; in
particular for this code, to execute sequential phases using the processors that
at the time are the owners of the distributed arrays. In general, the speed up
of row distribution is worse than column distribution since the amount of data
moved around in the first one is bigger (less elements in each cache line moved
are useful). In addition, the row distribution suffers from false sharing, which
even degrades more performance.

We can also observe that using pipelined computations to reduce the negative
effect of dependences and false sharing reduces the performance gap between
the dynamic and static solutions. Depending on the problem size and number of
processors, static column distribution or dynamic distribution are automatically
selected by PDDT. This is not the case for the native SGI compiler, which
always selects the dynamic solution and does not perform pipelining to control
false sharing.

4.2 Swm Benchmark

Finally we show the accuracy of PDDT in the performance prediction of the
automatically parallelized programs. For this purpose we use one of the pro-
grams in the SPEC benchmark set. The program has been parallelized using
PDDT configured with the architectural parameters of a Power Challenge Sili-
con Graphics multiprocessor system. The parallelized program, annotated with
PFA directives, is fed into the native Fortran compiler.

Table 5 shows the actual and predicted speed-ups of the parallelized program
using 2, 4, or 8 processors and two different problem sizes: 64 and 512. Notice
that the accuracy of the prediction is enough to validate the data mappings and
parallelization strategies suggested for this code.

size=64 size=512
Number of CPUs Predicted | Measured Predicted | Measured
2 19115 1.9126 1.9979 2.0246
4 3.6491 3.5064 3.9870 4.0289
8 6.6888 6.2407 7.3879 7.9543

Table 5. Predicted and measured speed-ups for swm on the Power Challenge SGI.
5 Conclusions and Future Work

PDDT is a flexible parallelizing compiler for cache-based shared-memory mul-
tiprocessors. It can automatically parallelize loops and change their structure
based on tracking the dynamic placement of data along program execution. In
these architectures a number of CPUs can simultaneously access data anywhere
in the system. However, the non-uniformity of the memory accesses is an impor-
tant issue to consider and may require a higher programming effort in order to
achieve performance; trying to access those levels in the hierarchy closer to the
processor may increase execution efficiency.

In this paper we have presented the set of features included in PDDT that
most influence the selection of parallelization strategies for the loops in numer-
ical programs: partitioning of the iteration space, and pipelined computation
to minimize sequentialization and false sharing. The process relies on technol-
ogy previously developed for automatic data distribution for distributed-memory
systems. We have evaluated the quality of the solutions generated by PDDT by
comparing the performance of the solutions suggested against the performance

of solutions generated by the native compiler of a SGI Power Challenge system.
We have also shown how the predicted speed-ups are close to the actual ones
obtained when then program is executed. PDDT handles partially annotated
Fortran 77 programs with directives that specify parallelization strategies; in
this case PDDT is useful as a support tool for the developer of parallel codes
in estimating the effect of user selected parallelization strategies in the final
performance of the parallel program.

In this paper we have assumed that conflict misses never happen. This is not
true in real systems with finite caches. Although this has not a severe impact
for the programs we have evaluated (because of the size of the data sets and the
size of each private cache in the SGI Power Challenge - 4 Mbyte), this is a topic
of current research. The same technology can be used to perform a software
controlled data prefetching and preflushing between computational phases.

References

[AAL95] J.M. Anderson, S.P. Amarasinghe, and M.S. Lam. Data and computation
transformations for multiprocessors. In Principles and Practice of Parallel
Programming, pages 166-178. ACM SIGPLAN;, June 1995.

[AGGT94] E. Ayguadé, J. Garcia, M. Girones, J. Labarta, J. Torres, and M. Valero.
Detecting and Using Affinity in an Automatic Data Distribution Tool. In
K. Pingali et al., editor, Proceedings of the 7th Annual Workshop on Lan-
guages and Compilers for Parallel Computing, pages 61-75, Tthaca, NY,
August 1994. Lecture Notes in Computer Science vol. 892, Springer-Verlag.

[AGGT95] E. Ayguadé, J. Garcia, M. Gironés, M.L. Grande, and J Labarta. Data
Redistribution in an Automatic Data Distribution Tool. In C.-H. Huang
et al., editor, Proceedings of the 8th Annual Workshop on Languages and
Compilers for Parallel Computing, pages 407 421, Columbus, Ohio, August
1995. Lecture Notes in Computer Science vol. 1033, Springer -Verlag.

[AL93] J.M. Anderson and M.S. Lam. Global optimizations for parallelism and
locality on scalable parallel machines. In Conference on Programming Lan-
guage Design and Implementation, pages 112 125. ACM SIGPLAN, June
1993.

[BCG'95] P. Banerjee, J.A. Chandy, M. Gupta, E.-W. Hodges IV, J.G. Holm, A. Lain,
D.J. Palermo, S. Ramaswamy, and E. Su. The Paradigm Compiler for
Distributed-Memory Multicomputers. IEEE Computer, 28(10):37-47, Oc-
tober October 1995.

[Con94] Convex. SPP1000 Systems Overview. Convex Computer Corporation, 1994.

[JE95] T.E. Jeremiassen and S.J. Eggers. Reducing false sharing on shared memory
multiprocessors through compile time data transformations. In Principles
and Practice of Parallel Programming, pages 179-188. ACM, June 1995.

[KK95] K. Kennedy and U. Kremer. Automatic Data Layout for High Performance
Fortran. In Proceedings of Supercomputing’95, San Diego, CA, December
1995.

[SGI96] Silicon Graphics Computer Systems SGI. Power Challenge Technical Re-
port, 1996.

[SSGCY95] T.J. Scheffler, R. Schreiber, J.R. Gilbert, and S. Chatterjee. Aligning Par-
allel Arrays to Reduce Communication. In Frontiers95: The 5th Symposium

on the Frontiers of Massively Parallel Computation, pages 324-331, Febru-
ary 1995.

