
Data Distribution and Loop Parallelizationfor Shared-Memory Multiprocessors ?Eduard Ayguad�e, Jordi Garcia, M. Luz Grande and Jes�us LabartaComputer Architecture Department, Polytechnic University of Catalunyacr. Gran Capit�a s/n�um, M�odul D6, 08034 - Barcelona, SpainAbstract. Shared-memorymultiprocessor systems can achieve high per-formance levels when appropriate work parallelization and data distribu-tion are performed. These two actions are not independent and decisionshave to be taken in a uni�ed way trying to minimize execution time anddata movement costs. The �rst goal is achieved by parallelizing loops(the main components suitable for parallel execution in scienti�c codes)and assign work to processors having in mind a good load balancing. Thesecond goal is achieved when data is stored in the cache memories of pro-cessors minimizing both true and false sharing of cache lines. This paperdescribes the main features of our automatic parallelization and data dis-tribution research tool and shows the performance of the parallelizationstrategies generated. The tool (named PDDT) accepts programs writtenin Fortran77 and generates directives of shared memory programmingmodels (like Power Fortran from SGI or Exemplar from Convex).Keywords: High Performance Compilers, Loop Parallelization, Staticand Dynamic Data Mappings, Cache Behavior, Shared Memory Multi-processors1 IntroductionParallelization and data distribution are two topics closely related when paral-lelizing loops for cache-coherent shared-memory parallel systems. In these sys-tems, cache miss penalties can be signi�cantly large and false sharing, invalida-tions and excessive data replication can have negative e�ects in performance. Insome cases, these e�ects can easily o�set any gain due to parallel execution.Most current shared-memory compilers choose a loop in each nest for paral-lelization, and it is interchanged as far out as data dependence analysis allows.Inner loops are strip-mined and blocked to exploit all possible data reuse in theprocessor cache. Iterations in each parallel loop are distributed across the par-allel threads according to a �xed scheme. Some compilers also ensure that eachmajor data structure in the program is aligned on a cache line boundary andmake the contiguous dimension of an array (i.e., the �rst dimension in Fortran)an integer multiple of a cache line. This is useful to avoid false sharing of cachelines so that each processor works with complete cache lines.? This research has been supported by the Ministry of Education of Spain undercontract TIC-429/95 and by the CEPBA (European Center for Parallelism ofBarcelona).
Ayguadé, E. [et al.]. Data distribution and loop parallelization for shared-memory multiprocessors. A: International
Workshop on Languages and Compilers for Parallel Computing. "Languages and Compilers for Parallel Computing,
9th International Workshop, LCPC'96: San Jose, California, USA, August 8–10, 1996: proceedings". Berlín: Springer,
1996, p. 41-55. ISBN 978-3-540-69128-0.
The final authenticated version is available online at https://doi.org/10.1007/BFb0017244

Some researchers [AL93] have focussed on better determining which loop toparallelize with the purpose of obtaining maximum parallelism while minimizingsharing of cache lines (true sharing). They analyze data and computation de-composition without regard to the original layout of the data structures. A morerecent work [AAL95] proposes to enhance spatial locality, reduce false sharing(access to di�erent data items co-located on the same cache line) and con
ictmisses among accesses to the set of data assigned to each processor. This is doneby applying some data transformations making data accessed by each processorcontiguous in the shared address space. [JE95] have also proposed algorithmsto transform data layouts to improve memory performance; they analyze per-process shared data accesses in parallel programs, identify data structures thatare susceptible to false sharing and choose an appropriate layout transformationto reduce the number of false sharing misses. These data layout transformationsrequire that all accesses to the arrays in the entire program use the new layout;programming languages (such as Fortran) can make these transformations dif-�cult and the compiler has to guarantee that all possible accesses are updatedaccordingly and optimized.In the past years, other researchers have targeted their e�orts to automaticdata distribution for distributed-memory multiprocessors [BCG+95, AGG+95,KK95, SSGC95], according to the array access patterns and parallel execution ofoperations within computationally intensive phases. The objective is to specifythe mapping for the arrays used in these computational phases, and it can beeither static or dynamic. In a static mapping, the layout of the arrays does notchange during the execution of the program; in a dynamic mapping, remappingoperations are performed in order to change the layout of arrays in di�erentcomputational phases.A basic observation of this paper is that this technology developed for dis-tributed memory compilers is useful for shared memory architectures in whicheach processor has access to a high-capacity private cache (for instance, 4 Mbytein each processor of a R8000 SGI Power Challenge or between 512 Kbyte and 16Mbyte in each processor of a R10000 SGI Power Challenge architecture [SGI96]).In these systems, the cache behaves as an attraction local memory that storesdata referenced by the processor. Trying to minimize true and false sharing re-duces data motion through the interconnection network. The techniques we havedeveloped represent the application of the owner computes rule, frequently usedin distributed-memory systems, to shared-memory machines.In a parallel loop, a chuck of iterations is assigned to each processor. Theexecution of this chunk will bring any remote data to its cache. Notice that dataremapping is implicitly done by the caching mechanism itself. We propose toparallelize loops taking into account the data that is stored in the private cacheof each processor, either because it has been previously computed or fetched inother loops, or that needs to be stored in the cache because it will be useful in thefollowing loops. PDDT keeps track of the array sections that are accessed duringthe execution of the di�erent computational phases in an application in order todecide, with a global view, the parallelization strategy for each loop. This is done

by analyzing the reference patterns inside computational phases and predictingthe cache behavior that di�erent parallelizations would imply. The generation ofcode for the target shared-memory programming models makes intensive use ofwell known techniques, such as loop tiling and loop limit adaptation to partitionthe iteration space, loop interchange to reduce the overhead of parallel threadcreation and improve spatial locality, and parallel synchronized execution ofdependent loops to minimize execution time.In cache-coherent shared-memory systems, false sharing might also introduceadditional data motion. Since data is transferred in cache lines (for instance,128 bytes long in SGI Power Challenge multiprocessors), di�erent processorsmay share the same cache line and never access to the same data items. Everytime a processor writes a data item in the line, other copies of the same lineare invalidated. When another processor re-uses a data item (col-located on thesame cache line), the item may no longer be in its cache due to the access bythe other processor. Therefore, spatial locality may be lost and additional datamovement may happen. PDDT also addresses the problem of minimizing falsesharing by synchronizing the access to cache lines shared by di�erent processorsin parallel loops. In addition to that, PDDT also pads the contiguous dimensionof arrays to make it multiple of cache line size and aligns major data structuresto cache line boundaries.Other techniques oriented to the optimization of code for uniprocessor cacheperformance are left to the native compiler of the target parallel machine andthey are out of the scope of this paper.PDDT is a research tool in the sense that it is
exible to specify machinedependent characteristics and to specify di�erent compilation options and strate-gies. In addition to automatic parallelization, PDDT is also a performance pre-diction tool that may help the user in the task of writing parallel code for thetarget machine; it accepts directives in the source program which narrows thesearch space of solutions and provides the user with information about the be-havior of the program.The paper is organized as follows. Section 2 shows the main aspects thatare considered in PDDT to generate parallelization strategies based on datadistributions. Section 3 summarizes the main modules in PDDT that performthe parallelization process. More details about speci�c modules can be foundelsewhere [AGG+94, AGG+95]. Section 4 evaluates the parallelization strategiesexplored by PDDT and compares them against the ones generated by a commer-cial compiler. Finally, Section 5 states our conclusions and summarizes futurework.2 Parallelization for Coherent CachesIn this section we show the feasibility of using information about data distribu-tion to drive the parallelization process of a program in a coherent cache-basedmultiprocessor system. Keeping track of data motion among the caches in thesystem is useful to decide parallelization strategies in which both computation

time and data movement costs are minimized. We also show further optimiza-tions to reduce the negative e�ect caused by dependences and false sharing. Inthis section, we use an excerpt of the Alternate Direction Implicit (ADI) inte-gration kernel2. The full kernel is evaluated in Section 4.2.1 Using Data MappingsThe behavior of coherent caches is modeled when
owing from one computationalphase to another within the execution of a procedure and inter-procedurally. Wecan model either distributed network caches (like in the Globally Shared MemoryConvex SPP systems [Con94]) or private caches in bus based symmetric multi-processor systems (like the Power Challenge SGI systems [SGI96]). To performthis modeling, we assume that capacity and con
ict misses never happen3.In this section we analyze the two phases (P4 and P7) shown in Figure 1.a,and assume for each of them a parallelization strategy: the i loop in phase P4and the j loop in phase P7 are fully parallelized. Figure 1.b shows the elementsof the arrays that will be stored in the private cache of one of the processors(assuming 4 processors). Notice that, due to the parallelization of the inner iloop in phase P4, a set of consecutive rows of arrays a, b and x will be storedin the cache of each processor. Since arrays b and x are written, these elementswill be owned by it and other copies will be invalidated, if existed. In phase P7,the outer j loop is parallelized. After executing this phase, each processor willown a set of columns of arrays b and x (since the rows that it owned have beeninvalidated by the other processors) and will have in its cache a set of rows andcolumns of array a. When these phases are executed again (because of the outeriterative iter loop), processors either have a set of rows or columns of arrays band x, and a set of rows and columns of array a.The parallelization strategies that we consider lead to cache contents thatcan be characterized in terms of HPF-like array alignments and distributions.So for instance, for phase P4 and the �rst iteration of the iter loop, one couldsay that arrays a, b and x are perfectly aligned and distributed across the cachesin a (BLOCK; �) way. In phase P7 and for arrays b and x, a (�; BLOCK)distribution characterizes the contents of the cache. However, for array a thecontents of the cache can not be characterized with a single distribution func-tion; instead, one could say that it is the union of two distribution functions:(BLOCK; �) [(�; BLOCK).To estimate data movement costs, PDDT detects that the three arrays aremoved when transitioning from phase P4 to phase P7 in the �rst iteration. Afterthat, and for the rest of iterations, only arrays b and x are moved when alter-nating between these two phases; array a is not moved because each processorholds the rows and columns it needs to perform the computations.2 We use two di�erent data sets: small (NUM=64 and MAXITER=1000) and large(NUM=256 and MAXITER=100).3 This assumption holds along the paper; some comments about handling these missesand including them in the parallelization process are given in Section 5.

 program adi
 double precision x(NUM,NUM)
 double precision a(NUM,NUM), b(NUM,NUM)

 do 10 iter = 1, MAXITER
 do 4 j = 2, NUM Phase P4
 do 4 i = 1, NUM
 x(i, j) = x(i, j) - x(i, j - 1) * a(i, j) / b(i, j - 1)
 b(i, j) = b(i, j) - a(i, j) * a(i, j) / b(i, j - 1)
4 continue

 do 7 j = 1, NUM Phase P7
 do 7 i = 2, NUM
 x(i, j) = x(i, j) - x(i - 1, j) * a(i, j) / b(i - 1, j)
 b(i, j) = b(i, j) - a(i, j) * a(i, j) / b(i - 1, j)
7 continue
10 continue
 end

(a)

Elements stored in
cache for processor P1

x, b: a:

x, b: a:

iter = 1 iter = 2 .. MAXITER

x, b: a:

x, b: a:

Phase P4

Phase P7

(b)Fig. 1. (a) Excerpt of the ADI kernel. (b) Cache contents after executing phases P4and P7.For these two phases two other parallelization strategies would be possible:to execute phase P4 sequentially (because of data dependences) and phase P7 inparallel, or vice versa. If a single processor executes the sequential phase, thenthis processor will perform additional data movements and invalidations withthe associated overhead. In the next section it is shown how PDDT minimizesthe e�ect of this movement. Table 1 compares the execution time for the threeparallelization strategies and for di�erent number of processors (P). Notice thatin this case, it is better to execute both phases in parallel.NUM=64 NUM=256P=2 P=4 P=8 P=2 P=4 P=8P4par and P7par 3.89 2.10 2.71 6.18 3.32 1.74P4par and P7seq 6.02 5.06 6.16 9.45 8.11 7.50P4seq and P7par 5.94 5.04 4.70 9.45 8.10 7.49P4seq and P7seq 6.57 10.61Table 1. Phases P4 and P7 - Execution time on a Power Challenge of di�erent par-allelization strategies and sequential execution time.

Parallelization strategies where chunks of iterations are cyclically assigned toprocessors lead to data distributions that can be modeled using the CY CLICor BLOCK CY CLIC attribute in the HPF distribution directive.2.2 Iteration Space PartitioningIn most commercial compilers, the iteration space of each parallel loop is par-titioned in equally sized chunks trying to obtain a good load balancing. Wepropose to partition the iteration space of each loop in a sequence of phasesso that each processor executes chunks of iterations that access the same arraysections (when possible). This is useful to partition the iteration space when thebounds of the iteration space change from a phase to another, when o�sets areused in array subscript expressions, or when we have a sequential loop that ac-cesses distributed data. In all these cases, an adequate assignment of iterationsto processors might reduce or eliminate data movements. The compiler has toinsert code so that each processor computes its lower and upper bound of theiteration space that it has to execute. The owner computes rule is used to drivethis iteration partitioning; this rule states that the owner of a piece of data is theresponsible for its update along program execution. The ownership can changedynamically if considered pro�table. We name this feature chunk a�nity par-titioning. The compiler has to detect if this partitioning lead to a loss of loadbalancing and decide an intermediate solution.NUM=64 NUM=256P=2 P=4 P=8 P=2 P=4 P=8P4par and P7seq 6.02 5.06 6.16 9.45 8.11 7.50P4par and P7chunk 5.28 4.82 7.36 8.14 6.91 6.58Table 2. Phases P4 and P7 - Execution time on a Power Challenge with static rowdistribution.For instance, assume that we execute phases P4 and P7 in ADI with a staticrow distribution (BLOCK; �). In this case, and due to data dependences, phaseP4 can be executed fully in parallel and phase P7 must be executed sequen-tially. In most programming models, sequential phases are executed by a singleprocessor; if so, additional data movement and invalidation overheads have to bepaid in order to change the ownership of the data being computed and to bringto its cache all data needed to perform the sequential computation. To avoidthese overheads, PDDT partitions the iteration space and inserts synchroniza-tion to preserve data dependences. In this way, each processor works with datait owns but it does not start execution until the previous processor completesits execution. The e�ects of this partitioning are shown in Table 2 and theyre
ect the trade o� between synchronization and data movement; the �rst rowshows the execution time when phase P7 is executed sequentially by a singleprocessor; the second row shows the execution time when this phase is executed

in parallel ensuring that a processor does not start execution until the previousone has �nished. The decrease in the execution time is due to the overhead ofdata movements and invalidations that are avoided4, and it is more noticeablewhen the arrays that are moved are bigger.2.3 Pipelined ComputationIn this section we show how parallelization strategies can bene�t from pipelinedcomputations. In a pipelined computation, a processor cannot begin executionuntil its predecessor has partially �nished its computation. For instance, this isuseful to reduce the negative e�ects of data dependences. Although pipelinedcomputations are well known, most of the currently available compilers do notapply them. In this section we also show how pipelined computations are usefulto minimize overheads due to false sharing of cache lines.In the previous section we have noticed the bene�ts of executing phase P7 ina synchronized way preserving data dependences. However, there exists room toimprove the performance of the execution if we pipeline the execution of the loop.In this case, once a processor �nishes the computation of a chunk of iterationsof the j loop, the next processor can start its computation using data previouslycomputed. The size of the chunk determines the amount of overlap and theoverhead of synchronization incurred due to the pipelined execution. Figure 2shows the execution time of this phase for di�erent sizes of the chunk. Noticethat with small chunks we are obtaining near optimal performance; this meansthat the synchronization overhead we are paying compensates the negative e�ectof the sequential execution. In addition, this model of computation also reducesthe overheads due to data motion, since they are overlapped with computation.We also propose to use pipelined computations to minimize the overheadsintroduced by false sharing. For ADI, false sharing appears when we use the dataset with NUM=64 and P=8. In the Power Challenge, cache lines are 128 byteslong; therefore each cache line holds 16 elements of the arrays if they are doubleprecision. So notice that when we distribute the arrays in a (BLOCK; �) way,each cache line is shared by two processors. Figure 3.a shows the distribution ofcache lines among processors. Therefore, additional movement and invalidationhappen due to false sharing. The negative e�ect of false sharing can be observedin Table 1 for the two parallelizations strategies that execute phase P4 in parallel;notice that the execution time with P=8 is greater than with P=4. The samee�ects can be observed in the �rst plot in Figure 2, where one can see that theexecution time of the phase has an anomalous behavior for P=8.The main idea behind the pipelined execution is that a processor starts us-ing a set of cache lines when another con
icting processor �nishes using them.To reduce the overheads of false sharing, we propose to independently pipelinethe computation of all the processors that share cache lines. This synchronizedexecution model also allows PDDT to perform an estimation of the additional4 The experiment with NUM=64 and P=8 shows a performance degradation due tothe false sharing; this situation is considered in the next section.

1 2 4 8 16 32 64

Chunk Size

1

2

3

4

5

6

E
xe

cu
ti

on
 T

im
e

(s
ec

s.
)

NUM=64, P=8
NUM=64, P=4
NUM=64, P=8, non_pipelined
NUM=64, P=4, non_pipelined

1 2 4 8 16 32 64 128 256

Chunk Size

1

2

3

4

5

6
E

xe
cu

ti
on

 T
im

e
(s

ec
s.

)

NUM=256, P=8
NUM=256, P=4
NUM=256, P=8, non_pipelined
NUM=256, P=4, non_pipelined

Fig. 2. Phase P7 - Using pipelined computations to minimize the negative e�ect ofdependences on the execution time.data movement that appears due to false sharing; if the execution is not syn-chronized, the additional costs become unpredictable at compile time. So forinstance, in the previous case, PDDT would decide to pipeline the execution ofprocessors 0 and 1, 2 and 3, and so on, as shown in Figure 3.b. Figure 4 showsthe execution time of phase P4 for di�erent sizes of the chunk. Again, noticethat the overhead introduced by synchronization and the reduction of parallelexecution in the pipelined model clearly compensates the negative e�ect of falsesharing. For chunks smaller than 32, the pipelined execution improves over thefully parallel execution. However, for chunks bigger than 16 the sequentializationof the execution is worse than the negative e�ect of false sharing.Table 3 shows the execution time of phases P4 and P7, when pipelining isused to minimize the negative e�ects of dependences and false sharing. In caseswhere false sharing does not occur (NUM=256 and P=8), pipelining reducesperformance; the overheads introduced by synchronization and the loss of paral-lelism in the pipelined model are the causes of this degradation. However, whenfalse sharing happens (for NUM=64 and P=8) these overheads compensate theadditional data movement costs. Figure 5 shows the code generated by PDDTfor phases P4 and P7; loops have been parallelized and pipelined (chunk size 4)for a static (BLOCK; �) distribution.

(a) (b)

P0

P2

P5

P7

P6

P4

P3

P1
pingpong effect

P0

P2

P5

P7

P6

P4

P3

P1

synchronization

Fig. 3. Phase P4 - (a) False sharing of cache lines in phase P4 and (b) Pipelinedexecution to minimize its negative e�ects.
1 2 4 8 16 32 64

Chunk Size

1

2

3

4

5

6

E
xe

cu
ti

on
 T

im
e

(s
ec

s.
)

NUM=64, P=8, pipelined
NUM=64, P=8, non_pipelined

Fig. 4. Phase P4 - Using pipelined computations to minimize the negative e�ects offalse sharing on the execution time.In order to reduce false sharing in the access to synchronization objects, theyare padded to the size of the cache line and aligned to cache line boundaries. Ifnot done, several elements of the synchronizing object are located on the samecache line; when a processor writes to one of these elements, the other elementsco-located on the same cache line are invalidated and new invalidation missesappear when the waiting processors re-read their status.3 Parallelization and Data Distribution Process in PDDTOur research tool (PDDT - Parallelization and Data Distribution Tool) analyzesFortran77 programs and annotates them with directives and executable state-ments of shared memory (Convex Exemplar, SGI Power Fortran) programmingmodels. The structure of loop nests may be changed in order to minimize datamotion, improve locality of references and minimize false sharing. These deci-sions are done so that the amount of remote accesses is reduced as much aspossible, while maximizing the parallelism achieved.

NUM=64 NUM=256P4par and P7par 2.71 1.74P4pipe and P7par 1.61 1.93P4par and P7pipe 3.28 1.57P4pipe and P7pipe 2.25 1.75Table 3. Phases P4 and P7 - Execution time on a Power Challenge (P=8) usingpipelined computation in phase P4 to minimize false sharing and in phase P7 tominimize the e�ect of dependences (chunk size 2). Rows 1 and 2 correspond to thedynamic solution; rows 3 and 4 correspond to static (BLOCK; �) distribution.
do 10 iter = 1, MAXITER

do jj = 1, NUM, 2
token(jj) = NUM/2
token(jj+1) = 0

enddo
C$PAR PARALLEL DO LOCAL(i, j, jj, myp, lbi, ub$i, next$p)

do my$p = 0, 7 Phase P4
lb$i = max((my$p * NUM / 8) + 1, 1)
ub$i = min((my$p + 1) * (NUM / 8), NUM)
next$p = 1
do jj = 2, NUM, 4

444 if (next$p .gt. token(my$p+1)) goto 444
do 4 j = jj, min(jj + 3, NUM)

do 4 i = lbi, ubi
...

4 continue
token(my$p + 1) = token(my$p + 1) + 1
next$p = next$p + 1

enddo
enddo
do jj = 1, NUM

token(jj) = 0
enddo

C$PAR PARALLEL DO LOCAL(i, j, jj, myp, lbi, ub$i)
do my$p = 0, 7 Phase P7

lb$i = max((my$p * NUM / 8) + 1, 2)
ub$i = min((my$p + 1) * (NUM / 8), NUM)
do jj = 1, NUM, 4

777 if (token(jj) .ne. my$p) goto 777
do 7 j = jj, min(jj + 3, NUM)

do 7 i = lbi, ubi
...

7 continue
token(jj) = token(jj) + 1

enddo
enddo

10 continueFig. 5. Transformed code for phases P4 and P7 according to (BLOCK; �) distribution;phase P4 has been parallelized with pipelining to minimize false sharing. Phase P7 hasbeen parallelized for chunk a�nity and pipelined to minimize the sequentilization dueto dependences. Chunk size is 4 in both phases.

PDDT is targeted to generic Non-Uniform Memory Access Architectures(NUMA) with local and remote memory accesses. Each processor has its ownmemory hierarchy and can access the memories in other processors through theinterconnection network. Data movement costs are estimated as the number ofcache lines that need to be transferred multiplied by the remote access time.Given a parallelization strategy, computation costs are estimated from a pro�leof the sequential execution on a workstation based on the same processor andwith the same memory hierarchy than the parallel machine (which is a commonfact in most of the hardware vendor product lines).All cost estimations in PDDT are done numerically assuming some problemand machine speci�c parameters. Pro�ling the sequential execution of the orig-inal Fortran 77 program is required in order to obtain these problem speci�cparameters, such as array sizes, the number of iterations for the loops and theirexecution time, and the probabilities of the di�erent branches in conditionalstatements. A con�guration �le allows the user to specify some machine speci�cparameters (number of processors, overhead of parallel thread creation, local andremote memory access costs, ...), to restrict the kind of solutions explored byPDDT (number of distributed dimensions and loops to parallelize, static or dy-namic solutions, number of candidate mappings for the phases and procedures,...), and to specify the target programming model.PDDT has evolved from our automatic data distribution tool (DDT) targetedto distributed-memory machines. Details about its implementation can be foundelsewhere [AGG+94, AGG+95]. The main steps of the parallelization processperformed by PDDT are outlined below:{ Detection of phases or computationally intensive portions of code, whichmainly correspond to nested loops and calls to procedures. Phases are con-sidered at this level as portions of code that modify the contents of the cache.The de�nition of phase by [KK95] is used.{ Selection of candidate solutions for the previously detected phases and es-timation of their cost. Each solution represents a particular distribution ofthe elements of the arrays across the private caches and a parallelizationstrategy. For each phase, PDDT decides which loops to parallelize, whichloops must be executed sequentially, and which ones bene�t from pipelining.Detection of false sharing and minimization of its e�ects using pipelining aredone at this stage of the parallelization process. The decisions are done basedon an estimation of the computation and movement costs, which are botha�ected by the chunk size selected when the pipelined execution model isused. To do that, an analysis of the reference patterns and data dependenceswithin the scope of phases is done.{ Analysis of compatibility among phases, and selection of solutions for eachof them. This selection is done by exploring a search space composed ofthe di�erent candidate solutions for each phase and estimating the datamovement costs due to the remapping of arrays between phases. This analysisis done by characterizing cache contents in terms of HPF-like data mappings;in a cache-based system more than one mapping function may be needed to

characterize it after the execution of a phase. The phase control
ow graphdrives the process and identi�es the di�erent sequences of phases that mightappear during the execution of a procedure.{ Code restructuring: generation of shared-memory parallelization directivesthat specify loops that are run sequentially or in parallel. In addition tothat, PDDT also speci�es the partitioning of the iteration space for theloops, changes in the structure of loop nests to improve spatial locality andintroduces synchronization to guarantee the correct behavior of the programand to minimize false sharing. In this step, some changes in the declaration ofdata structures are also performed: (i) dummy arrays are inserted in order toguarantee that all major data structures are aligned on cache line boundaries;(ii) if the �rst dimension of an array is distributed, it is padded with "unused"elements in order to have an integral number of cache lines allocated to thisdimension.The process described above is done under control of the inter-proceduralanalysis module; this module builds the call graph for the entire program andrecords information about call sites and actual arguments. Once built, a bottom-up pass over the call graph decides the order in which procedures are ana-lyzed, analyzes them and records information into the PDDT inter-proceduraldatabase.The native compiler for the target machine is used to translate the annotatedFortran77 code generated by PDDT into an e�cient code, taking care of all theaspects related to scalar optimizations, further locality exploitation and properstorage of the arrays.4 Experimental ResultsPDDT can be used either as a parallelizing tool or as a prediction tool ableto help the user in writing parallel programs for cache-coherent shared-memorymultiprocessors. In both cases, PDDT hides all the main architectural features ofthe target machine and guides the user during the parallelization process, show-ing him the sources of ine�ciency. Given a (partial or complete) parallelizationstrategy for the program, PDDT estimates the cost of executing the programon the target machine, both in terms of computation and data motion costs. Ifthe parallelization strategy is not complete, PDDT parallelizes those loops notspeci�ed by the user according to the user supplied parallelization for the restof the loops.In this section we analyze two programs: the Alternate Direction Implicitintegration kernel ADI, and swm from the SPEC92 benchmark set. For the �rstone, we will show how PDDT generates parallelization strategies that are betterthan the ones generated by compilers that perform the parallelization processwithout caring about data distribution. In particular, we compare with the pfacompiler for the Power Challenge SGI architecture. For the second one, we willanalyze the accuracy of the performance estimations performed by PDDT.

4.1 Alternate Direction Implicit ADIThe ADI kernel has a two-dimensional data space and has a set of computationalphases that perform forward and backward sweeps along rows and columns of thedata space. Three di�erent array distribution strategies are evaluated (static row(BLOCK; �), static column (�; BLOCK) and dynamic in which some phases areexecuted with row distribution and some other phases with column distribution);for each of these strategies, di�erent optimizations are turned on in order toevaluate their impact on performance (chunk a�nity and pipelined computationto minimize dependences and false sharing). Table 4 shows the speed up obtainedover the sequential execution on a single processor. The target architecture is aSilicon Graphics Power Challenge with eight R8000 processors, and 4 Mbyte ofprivate cache per processor.w/o Chunk A�nity and w/o Pipelined ExecutionNUM=64 NUM=256P=2 P=4 P=8 P=2 P=4 P=8(BLOCK, *) 1.18 1.37 1.12 1.18 1.39 1.52(*, BLOCK) 1.18 1.38 1.50 1.18 1.39 1.51Dynamic 1.77 3.30 2.49 1.79 3.40 6.50w/ Chunk A�nity and w/o Pipelined ExecutionNUM=64 NUM=256P=2 P=4 P=8 P=2 P=4 P=8(BLOCK, *) 1.24 1.33 0.87 1.30 1.52 1.60(*, BLOCK) 1.30 1.52 1.59 1.32 1.58 1.72Dynamic 1.77 3.30 2.49 1.79 3.40 6.50w/ Chunk A�nity and w/ Pipelined ExecutionNUM=64 NUM=256P=2 P=4 P=8 P=2 P=4 P=8(BLOCK, *) 1.75 2.94 3.22 1.92 3.66 6.51(*, BLOCK) 1.80 3.03 4.50 1.94 3.71 6.70Dynamic 1.77 3.30 4.47 1.79 3.40 6.50Table 4. ADI - Speed up for di�erent program sizes and number of processors. Threedata distributions are evaluated: static row, static column and dynamic distribution.Chunk a�nity and pipelined computation are turned on and o� to show their e�ecton performance.The following conclusions can be drawn from the �gures in Table 4. First of allone can see that in the static solutions it is important to partition the iterationspace so that data are re-used by the same processor as much as possible; inparticular for this code, to execute sequential phases using the processors thatat the time are the owners of the distributed arrays. In general, the speed upof row distribution is worse than column distribution since the amount of datamoved around in the �rst one is bigger (less elements in each cache line movedare useful). In addition, the row distribution su�ers from false sharing, whicheven degrades more performance.

We can also observe that using pipelined computations to reduce the negativee�ect of dependences and false sharing reduces the performance gap betweenthe dynamic and static solutions. Depending on the problem size and number ofprocessors, static column distribution or dynamic distribution are automaticallyselected by PDDT. This is not the case for the native SGI compiler, whichalways selects the dynamic solution and does not perform pipelining to controlfalse sharing.4.2 Swm BenchmarkFinally we show the accuracy of PDDT in the performance prediction of theautomatically parallelized programs. For this purpose we use one of the pro-grams in the SPEC benchmark set. The program has been parallelized usingPDDT con�gured with the architectural parameters of a Power Challenge Sili-con Graphics multiprocessor system. The parallelized program, annotated withPFA directives, is fed into the native Fortran compiler.Table 5 shows the actual and predicted speed-ups of the parallelized programusing 2, 4, or 8 processors and two di�erent problem sizes: 64 and 512. Noticethat the accuracy of the prediction is enough to validate the data mappings andparallelization strategies suggested for this code.size=64 size=512Number of CPUs Predicted Measured Predicted Measured2 1.9115 1.9126 1.9979 2.02464 3.6491 3.5064 3.9870 4.02898 6.6888 6.2407 7.3879 7.9543Table 5. Predicted and measured speed-ups for swm on the Power Challenge SGI.5 Conclusions and Future WorkPDDT is a
exible parallelizing compiler for cache-based shared-memory mul-tiprocessors. It can automatically parallelize loops and change their structurebased on tracking the dynamic placement of data along program execution. Inthese architectures a number of CPUs can simultaneously access data anywherein the system. However, the non-uniformity of the memory accesses is an impor-tant issue to consider and may require a higher programming e�ort in order toachieve performance; trying to access those levels in the hierarchy closer to theprocessor may increase execution e�ciency.In this paper we have presented the set of features included in PDDT thatmost in
uence the selection of parallelization strategies for the loops in numer-ical programs: partitioning of the iteration space, and pipelined computationto minimize sequentialization and false sharing. The process relies on technol-ogy previously developed for automatic data distribution for distributed-memorysystems. We have evaluated the quality of the solutions generated by PDDT bycomparing the performance of the solutions suggested against the performance

of solutions generated by the native compiler of a SGI Power Challenge system.We have also shown how the predicted speed-ups are close to the actual onesobtained when then program is executed. PDDT handles partially annotatedFortran 77 programs with directives that specify parallelization strategies; inthis case PDDT is useful as a support tool for the developer of parallel codesin estimating the e�ect of user selected parallelization strategies in the �nalperformance of the parallel program.In this paper we have assumed that con
ict misses never happen. This is nottrue in real systems with �nite caches. Although this has not a severe impactfor the programs we have evaluated (because of the size of the data sets and thesize of each private cache in the SGI Power Challenge - 4 Mbyte), this is a topicof current research. The same technology can be used to perform a softwarecontrolled data prefetching and pre
ushing between computational phases.References[AAL95] J.M. Anderson, S.P. Amarasinghe, and M.S. Lam. Data and computationtransformations for multiprocessors. In Principles and Practice of ParallelProgramming, pages 166{178. ACM SIGPLAN, June 1995.[AGG+94] E. Ayguad�e, J. Garcia, M. Giron�es, J. Labarta, J. Torres, and M. Valero.Detecting and Using A�nity in an Automatic Data Distribution Tool. InK. Pingali et al., editor, Proceedings of the 7th Annual Workshop on Lan-guages and Compilers for Parallel Computing, pages 61{75, Ithaca, NY,August 1994. Lecture Notes in Computer Science vol. 892, Springer-Verlag.[AGG+95] E. Ayguad�e, J. Garcia, M. Giron�es, M.L. Grande, and J Labarta. DataRedistribution in an Automatic Data Distribution Tool. In C.-H. Huanget al., editor, Proceedings of the 8th Annual Workshop on Languages andCompilers for Parallel Computing, pages 407{421, Columbus, Ohio, August1995. Lecture Notes in Computer Science vol. 1033, Springer -Verlag.[AL93] J.M. Anderson and M.S. Lam. Global optimizations for parallelism andlocality on scalable parallel machines. In Conference on Programming Lan-guage Design and Implementation, pages 112{125. ACM SIGPLAN, June1993.[BCG+95] P. Banerjee, J.A. Chandy, M. Gupta, E.W. Hodges IV, J.G. Holm, A. Lain,D.J. Palermo, S. Ramaswamy, and E. Su. The Paradigm Compiler forDistributed-Memory Multicomputers. IEEE Computer, 28(10):37{47, Oc-tober October 1995.[Con94] Convex. SPP1000 Systems Overview. Convex Computer Corporation, 1994.[JE95] T.E. Jeremiassen and S.J. Eggers. Reducing false sharing on shared memorymultiprocessors through compile time data transformations. In Principlesand Practice of Parallel Programming, pages 179{188. ACM, June 1995.[KK95] K. Kennedy and U. Kremer. Automatic Data Layout for High PerformanceFortran. In Proceedings of Supercomputing'95, San Diego, CA, December1995.[SGI96] Silicon Graphics Computer Systems SGI. Power Challenge Technical Re-port, 1996.[SSGC95] T.J. Sche�er, R. Schreiber, J.R. Gilbert, and S. Chatterjee. Aligning Par-allel Arrays to Reduce Communication. In Frontiers95: The 5th Symposium

on the Frontiers of Massively Parallel Computation, pages 324{331, Febru-ary 1995.

