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Extended abstract

The forall statement is an important language construct in many (data) parallel

languages [1], [2], [3], [6], [8], [9]. It gives an indication to the compiler which

computations can be performed independently.

In this abstract, we will de�ne a generalized forall statement and discuss its

implementation. This forall statement has the ability to spawn more complex

independent activities than can be expressed in these languages. Existing forall

statements can be mapped to this generalized concept. The context of our forall

statement is supplied by V-nus, a concise intermediate language for data paral-

lelism [4]. The purpose of V-nus is providing a language platform to which other

data parallel languages can be translated, and subsequently optimized.

Our forall statement consists of two parts: an index-space speci�cation spec-

ifying the range of the index variable, and a body representing a block of state-

ments. The body is parameterized with respect to, and will be executed for,

every index in the index-space speci�cation. Each separate instance of the body

is called a body-instance. We use denotational semantics to de�ne the meaning

of the V-nus language constructs. With these we can verify and optimize a forall

statement.

It has been our goal to �nd a forall statement that complies with the fol-

lowing requirements: (1) The denotational semantics of a forall statement must

represent only one possible program state change; that is, only one outcome

should be possible after execution of the forall. (2) It must be feasible to imple-

ment the forall statement e�ciently. This means that the administration that is

needed to execute the forall should not use excessive amounts of computational

resources. (3) The forall statement must be capable of representing a wide class

of forall de�nitions as can be found in (data) parallel languages. (4) It must be

possible to give a concise operational semantics of the forall statement that can

easily be used in programming.

Body-instances of the V-nus forall statement are to be executed completely

independently. By this we mean that data that can be changed by a body-

instance i should not a�ect the outcome of another body-instance j. However,

a global interference is still possible when there is a de�ne-de�ne dependence

between the possible body-instances; i.e. two body-instances that write to the

same variable. We say that



a forall statement is deterministic if no de�ne-de�ne dependence is present

between any two di�erent body-instances of the forall statement.

We use denotational semantics, in which the meaning of a program can be

expressed by the composition of the meanings of its parts, to record the con-

cept of the forall statement. The semantics are described by using a di�erence

and a merge operation on program states [5]. In order to arrive at an e�cient

implementation of the forall statement, we take the following approach. At the

start of a forall statement the program state ps is preserved. For the execution

of a body-instance a subset psi of ps is used for the context in which this body-

instance will be executed. Only the data that is needed in the body-instance

is extracted from ps and will be used for psi. Every time something needs to

be read from memory, it is read from psi. When something needs to be written

to memory, it is not only stored in psi, but the same store action is also per-

formed on ps. In this way, each change that is made by a single body-instance

is also visible in the global program state, but will not be used by the other

body-instances. This is how the �nal program state ps0 arises from the original

program state ps, without the need for a merge or a di�erence operation.

The construction of psi is dependent on the information the compiler has

about the data that is used in the body-instance. This information can be gen-

erated automatically by well-known dependence analysis techniques and by hand

via pragmas. A pragma is an optional annotation for the compiler that gives ad-

ditional information about a certain program construct. Pragmas that can be

used for a forall statement specify which data should be copied in psi.

If a forall statement is not annotated by a pragma, then the local program

states psi are created as explained above. If a pragma is present the compiler

relies on this information and only copies the given data structures for the ac-

companying program states psi. In our opinion, it is more useful to specify for

which data structures a dependency exists, than it is to specify those structures

for which no dependency exists. The syntax of a pragma for a forall statement

is:

<< dependsOn Expression >>

which expresses a dependency for the data structure(s) Expression. An empty

list of speci�cations (i.e. << >>) means that no data needs to be copied. Of

course, it is the responsibility of the programmer to avoid the introduction of

non-determinism due to a pragma.

We end this abstract with an example of an optimization that can only be

expressed by using the V-nus forall. Consider the following matrix operation:

for [j:m] f
forall [i:n] fa[i,j] := a[i,j-1] + a[i,j+1] + a[i-1,j] + a[i+1,j] g

g

The optimization we have in mind is based on synchronization elimination

[7]. By reversing the i and j loop the operation can be expressed as



forall [i:n] f
for [j:m] fa[i,j] := a[i,j-1] + a[i,j+1] + a[i-1,j] + a[i+1,j] g

g

which has no computational di�erences in the result. Instead of executing

forall statements in sequence, the forall body-instances can now be executed

concurrently, yet obeying the j sequence. It is easy to see that no de�ne-de�ne

dependence occurs, which makes it a deterministic forall statement. This forall

statement is not `valid' in the other parallel languages we refered to in this

abstract.

More detailed information regarding the generalized forall concept can be

found in our technical report [5] available at:

ftp://ftp.cp.tn.tudelft.nl/pub/cp/publications/1996/CP-96-003.ps.Z
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