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Abstract

It is generally claimed that object-based models are very suitable for building
distributed system architectures since object interactions follow the client-
server model. To cope with the complexity of today's distributed systems,
however, we think that high-level linguistic mechanisms are needed to
effectively structure, abstract and reuse object interactions. For example, the
conventional object-oriented model does not provide high-level language
mechanisms to model layered system architectures. Moreover, we consider
the message passing model of the conventional object-oriented model as being
too low-level because it can only specify object interactions that involve two
partner objects at a time and its semantics cannot be extended easily. This
paper introduces Abstract Communication Types (ACTs), which are objects
that abstract interactions among objects. ACTs make it easier to model layered
communication architectures, to enforce the invariant behavior among objects,
to reduce the complexity of programs by hiding the interaction details in
separate modules and to improve reusability through the application of object-
oriented principles to ACT classes. We illustrate the concept of ACTs using
the composition filters model.

1. Introduction

The dynamic semantics of object-oriented languages are based on the message
passing mechanism. A message is a request for an object to carry out one of the
object's operations. Since objects can only communicate by sending messages,
message passing is the basic means for creating executions in the system.

To cope with the complexity of today's distributed systems, we think that high-level
linguistic mechanisms are needed to effectively structure, abstract and reuse object
interactions.



Originating from the construction of operating systems, large distributed systems are
structured in terms of vertical layers. Functionally, each layer communicates with its
peer-level layer, although physical data exchange occurs with the adjacent layers.
The conventional object-oriented model does not provide high-level language
mechanisms to model layered system architectures. Moreover, we consider the
message passing model of conventional object-oriented languages as being too low-
level because it can only specify communications that involve two partner objects at a
time and its semantics cannot be extended easily. Mechanisms like inheritance and
delegation only support the construction and behavior of objects but not the
abstraction of communication among objects. These mechanisms therefore fail in
abstracting patterns of messages and larger scale synchronization among objects.

We have applied the composition filters model to abstract communications among
objects. In this approach, the basic object model is extended modularly by
introducing input and output composition filters that affect the received and sent
messages respectively. This mechanism enables software engineers to abstract
communications among objects into a first-class object called abstract
communication type1 (ACT). ACTs make it easier to model layered architectures, to
enforce the invariant behavior among objects, to reduce the complexity of programs
by hiding the interaction details and to improve reusability through the application of
object-oriented principles to ACT classes.

This paper is organized as follows. The next section describes the problems in object-
oriented modeling which form the motivation for abstracting inter-object
communications. Section 3 studies the background and related work, including the
composition filters model. Section 4 first gives a list of requirements to effectively
integrate  communication abstractions with the object-oriented model. It then
introduces ACTs and explains how ACTs can be expressed using composition-filters.
Section 5 presents examples in 3 categories: examples of inter-object invariant
behavior, inter-object synchronization, and coordinated behavior. Section 6 evaluates
the ACT concept as presented and gives conclusions.

2. TheProblem Statement

The conventional object models lack support for abstracting object interactions. This
reveals itself through a number of problems that are encountered in object oriented
software development:

1. Lack of Support for Meta-levels and Reflection:

Assume for example that object A sends a message to a remote object B by
executing the message statement

1 The term abstract communication type is derived from abstract data type and may refer to
both objects and classes. Terms ACT object and ACT class will be used to refer to an
object or class respectively.



B.moveTo(X, Y);

For A, the details of this execution are abstracted. However, in reality, this
message must be intercepted by the underlying layer to determine, for example,
the physical location of the receiver of the message.

From the object-oriented modeling perspective, this requires reflection? of
messages. In message reflection, the so-called message reification operation
allows the meta-layer to process the explicit representation of the reified message
[Barber 89].

Conventional object-oriented methods [Booch 90, Coad&Yourdon 91a,
Coad&Yourdon 91b, Champeaux 91, Rumbaugh 91] do not provide support for
reflective system development. Conventional object-oriented languages (such as
C++) provide only a limited or ad-hoc reflection [Madany et al. 92].

Complexity and Lack of Reusability: The manageability of programs is affected
by the complexity of interactions among modules. In object-oriented programs,
the code for describing the interactions is distributed over the participating
objects. This causes a mixture of functional and interaction related code, which
affects both maintainability and extensibility.

Different classes may adopt identical patterns of communication and
synchronization. Similarly, a single class might participate in various patterns of
communication. Thus, hardcoding the interaction patterns in a class severely
reduces the reusability (of the class itself, and of the interaction code). Especially
reuse through extension (subclassing) is an important issue.

Enforcing invariant behavior: If the code that implements the invariant behavior
is distributed over a number of objects, verifying the invariants is far from trivial.
A single module that explicitly represents the interaction between objects is an
attractive approach for ensuring the invariant behavior of this interaction.

2

A reflective system is a system which incorporates models representing (aspects of)
itself. This self representation is casually connected to the reflected entity, and therefore,
makes it possible for the system to answer questions about itself and support actions on
itself. Reflective computation is the behavior exhibited by a reflective system. The term
reflection was introduced by [Smith 82] as a technique to structure and organize self-
modifying procedures and functions. In [Maes 87] reflection was applied within the
object-oriented framework. Recently a considerable amount of work has been done in
object-oriented reflection, for example, in concurrent programming [Ichisugi et al. 92],
operating system structuring [Yokote 92], compiler design [Lamping et al. 92] and real-
time programming [Honda&Tokoro 92].



3. Background and Related Work

This section describes the background and related work for ACTs. It consists of two
main sections: in the first section the related work in analysis and design, and
programming models is described. In the second section the composition-filters
model is explained. We will apply the composition-filters model for expressing and
illustrating ACTs.

3.1. Related Work in Object Interactions

This section describes the work that has been done with respect to object
interactions. We first describe the attention that object-oriented analysis and design
methods pay to modeling object interactions, and then one specific modeling
approach, Contracts. Then we discuss two programming models, respectively Scripts
and reflective computation, how they can be applied for abstracting object
interactions.

Object-Oriented Analysis and Design M ethods

Most object-oriented analysis and design methods model interactions among objects,
usually after identifying inheritance and part-of relations. Different terms are used
to express object interactions such as object diagrams [Booch 90], process model
[Champeaux 91], message connections [Coad&Yourdon 91a], data-flow diagrams
[Rumbaugh 91] and collaboration graphs [Wirfs-Brock et al. 90]. The Demeter
system [Lieberherr et al. 91] is a Computer-Aided Software Engineering (CASE)
environment which provides a tool to generate repeated operations called
propagation patterns. In addition, the Demeter system incorporates a design rule for
minimizing interactions between objects [Lieberherr&Holland 89]3. Object-Oriented
Design by Coad and Yourdon [Coad&Yourdon 91b] introduces a task management
component which aims at defining object interactions.

Object-oriented analysis and design methods model interactions among objects in a
way similar to object-oriented languages. Basically, they define graph structures that
represent execution threads and therefore these methods have the same limitations as
programming languages. The task management component [Coad&Yourdon 91b]
can be considered as a module to model object interactions. In this method, however,
there is no emphasis on using these constructs for this purpose. Moreover, it does not
provide solutions to the problems as presented in section 2.1.

3 Contracts were developed as a part of the research activities related to the Demeter
system.



Contracts

In the area of object-oriented modeling, the idea of specifying object interactions as
an explicit module is applied by contracts* [Helm et al. 90, Holland 92]. Contracts
are used to specify the contractual obligations that a set of participants must satisfy.
It is possible to refine a contract in order to make it more specific and it is possible to
include existing contracts in a new contract. In its first version [Helm et al. 90] a
declarative language was introduced to define contractual obligations. In the second
version [Holland 92], however, a procedural language was adopted instead of a
declarative one. In the following we refer only to the second version of contracts.

A contract specification includes the specification of the participating objects, the
contractual obligations of all participants, the invariants to be maintained by the
participants and the method which instantiates a contract.

A contract can be seen as an abstract class, defining both abstract and concrete
methods for its participants. The abstract methods must be provided by the
participants themselves. The concrete methods of the contract (or its refinement)
override the concrete implementations of the participants. A contract may also define
variables that are shared by all the participants. In order to put a contract to use, a
conformance declaration must be made which initializes the contract with actual
participants. Obviously, these participants have to satisfy the contractual obligations
of the contract. An object may participate in several contracts. Contracts offer two
alternatives: either the methods are implemented at the contract specification, or they
are distributed over the participating classes.

Contracts are primarily targeted as a design tool. Contracts are quite useful for the
implementation of coordinated behavior and the abstraction of object interactions but
are unable to reflect upon the actual message interactions between objects for
purposes such as monitoring and manipulating messages. Contracts are treated
differently from normal classes. Contracts also do not address concurrency and
synchronization issues.

Scripts

A language construct called scripts [Francez 86] was introduced to abstract patterns
of messages into a module. A script is a parameterized program section in which
processes enrol in order to participate. The concept of enrolment is similar to the
subroutine call mechanism whereby the execution of the role in a given script
instance is a logical continuation of the enrolling process. A script consists of formal
process parameters called roles, data parameters and a concurrent program section
called the body. Processes can enrol in scripts by means of enrol in statements.

Scripts are program modules and do not provide mechanisms for object-oriented
computing. Scripts, for example, do not allow users of the system to create several

4 Apart from the object-oriented language Sina.



instances belonging to the same communication module. Inheritance or delegation
mechanisms are also not defined for scripts thereby resulting in a less systematic
reuse of communication abstractions.

Reflective Computation

In principle, languages that provide full reflection are able to represent object
interactions. However, full reflective languages have complicated semantics and may
bring unnecessary additional complexity. One particular example of a restricted
reflective language is MAUD [Agha et al. 92]. Each object in MAUD owns three meta-
objects called a dispatcher, a mail queue and acquaintances. The sent and received
messages are handled by the dispatcher and mail queue objects respectively. The
acquaintances object contains a list of objects that may be addressed by its owner
object. In the MAUD language, one can implement coordinated behavior by replacing
the meta-objects with the objects implementing the required protocol. To install a
protocol for an object the original mail queue and dispatcher must be replaced by a
pair implementing the required protocol.

In MAUD, a shared protocol among objects is implemented by mail queues and
dispatchers. Coordinated behavior is distributed among mail queue and dispatcher
objects which are added to all participating objects. Therefore designers cannot
define and reuse coordinated behavior as a single entity.

Apertos is an object-oriented reflective operating system [Yokote 92] designed for
open and mobile computing environments. Apertos introduces object/metaobject
separation in the operating system design. An object is associated with a group of
metaobjects and a metaobject defines the semantics of its object. An object can
change its metaobject (or group of metaobjects) by migration. Although Apertos
provides a general reflective system framework, it does not emphasize abstraction
and reuse of interactions among objects.

3.2. The Composition Filters M odel

We will first briefly introduce the components of the composition-filters object model
and then present them in greater detail later. This computation model is adopted by
the Sina language®. In Sina, operations and local variables are called methods and
instance variables, respectively. As illustrated by Figure 1, a composition-filter
object consists of two parts: an interface and an implementation part. The interface
part deals with incoming and outgoing messages. It consists of one or more input

5 The early version of the Sina language was published in [Aksit&Tripathi 88,
Tripathi&Aksit 88, Aksit et al. 91]. This version introduced only a simple filter
mechanism which was then called predicates. The recent version of the language was
published [Aksit et al. 92, Bergmans et al. 92]. These publications did not address the
issues related to abstract communication types. The preliminary version of ACTs was
first published in [Aksit 89a].



and output filters, optional internal and external objects and method header
declarations.

7
Methods Externals Bxiernal

objecrs

InTerface ParT

INTERNALS

ImplemenTation PaRT

Figure 1. The interface components of the composition-filters object model.

Filters are controlled by conditions®. Filter names, method headers and condition
names can be made visible to the clients of the object, however, their
implementations are defined in the implementation part and invisible. In Figure 1, a
possible effect of the input filters is shown. If a message passes through the input
filters it can be further delegated to internal objects, methods or external objects. In
addition, Figure 1 depicts the effect of output filters on the outgoing messages. All
the messages that originate from method executions within the object and are sent to
objects that are outside the boundaries of the current object pass through the output
filters. Without filters, our model is very similar to the conventional object model.

The implementation part contains method definitions, instance variable declarations,
definitions of conditions and an optional initialization operation. The
implementation part is fully encapsulated within the object.

The Interface Part

As an example of a simple class consider the interface part of class Point. We
present our examples following the Sina language notation.

6 In [Aksit et al. 92] conditions were called states.



class Point interface
comment This class implements a graphical point;
conditions
Initialized,; /I this condition is only valid after the object has been initialized
methods
moveTo(Integer, Integer) returns Nil;
Il changes the coordinates of the point
getX returns Integer;
/I reads the current x location of the point
getY returns Integer;
/I reads the current y location of the point
inputfilters
disp : Dispatch = { True=>inner.moveTo, Initialized => inner.* };
end;

Figure 2. Definition of the interface part of class Point.

The methods that are to be visible at the interface of the object are declared in the
interface part by method headers following the keyword methods. Class Point, for
instance, declares the methods moveTo, getX and getY for changing and reading the
coordinates of the point respectively. The actual implementations of these methods
are encapsulated within the implementation part. An appropriate message must be
sent to an instance of class Point to invoke one of these methods.

An input filter specifies conditions for message acceptance or rejection and
determines the appropriate subsequent action. The output filters handle outgoing
messages and are studied in section 4. After the keyword inputfilters, class Point
defines a single input filter called disp of class Dispatch7 using the expression

disp: Dispatch={.... };
An input filter of class Dispatch is used to initiate execution of a method when the

corresponding message passes successfully. The filtering condition, between the
brackets "{" and "}", is specified as

{ True=>inner.moveTo, Initialized => inner.* }

On the left hand side of the characters "=>", a necessary condition is specified,
denoted by the condition identifiers, True and Initialized in this case.

7 The current version of the Sina language provides a number of primitive filters such as
Dispatch, Meta, Error, Wait and RealTime. The Dispatch filter is explained in this
section. The Meta filter will be studied in section 4. The Error filter is similar to the
Dispatch filter but it does not provide a method dispatch; it raises an error condition if a
message does not pass through the filter [Aksit et al. 92]. The Wait filter is used for
synchronization [Bergmans et al. 92]. The RealTime filter is used for realtime
computations [Aksit&Bosch 92]. These filters can be used as both input and/or output
filters. An input filter composes the signature of its object whereas an output filter
specifies how its object sends messages to other objects. An important feature of all these
filters is that they are orthogonal to each other and, therefore, they can be combined
freely.



Conditions are similar to logical propositions. The names of the conditions are
declared in the interface part following the keyword conditions and their definition is
provided in the implementation part. Conditions may reflect the values of instance
variables, but may reflect external variables as well. In this example, the condition
Initialized is set to true if the instance variables of class Point have been initialized.

The received message is matched with the method names specified on the right hand
side of the characters "=>". The character "*" indicates a wild-card or don't care
condition; if the message matches with any of the method names provided by class
Point it will be accepted for execution. An alternative could be to list all the method
names explicitly. The pseudo-variable inner denotes the methods defined by Point.

An optional internal clause may be used to declare encapsulated objects whose
behavior can be made (partially) visible on the interface of the encapsulating object
by filter specifications. Internal objects differ from instance variables, because
internals are used to compose the behavior of the object, whereas instance variables
represent the local data of the object. An external clause may be used similarly to
declare exterior objects that are to be accessible to this object. The use of internals
and externals will be explained when inheritance mechanisms are introduced.

The Implementation Part

The components of the implementation part are exemplified by class Point as shown
in Figure 3.

Instance variables are declared in the instvars clause. Instance variables are fully
encapsulated and can be objects of arbitrary complexity. Class Point declares 3
instance variables named X, y and initializeDone. Only the methods defined within
the object's class may access the instance variables directly, external clients of an
object or even its subclasses cannot do this.

The implementations of the conditions are defined by message expressions. The
structure of a condition implementation is similar to the structure of a method.
However, a condition implementation always results in a Boolean value and is free
of side effects.

The initialization method of an object is defined in the initial clause. This method is
executed immediately after object creation.

The last component of the implementation part is the definition of the methods. A
method consists of a series of message expressions. The control flow may be
controlled by a set of standard control statements.



class Point implementation
comment This class implements a graphical point;
instvars
X, y: Integer
initializeDone: Boolean;
conditions
/I the conditions that were declared in the interface part are implemented here
Initialized:
begin return initializeDone end,;
initial
begin initalizeDone:= false; end;
I here the initial method is defined, which is executed immediately after object creation.
methods
moveTo(X, y: Integer) begin ....; initializeDone:=true end;
getX begin .... end;
getY begin .... end,;
end;

Figure 3. The implementation part of class Point.

M essage Evaluation by Filters

A filter is a first-class object that determines whether a particular message is either
accepted or rejected and what action is to be performed in either case. Each filter is
declared as an instance of a filter class. A programmer may define an arbitrary
number of filters for an object. Each filter can be an instance of an arbitrary filter
class. The complete set of input filters of an object determines the conditions for
message acceptance and determines which method will be executed upon acceptance.
Figure 4 illustrates how a message is evaluated by a set of filters.

This example consists of three filters A, B and C. A received message m has to pass
through all the filters to result in a successful dispatch. Every filter consists of a
number of filter elements (two or three in this example). When a message is to be
evaluated by a filter it will be checked against the elements of the filter in left-to-
right order. A filter element consists of three parts:
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Figure 4. Message acceptance by filters.
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» A condition, which specifies a necessary condition to be fulfilled in order to
continue evaluating a filter element;

» A matching part, in which the evaluated message is matched against a defined
pattern;

» A substituting part, where (parts of ) the message can be replaced.

In filter A, the selector of the received message is matched against the selector of the
matching part of each filter element; when the filter element does not match the
subsequent filter element is tried. In filter A, although both of the conditions are true,
only the second element matches the message since the selector of the first filter
element does not match. The message is accepted by filter A and can then proceed to
the next filter.

In filter B, matching is not restricted to the selector of the message, but involves the
target of the message as well. The first element of B does not match but the second
and third elements do. Due to the left-to-right ordering, the message matches on the
second filter element and proceeds to the next filter.

Filter C demonstrates the full expressiveness of filter evaluation. It introduces
substitution of selectors and targets. In the filter, the first filter element does not
match and the second filter element has a condition that is false. The message is
accepted at the third element and new values for the target and selector are
substituted.

Since there is no subsequent filter, the type of the filter determines what will happen
with the message. Commonly the last filter is of class Dispatch, which results in
delegation of the request message to its target object.

The conditions, the matching and the substitution as provided by filters, provide a
generic mechanism for selecting messages based either on their properties (selector
or target), or on some condition specified by the receiving object. They also support
the renaming of message selectors and redirection of messages (by substituting new
targets). Based on the acceptance or rejection of a message, the filter can perform
appropriate actions such as bouncing or blocking a rejected message or delegating an
accepted message.

Inheritance and Delegation Through Input Filters

This section demonstrates how input filters can be applied to realize basic object-
oriented data modeling techniques, such as inheritance and delegation. In section 4
we will explain how filters can be used to define ACTs.

In the composition-filters model, inheritance is not directly expressed by a language
construct but is simulated by input filters. In order to inherit from a class an internal
object must be declared as an instance of that class. Inheritance is simulated by
delegating messages to the methods provided by this instance object. This is
exemplified by class ReferencePoint, shown in Figure 5.

11



class ReferencePoint interface
comment This class is a subclass of class Point and is used
as a reference point for a set of other points ;

internals

myPoint : Point; // instance of the ‘'superclass' -displAy
methods

display returns Nil; // displays itself on the current point
inputfilters myPoinT( PoinT)

disp: Dispatch={ True=>myPoint.*, True=>inner.* };

end; ReferencePoinT

Figure 5. The interface part of class ReferencePoint.

Class ReferencePoint declares an internal object myPoint of class Point and
introduces one method display. The method display makes the graphical object
visible at the current location.

The filter disp of class Dispatch contains two filter elements. The condition True
preceding each filter element means that the target-selector pair(s) on the right-hand
side will always be checked. These two filter elements have the following meaning:

First filter element:

The first element of the filter, myPoint.* specifies that all the incoming messages
are delegated to the internal object myPoint, provided that these messages are
supported by class Point. Since the methods of Point are now available to
ReferencePoint through an instance of Point, class ReferencePoint inherits the
operations of class Point. This technique for simulating inheritance is also
referred to as delegation-based inheritance.

When an instance of class ReferencePoint is created, its internal object myPoint
is also created. An important feature here is that instance variables of the
superclass are only accessible through operations provided by the superclass.

The second filter element:

If the first filter element does not match with the message, the second filter
element is evaluated. Instead of delegating to an internal object such as myPoint,
this filter element delegates the message to the pseudo-variable inner8. By

Apart from the pseudo-variable inner, two other pseudo-variables, self and server, are
also available as a means of self-reference. The variable inner allows direct internal
access on the objects' own methods. self refers to the instance of the class which defines
the method. If, for example, myPoint refers to self, it will refer to myPoint but not
aReferencePoint. We introduced inner to avoid infinitely nested compositions. Such
nested compositions can be created if only self is used. In order to refer to the object that
originally received the message, server is used as a target. For example, if myPoint refers
to server, it will refer to aReferencePoint. Note that server is dynamically bound and is
equivalent to Smalltalk self.

12



declaring inner as a target object, class ReferencePoint makes the methods
defined and implemented by itself available to its clients.

Note that since the filter elements are evaluated from left to right, the first element
prevails over the second one. The order of the filter elements can be manipulated to
bind messages to the desired targetsg.

Instead of using an internal object as a target, the programmer may also delegate the
incoming messages to an external object by declaring the target name in the
externals clause. Because external objects are not encapsulated within the object,
they can be shared by other objects. In addition, contrary to the internals clause, an
external declaration does not result in automatic object creation.

4. Abstract Communication Types

4.1. Requirementsfor Abstract Communication Types

We have identified the following requirements for defining effective communication
abstractions:

1. First-class propertylo: If the communications among objects show a well-
defined, meaningful, complex and/or reusable behavior, then they must be
explicitly represented by one or more ACTs. The rationale for this requirement is
that if communications among objects are well-defined and meaningful, they are
likely to be problem domain entities; if they are complex, then they can be
managed by the object-oriented techniques such as encapsulation and inheritance;
if they are reusable, they must be defined as classes (objects) since classes
(objects) are the unit of reuse.

An ACT class must be able to reuse other classes in the system so that ACT
frameworks may be constructed.

2. Large scale synchronization: ACTs must be able to express various concurrency
and synchronization schemes. We believe that distributed applications can be
conveniently constructed using ACTs. Therefore, ACTs must have rich semantics
to express various concurrency and synchronization mechanisms, such as
asynchronous communications, broadcasts, coordinated terminations, distributed
concurrency control algorithms, etc.

3. Reflection upon messages: An ACT must be capable of reflecting upon messages,
such as for monitoring, logging, affecting synchronization semantics and
message contents, or redirecting messages.

9  Thisis especially useful for solving name conflicts that are due to multiple inheritance.

10 First-class property means an ACT object is treated as an ordinary language object.

13



4. Uniform integration of communication semantics: Considering ACTs as objects
only is not sufficient. Communication mechanisms defined by an ACT must be
uniformly integrated with the operations implemented by the participating
objects. An ACT must be considered as the extended identity of the participating
objectsl.

4.2. Basic Concepts

An ACT class is an ordinary Sina class with the same syntax and semantics. What
makes a class an ACT class is the way its behavior is composed with its participating
objects. An ACT class operates on first-class representations of messages. For
converting a message into its first-class representation, we introduce a new filter
class called Meta filter. An instance of Meta filter has a structure similar to the
Dispatch filter. The difference here is that if the received message is accepted by a
Meta filter it is first converted to an instance of class Message and then passed as an
argument of a new message to the ACT object. The conversion operation is also
known as reification. The ACT object can retrieve the necessary information from
the message argument. An ACT can also modify the contents of the message by
invoking the operations of class Message. Finally, an ACT can convert an instance
of Message back to a message execution. The detailed explanations of class Meta
filter and Message are presented in sections 4.3 and 4.4, respectively.

ACTs can be further classified as abstract sender types (ASTs) and abstract receiver
types (ARTs)12. ASTs and ARTs are responsible for abstracting one-way
communication among objects. Various ways of composing ACTs are illustrated in
Figure 6.

In Figure 6(a), each object has an output Meta filter which intercepts and delegates
the outgoing messages to the internal AST object. The internal ASTs that are
encapsulated by different objects may all belong to the same class to enforce common
protocols among objects. The AST object is responsible for abstracting the
communication that originates from the sender object. The sender object inherits the
behavior of the AST object in object communication. This mechanism uniformly
integrates the communication semantics of the AST object with the sender object.
Typical applications of this architecture are asynchronous communications, encoding
messages etc.

11 The semantics of an ACT object can not be integrated uniformly with the behavior of

interacting objects just by executing message calls. After each message call, the context
of the original call (such as the pseudo-variable self) is changed. As a consequence, this
may result in a less reusable coordinated behavior since the ACT object can not
polymorphically refer to the participating objects. This is equivalent to the self-problem

as defined in [Lieberman 86].
12 This is an intuitive classification. We found out that in practice designers of ACTs tend

to talk about ACTSs that send or receive messages.

14
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Figure 6(a). Outgoing messages are delegated to an internal AST object.

The architecture in Figure 6(b) is similar to 6(a), except that a shared external AST
object is used instead of an internal one. This allows communicating objects to share
the behavior with a common state. For example, this AST object can store the names
of the receiver objects in a multicast implementation.

Figure 6(b). Outgoing messages are delegated to an external shared AST object.

In Figure 6(c), each object has an input Meta filter which intercepts and delegates
the received messages to the external ART object.

The ART object is responsible for handling incoming messages. Examples are one-
way constraint solvers, security protocols, data handlers in atomic transactions,
decoding messages, etc.

Figure 6(d) combines the functionalities of AST and ART types into a single external
ACT object. This object handles both incoming and outgoing messages. Typical
examples are coordinated behavior, multi-way constraint solvers, distributed
algorithms etc.

15



Meta-filrer Mera-filrer
Disparch Disparch

Figure 6(c). Composition of an external ART object with the participating objects.

Mera-filter Mera-filter
Disparch Disparch

Mera-filrer

Figure 6(d). Delegating all communication to an ACT object.

4.3. Modeling Software Using ACTSs.

In our analysis and design method, we apply the ACT concept as an object-oriented
modeling technique. As illustrated by Figure 7(a), during the class (object)
identification phase we explicitly search for classes that represent interactions among
objects. Typically, these classes manifest themselves as action abstractions,
distributed algorithms, coordinated behavior, inter-object constraints, etc. ACT
classes are not procedural abstractions but they are problem domain entities and have
a well-defined behavior.

In some cases, the analyst may fail in identifying ACT classes. After the
identification of inheritance and part-of relations among classes, we specify object
interaction patterns. If there is a well-defined pattern among objects and if this
pattern is meaningful in the problem domain, then we represent them as ACT
objects. As shown in Figure 7(b), in such a case we move the object-interaction
behavior (code) to an ACT object.
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Many object-oriented methods define associations [Rumbaugh 91] between objects.
Most associations represent message exchange between these objects and can be
conveniently represented by ACTSs.

‘ R[QLIR[M[NT SD[(,I[I(ATION ‘

|(JH\0|'|)J|FCCAT| |0\/ IdEV\ﬁ(I:CTATIOV l \\dtr\?llljjlz?nor\i
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Figure 7. Identifying ACTs using (a) requirement specification and (b) object interaction
patterns.

(b)

We have applied the object-oriented analysis and design techniques to a large
number of applications [Aksit&Bergmans 92]. In various applications we could
benefit from mechanisms that could abstract object interactions. One example was
the administration system for social security services [Greef 91]. In this system,
different objects were coordinating together to calculate payments. These
calculations were the implementations of laws and could be abstracted by ACTSs.
Another example was the chemical process control system for a distillation process
which was developed at the department of Chemical Engineering, University of
Twente [Jonge 92]. In this system various optimization algorithms were distributed
to different components. The algorithms were solving some well-defined differential
equations and could be modeled by ACTs that implemented these algorithms.
Distributed system design clearly demonstrated the need of abstracting interaction
patterns [Aksit 89b, Bempt 91, Bergmans 90, Dolfing 90, Zondag 90]. In the
distributed system design we could benefit from ACTs, for example, in building
layered architectures, dedicated distributed concurrency control mechanisms and
implementing security protocols.
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4.4. Class Meta-Filter

Instances of class Meta-filter are used to reify messages that pass through them. The
reified message is passed as an argument of the new message to an ACT object.
Reification is needed to allow the ACT object to invoke operations on the instance of
Message. Consider the following example:

aMetaFilter : Meta = { aCondition => [self.aMethod] anACT.aMethodOfANACT };

There is no difference between a Meta filter and other filters in the manner a filter
expression is evaluated. However, when the message is accepted by a filter element,
which means both aCondition is true and the message is self.aMethod, a new
message is created and the original message becomes the argument of the new
message. The new message is composed of anact.aMethodOfAnacT(aMessage),
where aMessage is the reified original message. If the received message does not
match with a Meta filter it is passed to the next filter. The semantics of class Meta
filter are presented in Appendix B.

4.5. Class Message

A message in the system becomes accessible when it is reified by a Meta filter and
passed to an ACT as an argument of class Message. Class Message defines a number
of methods for accessing and changing the receiver, sender, server, selector and
arguments of the message. In addition, it provides methods for copying, reactivating
and replying to the message. The accessing and changing operations are self
explanatory. We will now describe the other methods.

The method copy returns a copy of the message. The sender of the copied message is
undefined unless it is explicitly initialized. The reactivating method fire causes the
message to continue with its execution. The method reply accepts an argument and
sends this argument as a reply message to the sender, stored internally in the
message. The interface methods of class Message are described in Appendix A.

4.6. Implementation | ssues

Currently, we are carrying out a research activity for the efficient implementation of
composition-filters. We are experimenting with a Sina compiler that generates C++
and Smalltalk code. In most cases, ACTs do not impose significant execution
overhead, since the code that is executed by an ACT can be inlined into the object
that owns the meta filter. This is because the name of the ACT object is explicitly
named in the filter initialization part.
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5. Examplesof Abstract Communication Types

5.1. Examplefor an Inter-Object Invariant Behavior: One-Way Constraints

An instance of class ReferencePoint is supposed to store the reference coordinates of
a figure. When the coordinates of the reference point are changed, then all the
dependant graphical objects must be updated accordingly. Thus a figure can be
considered as a constraint among the graphical elements that form the figure. We
consider such a constrained behavior as a typical example of an ACT.

To compose this constraint behavior with ReferencePoint, Figure 8 extends the
interface part by declaring object figure of class OneWayConstraint in the externals
clause and by adding a new input filter called constraint of class Meta.

Dispatch

fiqure
(ONEWAYCONSTRAINT)

=

myPoinT( PoinT)

class ReferencePoint interface
comment this class is a subclass of class Point and is used as a reference point for a set of other
points ;
externals
figure : OneWayConstraint; // instance of the 'ART class'
internals
myPoint : Point; // instance of the 'superclass'
methods
display returns Nil; // display itself on the current point
inputfilters
{
constraint : Meta= { True => [*.moveTo]figure.applyConstraint };
disp: Dispatch={ True=>myPoint.*, True=>inner.* };

end;

Figure 8. Redefinition of the interface part of class ReferencePoint .

Class ReferencePoint now has two filters enclosed by the characters "{" and "}". The
filter constraint of class Meta contains a single filter element. The condition True
preceding the filter element means that the target-selector pair(s) on the right-hand
side will always be checked. The filter element consists of matching and substitution
parts:
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Matching part:

The matching part of the filter "[*.moveTo]" means that all the incoming
messages with the selector moveTo will match. The received message will be
converted to an instance of class Message if there is a match. If the received
message does not match with the Meta filter it is passed to the next filter.

The substitution part:

After the message conversion the message is sent as an argument of the message
"figure.applyConstraint(aMessage)". Object figure is declared in the externals
clause and is responsible for enforcing the constrained behavior among the
elements of figure. After updating the dependant graphical elements, figure
converts the message back to the execution form which then passes though the
second filter called disp of class Dispatch. The second filter dispatches the
message to its target.

class OneWayConstraint interface
comment this class implements a one way constraint enforcing mechanism ;
methods
applyConstraint( Message ) returns Nil; // this is the independent reference message
putDependants( OrderedCollection(Any) ) returns Nil; // dependant objects are supplied
size returns Integer; // number of dependant objects
putConstraints( OrderedCollection(Block) ) returns Nil; // store constraints for dependants
getConstraints retur ns OrderedCollection(Block); // retrieve constraints
inputfilters
disp : Dispatch = { true => inner.* },
end;

Figure 9. The interface part of class OneWayConstraint.

Class OneWayConstraint is an ART and is a general one-way constraint solver
which provides the consistency of the dependant variables when the independent
variable changes. In the following example variables y and z are dependants of x:

y = f1(x) z =12(x)

OneWayConstraint introduces five methods. The method applyConstraint accepts a
single argument of class Message. This argument is used as the independent value
for the one-way constraint solver. The method putDependants accepts an ordered
collection of objects of any type and stores them internally as dependant objects. The
method size returns the number of dependant objects. The method putConstraints
accepts an ordered collection of instances of class Block as an argument. Class Block
represents a Sina method implementation. Each block is a constraint expression to be
solved and corresponds to the object that is stored at the same index location of the
ordered collection of dependants. For example, constraints on figure elements can be
expressed as

[moveTo( message.argument(1) + AX , message.argument(2) + AY)]
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Where message is the argument provided to the method applyConstraint. The
method argument( i ) returns the i;, argument of this message. AX and AY are the
coordinates relative to the reference point.

The method getConstraints retrieves the ordered collection of Blocks.

Note that class OneWayConstraint is a generic class and can be reused in other
applications.

In the following example class BoundedFigure inherits from class
OneWayConstraint and restricts the coordinates of the figure within a certain frame.
BoundedFigure introduces two new methods called putFrame and getFrame and
overrides the method applyConstraint. The method putFrame accepts an argument
of class Rectangle and stores it as the boundary of the figure. The method getFrame
returns the current frame of the figure. The method applyConstraint of
OneWayConstraint is now overridden because the allowed coordinates of the figure
are restricted.

class BoundedFigure interface
comment This class inherits from OneWayConstraint and extend it further by putting a frame;
internals
figure : OneWayConstraint;
methods
putFrame( Rectangle ) returns Nil;
getFrame retur ns Rectangle;
applyConstraint( Message ) returns Nil;
inputfilters
disp : Dispatch = { true => { inner.*, figure.* } };
end;

Figure 10. The interface part of class BoundedFigure.

5.2. Examplefor Inter-Object Synchronization: Asynchronous M essage Send

The update messages sent by the constraint solver can be executed asynchronously.
In Figure 11, class OneWayConstraint is extended by defining a new output filter
called send of class Meta. This filter converts the outgoing messages to an instance
of Message and passes it to the internal object messageSender of class Asynchronous.
Class Asynchronous provides asynchronous message passing and its definition is
given in Figure 12.

Class Asynchronous is an AST and defines a single method called messagelnput.
This method accepts an instance of class Message as an argument and replies to this
message immediately by returning the object nil to the sender. It then activates the
message by invoking the method fire on this message. Note that the matching part in
the dispatch filter "[self.*]" will match with any message that is sent to an instance
of class Asynchronous.

In Sina, unless mutual exclusion is provided by a filter [Bergmans et al. 92],
methods may be executed concurrently. This class therefore may execute concurrent
messagelnput invocations.
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ONEWAYCONSTRAINT

internals
messageSender: Asynchronous;
/I this is an instance of AST
methods

MESSAGE
Sender
Asynchronous)

inputfilters
disp : Dispatch = { true => inner.* },
outputfilters
send : Meta = { [*.*] messageSender.messagelnput };

(

UPdATE MESSAGES

end;

Figure 11. Adding asynchronous message send
semantics to class OneWayConstraint.

class Asynchronous inter face
comment this class implements an asynchronous message passing mechanism;
methods
messagelnput ( Message ) returns Nil; // message to be sent asynchronously
inputfilters
disp : Dispatch = { true => [self.*] inner.messagelnput};
end;

class Asynchronous implementation
methods
messagelnput( originalMessage: Message);
begin
originalMessage.reply(nil);
originalMessage.fire;
end;
end;

Figure 12. The interface and implementation parts of class Asynchronous.

5.3. Examplefor Coordinated behavior: Atomic Transactions

For computer-aided engineering applications figures can be processed to calculate
certain features such as volume, weight, etc. In the one-way constraint
implementation of Figure 11, dependant objects are updated by sending them a
number of asynchronous messages. During the update operation the figure is
inconsistent and, if there are other processes accessing this figure, the results of their
computation may be inconsistent as well.

Atomic transactions have proven to be a useful mechanism to preserve consistency
[Haerder&Reuter 83]. Serializability and indivisibility are the two important
properties of atomic actions. Serializability means that if several actions are executed
concurrently, they manipulate the affected data as if they were executed serially in
some order. Indivisibility means that either all or none of the atomic actions are
performed.

The implementation of class OneWayConstraint is extended in Figure 13 by defining
a second output filter named atomic of class Meta to enforce consistent updates. This
filter converts the message that is fired by messageSend to an instance of Message
and passes it to the internal object atomicUpdate of class TransactionManager.
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The interface definition of class TransactionManager is given in Figure 14. Class
TransactionManager inherits from class CommitReceive and provides two methods
called size and transaction. The method size accepts an integer argument and stores
it internally as the size of the transaction. The method transaction accepts an
argument of class Message and executes this message together with other messages
as an atomic transaction.

In our example class TransactionManager has an instance variable called
commitSend which implements a commit protocol. This protocol is explained with
the help of Figure 15(a-d). In 15(a) commitSend receives the transaction as a
message list from TransactionManager and fires them one by one.

"""""""""" ONEWAYCONSTRAINT
internals
messageSender: Asynchronous; e
/I AST for asynchronous communication ATowic {i
atomicUpdate: TransactionManager; TRA\‘QE?‘J;VAQ) Z
/I AST for atomic updates g
methods =
Lo IIIIIII MESSAGE
inputfilters Sender
disp : Dispatch = { true => inner.* }; Asynclironous)
outputfilters
{

send : Meta = { [*.*] messageSender.messagelnput };
atomic : Meta = { [*.*] atomicUpdate.transaction };

end;

Figure 13. Adding atomic transaction semantics to
class OneWayConstraint.

class TransactionManager interface
comment this class sends a set of messages as a transaction;
internals
myCommitReceive: CommitReceive; // Inherits from CommitReceive. It is used to commit or
[/ abort the transaction
methods
size(Integer) returns Nil; // size of the transaction block
transaction( Message ) returns Nil; // an element of a transaction block
inputfilters
disp : Dispatch = { true => inner.* },
end;

Figure 14. The interface part of class TransactionManager.
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iNpuT(MessageList)
_>

messAGE.fire, Q
TRUE/ AISE

commiTSend

commitReceive Objecrs

Figure 15(a). Transaction starts.

The receiver object must incorporate an ART of class TransactionManager. Class
TransactionManager inherits from class CommitReceive which is responsible for
handling transaction commit and abort messages. When a message is first received

by CommitReceive, it goes from the idle to the commit pending state, and returns
true as shown in Figure 15(d).

As shown by Figure 15(b), if all the responses to commitSend are true, then the
transaction commits.

In Figure 15(c) is shown that when a message is returned as false the transaction
aborts. During the commit pending state, if CommitReceive receives a new request it
returns false and thus causes the abortion of the corresponding transaction.

if All ReTurNEd TRUE THEN Q
COMMIT Q

(@
0/1747/.}

commiTSend

commitReceive Objecrs

Figure 15(b). If all succeed then transaction commits.
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if one ReTurNed false Then O

<
Q
)
S

Q Abort Q
commitSend

Figure 15(c). If one fails, then the transaction aborts.

commitReceive Objecrs

04, o

RECEiVEd MESSAGE/RETURN TRUE

OMMIT/PERMANENT COMMIT

pending

RECEIVEd MESSAGE/RETURN false

ADbORT/REMOVE

Figure 15(d). The state transition diagram of class CommitReceive.

Objects that require transactional behavior must incorporate an instance of class
TransactionManager as an ART. Class AtomicPoint, shown in Figure 16, represents
the dependant graphical points which are to be updated when their reference point is
changed. This class inherits from Point and delegates any moveTo message as an
instance of Message to its internal object atomic of class TransactionManager. The
second filter dispatches to the internal objects myPoint and atomic, if the received
message passes through it. Since TransactionManager inherits from class
CommitReceive it responds to commit and abort messages.

class AtomicPoint interface
comment This class makes point an atomic point;
internals
myPoint : Point;
atomic: TransactionManager;
inputfilters
makeAtom: Meta = {true=> [moveTo] atomic.commitinput};
disp : Dispatch = { true => atomic.abort, atomic.commit, myPoint.* };
end;

Figure 16. The Interface part of class AtomicPoint.

6. Evaluation and Conclusions

To illustrate the useful features of ACTs, we presented examples in 3 categories:
examples of inter-object invariant behavior, inter-object synchronization, and
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coordinated behavior. Figure 17(a) shows the relations among the classes as defined
in this paper. Figure 17(b) organizes these classes into a layered architecture.

In this section we analyze the composition-filters approach with respect to the
problems and requirements we identified in section 2 and 4.1, respectively. First we
discuss how ACTs provide solutions to the problems in section 2, and how this is
illustrated by the examples in the previous chapter.

1. Lack of Support for Meta-levels and Reflection: ACTs can be used for
intercepting and manipulating messages. Interception of messages is achieved by
the input and output filters of an object, whereas manipulation of messages is
made possible by Meta filters, since these transform messages into first-class
objects. This will allow the software engineer to model and implement layered
architectures and extend the message passing semantics of the object-oriented
model if needed. Figure 17(b) shows the layered architecture as defined in this

paper.

2. Complexity and Lack of Reusability: ACTs can make the complexity of programs
manageable by moving the interaction code to separate modules. This allows for
reducing the number of inter-module relations and hiding communication details.
Classes OneWayConstraint, Asynchronous and TransactionManager, for
example, represent inter-object interactions. The details of these interactions are
abstracted by the methods. Note that OneWayConstraint, Asynchronous and
TransactionManager are generic classes and may be used in various applications.

Programmers may apply object-oriented techniques, such as inheritance and
delegation, to achieve a more systematic reuse of these components. Inheritance
mechanisms will allow software engineers to construct application frameworks
for different communication protocols. For example, constraint-based systems,
distributed concurrency control and recovery protocols, security protocols,
distributed scheduling and optimization algorithms, etc. can be expressed using
ACTs. The software engineer can tailor these frameworks for his/her particular
needs. Properly designed ACTSs can be highly reusable.

As illustrated by BoundedFigure, ACTs can be extended through the use of
inheritance.  Another  possible  extension could be to subclass
TransactionManager, for instance, to implement weak atomicity for some
actions. Thus, the implementation of ACT classes can be changed without
affecting the participant objects. For example the implementation of class
TransactionManager could be changed to two-phase commit protocol, without
affecting the instances of class OneWayConstraint.

3. Enforcing invariant behavior: It is easier to enforce the invariant behavior
among objects if there is a module explicitly representing this behavior. For
example, constraints among objects are enforced by a single class
OneWayconstraint. Otherwise, all the interacting-code among display objects had
to be taken into account.
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Figure 17. Example classes (a) relations among classes
(b) classified into layers of abstractions.

We will now evaluate ACTs with respect to the requirements that were stated in
section 4.1:

1. First -class property: ACT classes are first-class modules because they are just

like other Sina classes. What makes a class an ACT class is that it manipulates
messages as first-class objects, and the way it is composed with other classes.
Inheritance and/or delegation of behavior is provided for ACT classes through
the use of composition-filters.

Large scale synchronization: ACT classes can implement large-scale
synchronization among participating objects. A typical example is class
TransactionManager. Sina provides mechanisms for concurrency and
synchronization since it is a concurrent language [Bergmans et al. 92].

Reflection upon messages: Through the use of classes Meta and Message,
messages can be manipulated because they are abstracted by the methods of class
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Message. For example, classes OneWayConstraint and BoundedFigure
manipulate the arguments of messages to enforce the consistency of dependant
objects.

4. Uniform integration of communication semantics: ACTs are incorporated with
the participating objects by using composition-filters. Since composition-filters
also are the basic means for expressing the basic object-oriented data abstraction
mechanisms, ACTs are fully integrated with the object model.

The contribution of this paper is to introduce the concept of ACTs. Realization of
ACTs is made possible by the introduction of a new type of filter: called Meta.
Currently, we are experimenting with ACTs in building object-oriented distributed
transaction frameworks [Tekinerdogan 92]. We also investigate mechanisms to
improve fault-tolerance, for example, by defining ACTs that manage replicated
objects transparently. The concept of ACTs as introduced in this paper can be
effectively used with the other filter mechanisms presented in our earlier
publications. The composition-filter mechanism is adopted by the Sina language and
an ICASE environment called ObjectComposer [Pool&Bosch 92].
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Appendix A - Specification of class M essage

In this appendix the relevant methods of class Message are described. As described,
class Message has fields for the receiver object, the sender, the server, the method
selector and the arguments.
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¢ getReceiver returns Any;
returns the receiver of the message object.

¢ putReceiver(Any) returns Nil;
changes the receiver of the message object into the argument object.

* getSender returns Any;
returns the object that sent the message.

¢ putSender(Any) returns Nil;
changes the sender of the message into the argument object.

* getServer returns Any;
returns the object that originally received the message, but that delegated it to the
receiver object.

¢ putServer(Any) returns Nil;
changes the server of the message into the argument object.

¢ getSelector returns ldentifier;
returns the method identifier that is stored in the message.

¢ putSelector(ldentifier) returns Nil,
changes the method identifier into the argument identifier.

¢ getArgument(Integer) returns Any;
returns the argument refered to by the integer argument.

¢ putArgument(Integer, Any) returns Nil;
changes the argument refered to by the integer argument into the argument
object.

* copy returns Message;
returns a copy of the message.

¢ fire returnsNil;
activates the message. If the receiver object is not changed, the message is
evaluated by the subsequent filter. Otherwise is the message sent to the new
receiver object, where it will be evaluated as any message.

¢ reply(Any) returns Nil;
sends the argument object as a reply message to the sender of the message.

Appendix B - The Semantics of the M essage System

This appendix gives a formal description of the message system. A message is
represented as

msg =(0,,0,,0,,0,[;,...,2,])

31



Where, O is the sender id and O, is the receiver id, O, is the server object id, O is
the message selector, and [al,...,an] are message arguments.

The input filter set consists of filters F,,..., F  and the output filters set consists of

filters F,,,...,F, - Each filter & has a message queue MQ_ . A filter of class
Error is always added as a last filter Fi'nJrl generating an error if a message is not
dispatched so far. A filter of class Dispatch is always added as a last filter F to

o,m+1

send a message once it passed the m output filters.

In appendix A, methods of class Message were introduced. Now we will describe the
semantics of the methods copy, fire and reply. In A(1), the method copy results in a
new message with the same structure except the sender object is now replaced by
nil_obj. The method fire as defined in A(2), puts the message in the message queue
of the next filter. This filter is determined according to the declaration order. The
sender of the fire message receives nil_obj as a result of this invocation. In A(3), the
method reply sends its argument as a reply message to the sender of the original
message. Similar to the previous formula, the sender of the reply message receives
nil_obj as a result of this invocation.

copy — (nil_obj,0,,0,,0,[a,,...,a,])
A1)
fire - MQQRFM - I_VIQQRH_ﬂ D{msg}
nil_obj
A(2)
where Oy is the reifying object
and F, is the reifying Meta filter

rep_obj O - o
nil_obj
AQ3)

Each message is removed from the message queue of the current filter and evaluated
according to the algorithm as described in section 4. The filter can either accept the
message or reject it. In each case the filter will perform some action depending on its
type. The actions performed by filters Dispatch and Meta are described in the
following:

reply(rep_obj) - {

The function execute(msg) is used to start execution of the method as a result of
filter evaluation. The Dispatch filter is defined in A(4). If the received message is
accepted and if the target of the message is self, then the corresponding method is
executed. If, however, the target object is not self, then the accepted message is put
in the message queue of the first filter of the target object. If the message is not
accepted, then it is put in the message queue of the next filter. The Meta filter is
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defined in A(5). If the message is accepted, msg is converted into msg' and msg' is
put in the message queue of the first filter of the specified ACT. If the message is not
accepted, then it is put in the message queue of the next filter. The conversion
operation creates a new message msg' with the current object as the sender, the ACT
object a receiver and server, the message selector O ,-; as specified in the filter

expression and the original message msg as the argument of the message.

execute(msg) if accepted and self = O,
F (msg): Dispatch - { MQ, =MQ, [{msg} if accepted and self # O,
MQg, =MQ. U{msg} otherwise

A4)
where MQ, = MQ of O,

MQ pcr = MQ 5cr U{msg' }if accepted
MQg =MQ. [U{msg} otherwise
A(5)
where (self, ACT, ACT, O cr,[msg]) = msg'
and MQ,cr =MQ. of ACT

and ACT = O,

F (msg):Meta — {
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