
A 3-level Atomicity Model for

Decentralized Process-centered

Software Engineering Environments

Israel Z. Ben-Shaul
y
and George T. Heineman

z

yTechnion-Israel Institute of Technology, Department of Electrical Engineering
zWorcester Polytechnic Institute, Department of Computer Science

Abstract. Decentralized process-centered software engineering environ-
ments (PSEEs) provide an architecture for interoperability between mul-

tiple PSEEs with heterogeneous processes. Atomicity is a standard cor-

rectness model for guaranteeing that a set of activities occurs as an
atomic unit, or none of them occur at all. Within a single PSEE, atomic-

ity is the concern of its database system. In a decentralized environment,

however, the autonomous environments must �nd ways to cooperate if
an atomic unit is split between multiple PSEEs. This paper describes a

exible atomicity model that enables process administrators to reconcile

the con
ict between local autonomy and global atomicity and cooper-
atively specify the scope of multi-site atomicity based upon the desired

semantics of multi-site tasks in the decentralized PSEE.

Keywords: transaction management, process modeling, distributed systems, soft-
ware engineering environments, collaborative work.

1 Introduction and Motivation

As software systems become more complex and larger in scale, their development and
maintenance requires more people with various skills, often organized into groups. In a

multi-team software development e�ort, it is desirable to decentralize the management

and allow varying degrees of operational autonomy. For example, each team may use

their own set of software tools and hardware, their own private �les or databases, and

their own software processes. Sometimes, such autonomy and privacy considerations are

mandatory when the teams belong to di�erent organizations, if out-sourcing occurs,

for example. These autonomous teams may share tools and data, agreeing on some

common sub-processes to collaborate to develop a product.

In previous work [1], Ben-Shaul et al. addressed the interoperability of process-

centered software engineering environments (PSEEs) by providing (1) modeling facili-
ties that enable individual sites to mutually agree on common sub-processes (Treaties),

and (2) enactment facilities that enable to carry-out the multi-site shared sub-processes

while retaining the autonomy and privacy of local sub-processes (Summit). An under-
lying theme in this work, which was embodied in the Oz system, was the emphasis on

decentralization, i.e., avoiding the need to maintain global data, state, or control.

An important aspect of a PSEE is the transactional support it provides. Indeed,

the signi�cance and the application of transactions in (centralized) PSEEs has been

addressed extensively in various projects including Marvel, Merlin, Adele, EPOS, and
SPADE. In this paper we examine transactional semantics for multi-site Decentralized

PSEEs (DPSEEs). More speci�cally, we focus on multi-site recovery-atomicity (hence-

forth atomicity), a topic that has been hardly addressed in the PSEE community even
for centralized PSEEs (which mainly focused on concurrency-control). Atomicity is a

grouping of activities such that the outcome of their execution has all-or-nothing se-

mantics; a failure in any of these activities (e.g., system- or user-abort) requires to
rollback any of the e�ects or invoke compensating actions for unrollable e�ects.

The main di�culty with supporting multi-site atomicity in DPSEEs is reconciling

the inherent con
ict between the global nature of atomicity, which by de�nition must
apply to all activities of an atomic unit, and between the desire to retain maximum

local site autonomy over the management of (local) data. This con
ict is particularly

evident when a local activity aborts during the execution of a multi-site task. We would
like to reduce the impact that local transaction managers (TM) can have on remote

data (managed by other TMs), to a degree permissible by the global task.

2 The Atomicity Model

A process task is a partially-ordered set of activities (each of which may invoke an

external tool, e.g., compiler) that de�nes a logical unit of execution. If an activity ai

only accesses data from its local TM, then a single local transaction Ti is created to
encapsulate the data requests for the activity. A multi-site activity ai involving n sites,

however, is associated with n transactions | T 1

i ; T
2

i ; : : : ; T
n
i | one at each site, where

each local transaction de�nes a unit of atomicity.

Site A

Site B

Site C

B1 B5

A6

B7

C8

G Level G−L Level

time

G−GL−GG Level
B3

C4

A2

Fig. 1. The 3-level Atomicity Model

A multi-site task consists of interleaved multi-site and/or single-site local activities.
When executed, such task alternates between global and local modes. In global mode, a

multi-site activity is executed synchronously at one coordinating site, involving multi-

site data and possibly multiple users (e.g., for groupware activities). In local mode,
each PSEE executes asynchronously any local (sub)tasks on local data. We identify

the following three types of atomicity, each of which can be explicitly and separately

speci�ed on a per-task basis within a process model:

1. Type G (Global) | This type provides atomicity for a single multi-site activity.
It requires an atomic-commitment protocol, such as two phase commit, since each

multi-site activity has a transaction acting on its behalf at the coordinating site

and at each participating site. If any of these transactions abort for any reason,
all transactions for the multi-site activity must abort, to preserve atomicity. G

atomicity is the default for a multi-site activity.

2. Type L (Local) | This type is orthogonal to G, i.e., it preserves the atomicity of
multiple transactions running on behalf the same taks in a single site, including

(sub)transactions that execute on as part of a multi-site activity. More formally, at

a particular site, Sj, L binds into an atomic unit the local transaction T
j
i , acting

on behalf of the multi-site activity ai of task t as well as the local transactions L =

fT
j
1
; T

j
2
; : : : ; T

j

k g initiated for the local activities associated with task t at site Sj .

If any of these local transactions aborts, then the entire set L must be rolled back
as well as T j

i , but other local transactions acting on behalf of t in other sites are

not necessarily rolled back (it depends on their G setting, see below). Therefore

the atomicity of activity ai may be compromised in favor of retaining atomicity
within a given site Sj.

3. Type GG (Global/Global) | This type atomically binds together several multi-

site activities. When coupled with G and L, it enforces global atomicity, i.e., local
aborts imply full rollback of all updates at all sites, and therefore necessarily vio-

lates local autonomy. However, since it connects several multi-site activities that

are explicitly speci�ed and known by all sites (by the de�nition of a global task),
the autonomy is voluntarily compromised by the local sites.

TA
1 T1

B T1
C

T2 T3

T6

TA
5 TB

5 TC
5

T4

T7 T8

T1
B

T2 T3

T6

TB
5

TA
1 T1

C

TA
5 TC

5

T4

T7 T8

T1
B

T3

T6

TA
5 TB

5 TC
5

T1
CTA

1

T2 T4

T7 T8

TA
1 T1

B T1
C

T2 T3

T6

TA
5 TB

5 TC
5

T4

T7 T8

TA
1 T1

B T1
C

T2 T3

T6

TA
5 TB

5 TC
5

T4

T7 T8

T1
B T1

C

T2 T3

T6

TA
1

TA
5 TB

5 TC
5

T4

T7 T8

TA
1 T1

B T1
C

T2 T3

T6

TA
5 TB

5 TC
5

T4

T7 T8

TA
1 T1

B T1
C

T2 T3

T6

TA
5 TB

5 TC
5

T4

T7 T8

G

 L

GG

 L

GG

 L

GG

 L

GG

G

Fig. 2. Atomicity Units Made Up of G, L, and GG

The combinations of the three atomicity types create di�erent units of atomicity
that can be applied to �t the desired atomicity semantics of a given task. For example,

Figure 1 shows three basic atomicity levels | G, G-L, and G-L-GG | and their

di�erent scopes (as represented by rectangles) when applied to the execution of a

multi-site task. A multi-site activity, B1, is initiated at site B, involving sites A and
C. Upon completion, site B contacts A and C, requesting that any generated local

activities be executed, thus causing A2;B3, and C4. Once these all complete, a new

round of multi-site activities is initiated at site B, B5, causing the execution of local
activities A6;B7, and C8. The failure of any transaction forces all transactions within

the same atomic unit to abort, but does not a�ect other parts of the task.

The three combinations mentioned above, which de�ne a hierarchy of nested con-
texts of atomicity, may be viewed as the \core" levels. However, any other combination

may be valid for certain purposes. Figure 2 illustrates the various atomic units cre-

ated by all eight combinations of types, using the example from Figure 1 (overline
denotes lack of a type in a combination). For example, the entry G-L-GG protects the

atomicity of the multi-site activities if any of the local emanating tasks fail, whereas

G-L-GG violates multi-site atomicity in favor of preserving local atomicity. This mode
may be attractive in cases where the level of collaboration between the sites (and the

corresponding level of trust) is low and hence aborting a local transaction cannot a�ect

remote data. The potential inconsistency introduced by the non-atomicity of the multi-
site activity may be either ignored, or tolerated by some inconsistency management

mechanism, depending on the particular semantics of the activity.

The �nal issue regarding the
exibility of our model is the choice of atomicity units
that each site selects to apply on a given multi-site task. For simplicity, we assumed

that all sites in Figure 2 have the same atomicity mode. In general, however, while all

sites must agree on the G and GG types (since they require by de�nition cross-site
atomicity), each site is free to determine whether or not to employ L type atomicity,

creating additional (less symmetric) \shapes" of atomicity units.

Consider, for example a three-site DPSEE consisting of a coding site (C), a code
design site (D), and a quality assurance site (Q), and assume there exists a multi-site

activity integrate which allows a code developer in C to integrate a newly modi�ed

software component into a system being tested at Q. integrate �rst checks that the
component has not violated any design constraints, veri�es that it passed all of its unit

tests, and schedules a QA engineer to inspect any errors during system integration;

these actions are performed by local activities at sites D, C and Q, respectively. At
a later point, each site may perform further local activities (e.g., site C may invoke a

local report-component-integration-successful activity), and the sites may join further

multi-site activities. A plausible assignment of modes for this task may be G-L for C
and D, and G for Q. If site C aborts while executing a local activity emanating from

integrate, the e�ects of integrate are rolled back at all sites, plus local activities (e.g.,

unit tests) are rolled back at C and D, but Q's local work is left untouched.

We presented in this paper an abstract model for recovery-atomicity in transac-

tional DPSEEs. Integration of the model with the DPSEE framework, including spec-

i�cation of atomic units, integration with other aspects of transaction management,

and concrete realization of the model, are major present and future directions (see [2]).

References

1. Israel Ben-Shaul and Gail E. Kaiser. A Paradigm for Decentralized Process Model-

ing. Kluwer Academic Publishers, Boston, MA, 1995.
2. Israel Z. Ben-Shaul and George T. Heineman. A 3-level atomicity model for de-

centralized work
ow management systems. Technical Report 1013, Technion, Israel

Institute of Technology, Department of Electrical Engineering, January 1996.

