
CALCULATING A GARBAGE COLLECTOR

Ulrich Berger

Mathematisches Institut, Ludwig-Maximilians-Universität
Theresienstr. 39, D-8000 München 2, Fed. Rep. Germany

Werner Meixner, Bernhard Möller

Institut für Informatik, Technische Universität München
Postfach 20 24 20, D-8000 München 2, Fed. Rep. Germany

1 Introduction

In this paper we give a calculational account of a garbage collection algorithm. There have been
a number of papers with a similar programme (cf. [Broy, Pepper 82], [Dewar et al. 82], [van
Diepen, de Roever 86], [Möller 87]). However, these treatments either were not completely formal
or suffered from using an inconvenient representation of the problem. With this paper we want to
introduce partial maps and their algebraic properties as a vehicle for treating pointer structures,
as dealt with in garbage collection, both conveniently and formally. Moreover, we want to develop
the algorithms to a level which can actually be transcribed directly into machine code allowing
the use of overwriting and the like; this was not achieved in most of the papers cited. It also turns
out that the theory of finite maps allows very concise high-level specifications of the subproblems
involved in garbage collection.

The situation in which garbage collection becomes necessary is the following: The store, which
accomodates a large number of records referencing one another through pointers, is exhausted,
i.e., there is (almost) no more free storage left for the allocation of new records. Usually there is
a distinguished set of entry pointers to the pointer structure which is given by the values of the
currently active variables of the program that operates on the store. Only those records reachable
through chains of references from the entry pointers actually need to be saved; all other records
are inaccessible and thus the corresponding storage can be reclaimed.

What does garbage collection mean in a more abstract sense? To explain this, we liberate ourselves
from the concrete contents of the records in the store and consider only their interrelationship
through the pointers. This leads to a graph-like structure in which the nodes correspond to the
records, and the arcs correspond to the pointers. More precisely, we consider a graph to be a
partial map G : node −→ node∗ that assigns to each node from a subset of the set node of all
possible nodes the sequence of its successor nodes. We use sequences rather than sets, since the
fields of a record are ordered and may contain repetitions. If, by some process, we can distinguish
a proper subgraph G′ of G such that G′ contains all the nodes accessible from the entry nodes,
then G can be said to contain garbage about which we could as well forget. In this case, garbage
collection means to compute G′ from G and to operate on G′ successively.

Getting more concrete again, we work with representations of such graphs. The task then consists
in computing a representation of G′ from one of G. In this paper we treat representations, called
states, of graphs in a linear storage. For a state, the restriction to a substate usually leads to gaps
in the storage; i.e., there are cells the contents of which have no meaning for the represented graph.
Now, one possibility of garbage collection consists in detecting these gaps and compactifying the
meaningful part by copying it to an initial interval of the storage; then a contiguous rest of the
storage becomes free for further use.

1

We develop a corresponding algorithm from a specification at the level of graphs together with a
notion of their representation in a linear storage. Although the final algorithm is fairly intricate in
that it employs various ways of chaining and unchaining certain sets of storage cells, its structure
becomes clear through a modular development by transformations.

2 Preliminaries

2.1 Transforming Nondeterministic Specifications

The development in this paper is based on the applicative part of the wide spectrum language
CIP-L (cf. [Bauer et al. 85]), which includes a full typed lambda-calculus as well as pre-algorithmic
specification constructs such as quantification, set comprehension, and non-deterministic choice.
Typed λ-abstractions are written in the form

(m x)n : E

where m is the argument type and n is the result type. Recursion is introduced by the fixpoint
construction

(fix x : E)

where the type of x is that of E. Declarations can then be introduced by the definitional trans-
formation rule

d m x ≡ E ; F c~ww� [

((m x)n : F)(fix x : E) .

CIP-L has a mathematical semantics that associates with each expression E the set B[[E]] of
possible values; B[[E]] is called the breadth of E. The special value ⊥ models the possibility of
an erroneous or nonterminating computation. We set

DEF[[E]]
def⇔ ⊥6∈ B[[E]] ,

DET[[E]]
def⇔ |B[[E]]| = 1 ,

and call E defined resp. determinate if DEF[[E]] resp. DET[[E]] holds. For convenience, the
semantical values are also considered as expressions. The details of the semantic description can
be found in [Bauer et al. 85].

Based on the breadth, two fundamental relations between expressions are defined: E1 and E2 are
called equivalent if B[[E1]] = B[[E2]]; we denote this by E1 ≡ E2. This “strong” or meta-equality
is not to be confused with “weak” (i.e. strict) equality tests = in the language itself: The formula

⊥ ≡ ⊥

is valid. However,
⊥=⊥ 6≡ true ;

rather we have
⊥=⊥ ≡ ⊥ .

Equivalences are also denoted in the form of transformation rules, viz. as

2

E1xy [C

E2

where C is a (possibly empty) list of applicability conditions, i.e., of conditions sufficient for the
validity of the equivalence. Similarly, E2 is called a descendant of E1 if B[[E2]] ⊆ B[[E1]]; we
denote this by E1 ⊇ E2 and, in the form of a transformation rule, as

E1y [C

E2

where C again is a list of applicability conditions.

As an important aid in specifying and developing recursive routines we use assertions about the
objects involved. They are formulated as Boolean expressions of the language. Given such an
expression P , we use the notation

P � E

as an abbreviation for the expression

if P then E else ⊥ fi .

A collection of useful algebraic properties of this construct can be found in [Möller 89]. Our
principal use of it is within parameter restrictions for functions (cf. [Bauer, Wössner 82, Bauer et
al. 85]): Let R be a Boolean expression possibly involving the identifier x. Then the declaration

funct f ≡ (m x : R)n : E

of function f with parameter x restricted by R and with body E is by definition equivalent to

funct f ≡ (m x)n : R � E .

This means that f is undefined for all arguments x that violate the restriction R. If f is recursive,
R has to hold also for the parameters of the recursive calls to ensure definedness; hence in this
case R corresponds to invariants as known from imperative programming.

We now want to develop our central transformation rule for obtaining descendants of nondeter-
ministic functions. Consider a function abstraction

(m x)n : E<x, f >

and the corresponding recursion

R =̂ (fix f : (m x)n : E<x, f >) .

The notation E < x, f > indicates that only the free identifiers x and f are of interest in E;
for expressions A and G then E < A,G > is a shorthand for the substitution E[[A,G for x, f]].
We want to find a criterion under which the recursion R is a descendant (and hence a correct
implementation) of some function F which may be viewed as the specification. The idea is to
employ noetherian induction on the arguments of F and R. Let therefore ≺ be a determinate
expression of kind funct(m,m)bool that denotes a noetherian strict-order on the set of values of
kind m different from ⊥. We define, for arbitrary function g of kind funct(m)n,

BELOW[[x, g]]<y>
def≡ y ≺ x� g(y) .

3

This denotes an expression that agrees with g(y) for y ≺ x and is undefined for all other y; hence
it corresponds to a restriction of g to values strictly less than x. Now we call E<x, f > recurrent
wrt. ≺ iff

E<x, g> ≡ E�x,BELOW[[x, g]]�,

where g is a fresh identifier and E � x,BELOW[[x, g]]� results from E < x, g > by replacing
all calls g(A) by BELOW[[x, g]]<A>. This means that for all g the value of E <x, g > depends
at most on values g(y) with y ≺ x. We call E < x, f > recurrent if there is some ≺ such that
E<x, f > is recurrent wrt. ≺. Then we have

Theorem 2.1.1
The following rule (DESCENDANT-FIXPOINT) is correct:

Fy
[
E<x, f > recurrent
F (x) ⊇ E<x, F >

(fix f : (m x)n : E<x, f >)

Proof: We abbreviate the output scheme again to R. Let E < x, f > be recurrent w.r.t ≺ and
assume F (x) ⊇ E<x, F >. We show F (u) ⊇ R(u) by noetherian induction on the values
u 6≡⊥ of kind m. By induction hypothesis we may assume F (v) ⊇ R(v) for all v ≺ u, and
thus

BELOW[[u, F]] ⊇ BELOW[[u,R]] . (+)

Then

F (u)
⊇ E<u, F >
≡ E�u,BELOW[[u, F]]� (since E<x, f > is recurrent)
⊇ E�u,BELOW[[u,R]]� (by (+) and ⊇-monotonicity of E<x, f >)
≡ E<u,R> (since E<x, f > is recurrent)
≡ R(u) (by definition of R).

Finally, since all expressions of kind funct(m)n denote strict functions in CIP-L, we have
F (⊥) ≡ ⊥ ≡ R(⊥) and thus also F (⊥) ⊇ R(⊥).

Note that the descendant relation implies that for totally defined F the recursively defined function
f always terminates.

2.2 Notations for Specific Data Structures

2.2.1 Sequences

Given a set M , we denote by M∗ the set of all finite sequences of M -elements. The empty sequence

is denoted by <>. Then M+ def≡ M∗\{<>} is the set of all nonempty finite sequences of M -
elements. The singleton sequence consisting just of x ∈M is denoted by <x>. Concatenation of
sequences is denoted by +. Accordingly, for sequences αi we write∑

i∈[1:n]
αi

for
α1 + . . .+ αn .

4

We write x∈α to express that x occurs in the sequence α. Moreover, set(α)
def≡ {x | x∈α}. The

length of a sequence α is denoted by |α|. For 0 < i ≤ |α| we write α[i] for the i-th element of α.

Given a function f : M −→ N we denote by f∗ its unique homomorphic extension mapping M∗

to N∗, i.e.,
f ∗ (<x1, . . . , xn>) ≡ <f(x1), . . . , f(xn)> .

2.2.2 Sets and Orders

The cardinality of a set M is denoted by |M |. Moreover, the complement of a subset N of M is
denoted by N .

For a finite subset s ⊆M of a linearly ordered set M we denote by sort(s) the unique repetition-
free sequence that contains exactly the elements of s in ascending order from left to right. M is
well-ordered if every nonempty subset s ⊆ M contains a least element min(s). If then M also
contains a greatest element ∞, we set

inf (s)
def≡ min(s ∪ {∞}) .

The greatest element of s (if any) is denoted by max (s). If M contains a least element −∞ we set

sup(s)
def≡ max (s ∪ {−∞}) .

Define for a subset s ⊆M of an ordered set M

s∨
def≡ {y | ∃ x ∈ s : x ≤ y}

s∧
def≡ {y | ∃ x ∈ s : y ≤ x}

isinterval(s)
def⇔ s ≡ s∨ ∩ s∧ .

s is an initial interval of M if s∧ ≡ s. For abbreviation we write
∨
x,

∧
x instead of {x}∨, {x}∧.

Moreover, we set

[x : y]
def≡ ∨

x ∩
∧
y ,

[x : y[
def≡ [x : y]\{y} ,

]x : y]
def≡ [x : y]\{x} ,

]x : y[
def≡ [x : y]\{x, y} .

Suppose again that M is well-ordered and contains a greatest element ∞. Then for s ⊆ M and
x ∈M we define

succs(x)
def≡ inf (s\{x}) .

2.3 Relations and Maps

2.3.1 Basic Notions

A binary relation r between sets M and N is a subset r ⊆ M × N . We write ↓r and ↑r for
domain and range of r, resp. Moreover, we define

set(r)
def≡ ↓r ∪ ↑r .

5

For s ⊆ M we denote by s↑r the image of s under r. Likewise, t↓r is the inverse image of t ⊆ N
under r.

A (partial) map m from a set M to a set N is a relation m ⊆ M × N such that (x, y) ∈
m ∧ (x, z) ∈ m ⇒ y ≡ z. Some of our notation derives from this set view of maps. E.g., by ∅
we denote the empty partial map from M to N .

Next, we define

[s 7→ y]
def≡ {(x, y) | x ∈ s} ;

this is the constant map assigning y to every element of s. In this construction, y frequently is
obtained by applying another map m. To cope in an algebraically convenient way with partialities,
we set

[s 7→ m(x)]
def≡ ∅ for x 6∈ ↓m .

Symmetrically, we also define

[{n(x)} 7→ y)]
def≡ ∅ for x 6∈ ↓n .

In using these notations we omit singleton set braces, i.e., we write x↑m, y↓m, and [x 7→ y] instead
of {x}↑m, {y}↓m, [{x} 7→ y]. Note that [x 7→ y] ≡ {(x, y)}.

Lemma 2.3.1 (Functionality)

Let m be a map.
(1) |m| ≡ |↓m| .
(2) t1 ∩ t2 ≡ ∅ ⇒ t1↓m ∩ t2↓m ≡ ∅ .

A map is injective if the predicate isinjective(m) holds, where

isinjective(m)
def⇔ ∀ x, y ∈ ↓m : m(x) ≡ m(y) ⇒ x ≡ y .

In this case we denote its inverse map by m−1.

Lemma 2.3.2

isinjective(m) ⇔ ∀ s, t : (s ∩ t)↑m ≡ s↑m ∩ t↑m .

By ◦ we denote the composition of partial maps:

s↑(n ◦m) ≡ (s↑m)↑n .

2.3.2 Map Union

Two maps m,n : M −→ N are compatible if m(x) ≡ n(x) for all x ∈ ↓m ∩ ↓n. In particular
this holds if ↓m ∩↓n ≡ ∅. For compatible m,n their union m∪n is again a map. This generalizes
to families (mi)i∈I of maps (I may even be infinite) if the maps mi are pairwise compatible; we
then write

⋃
i∈I

mi for the union map. If I ≡ ∅, we set
⋃
i∈I

mi ≡ ∅ as well.

6

Lemma 2.3.3

(1) m ≡
⋃

x∈↓m
[x 7→ m(x)] (domain-oriented representation)

(2) m ≡
⋃

z∈↑m
[(z↓m) 7→ z] (range-oriented representation)

(3) k ◦
⋃
i∈I

mi ≡
⋃
i∈I

(k ◦ mi)

(4) (
⋃
i∈I

mi) ◦ k ≡
⋃
i∈I

(mi ◦ k)

(5) isinjective(m) ⇒ m−1 ≡
⋃

x∈↓m
[m(x) 7→ x] .

We want to develop a recursive routine for calculating particular unions over finite, well-ordered
index sets. The specification reads

funct mapunion ≡ (finset s,map f, g : isinjective(f)) map :⋃
x∈s

[f(x) 7→ g(x)] .

The parameter restriction serves to make the union well-defined. If s ≡ ∅, by definition
mapunion(s, f, g) ≡ ∅. Otherwise, for arbitrary z ∈ s we have s ≡ {z} ∪ s\{z} and hence

mapunion(s, f, g)

≡
⋃

x∈{z}∪s\{z}
[f(x) 7→ g(x)]

≡
⋃

x∈{z}
[f(x) 7→ g(x)] ∪

⋃
x∈s\{z}

[f(x) 7→ g(x)]

≡ [f(z) 7→ g(z)] ∪mapunion(s\{z}, f, g) .

In particular, this holds for z ≡ min(s). Thus we obtain the recursion (for well-founded M
termination is obvious)

funct mapunion ≡ (finset s,map f, g : isinjective(f)) map :
if s = ∅ then ∅

else m z ≡ min(s) ;
[f(z) 7→ g(z)] ∪mapunion(s\{z}, f, g) fi .

To make this into a tail-recursion and to avoid the repeated use of min , we assume that m has a
greatest element ∞ and define the embedding

funct mu ≡ (finset s,map f, g,map r,m x :
isinjective(f) ∧ x = min(s)) map :

r ∪mapunion(s, f, g) .

We have
mapunion(s, f, g) ≡ mu(s, f, g, ∅,min(s))

Now we calculate

mu(s, f, g, r, x)
≡ isinjective(f) ∧ x = min(s) �

r ∪ if s = ∅ then ∅
else m z ≡ min(s) ;

[f(z) 7→ g(z)] ∪mapunion(s\{z}, f, g) fi
≡ isinjective(f) ∧ x = min(s) �

if s = ∅ then r ∪ ∅
else m z ≡ min(s) ;

7

r ∪ [f(z) 7→ g(z)] ∪mapunion(s\{z}, f, g) fi
≡ isinjective(f) ∧ x = min(s) �

if s = ∅ then r
else r ∪ [f(x) 7→ g(x)] ∪mapunion(s\{x}, f, g) fi

≡ isinjective(f) ∧ x = min(s) �

if s = ∅ then r
else mu(s\{x}, f, g, r ∪ [f(x) 7→ g(x)],min(s\{x})) fi

≡ isinjective(f) ∧ x = min(s) �

if s = ∅ then r
else mu(s\{x}, f, g, r ∪ [f(x) 7→ g(x)], succs(x)) fi .

Since the termination behaviour has not changed, we are left with

funct mu ≡ (finset s,map f, g,map r,m x :
isinjective(f) ∧ x = min(s)) map :

if s = ∅ then r
else mu(s\{x}, f, g, r ∪ [f(x) 7→ g(x)], succs(x)) fi .

2.3.3 Restriction and Overwriting

The restriction of a map m : M −→ N to a set s ⊆M is

m|s def≡ m ∩ (s×N) .

Moreover,

m	 s def≡ m|s.

Here again we omit singleton set braces, i.e., we write m	 x instead of m	 {x}.

Another useful operation is map overwriting: Given maps m,n : M −→ N we define

m /−n def≡ (m	 ↓n) ∪ n .

Hence,
(m /−n)(x) ≡ if x ∈ ↓n then n(x) else m(x) fi.

Lemma 2.3.4

1. (m	 s) ∪ n ≡ m /−n provided ↓m ∩ s ≡ ↓m ∩ ↓n.

2. l /−(m ∪ n) ≡ l /−n provided m ⊆ l and m and n are compatible (Annihilation).

A number of further properties of these operations can be found in the appendix; we shall use
them freely without explicit reference.

3 Storage Graphs and Their Representation

3.1 Storage Graphs

Storage graphs are intended to model the accessibility relations between records as given by the
pointers in the records. Since the fields of a record are ordered and may contain repetitions of
pointers, the usual notion of a directed graph where each node is connected to a set of successor

8

nodes is not adequate for our purposes. Rather we consider sequences of successor nodes. Also,
since we shall have to deal with arbitrary parts of such storage graphs, we generalize in another
direction by allowing the successor map to “leave” the part under consideration.

Let node be a set of “nodes”. A pseudo-graph is a partial map G : node −→ node∗. The nodes
in G(x) are called the immediate successors of the node x ∈ ↓G. We set

nodes(G)
def≡ ↓G ∪

⋃
x∈↓G

set(G(x)) .

A storage graph then is a pseudo-graph G such that nodes(G) ⊆ ↓G. The more general case of
pseudo-graphs models “dangling references” which will occur e.g. during the copying phase of our
garbage collection algorithm when only part of the accessible cells have been copied to their new
locations.

3.2 Memories and Allocations

We also want to talk about the representation of such pseudo-graphs in a (linear) memory. A
memory is a pair M ≡ (cell,2), where cell is a denumerable set of cells and 2 ∈ cell is a
distinguished cell called the anchor of the memory.

A (partial) map m : cell −→ cell is called a state of M if the predicate isstate(m) holds where

isstate(m)
def≡ 2 6∈ ↓m .

A linear memory is a memoryM≡ (cell,2) such that cell is linearly ordered by some ordering
≤ in which 2 is the least element. In the sequel we assume cell to be the set IN of natural numbers
and 2 ≡ 0.

Let now G be a pseudo-graph. We want to represent G by a state of a linear memory. The idea
is to store each node of G together with its successors in a block of contiguous cells; the node
itself is marked by cell contents 2. In practice, this leading cell frequently is used for storing
information about a record, such as its length, type information, and the like. However, as stated
in the introduction, we abstract from such details; 2 seems an adequate substitute here.

Let x ∈ ↓G. Then the size of the corresponding block is given by

size(x)
def≡ 1 + |G(x)| .

An allocation of G is a partial map g : node −→ cell such that nodes(G) ⊆ ↓g and 2 6∈ ↑g. g
is supposed to assign to each node in ↓G the starting cell of its block; the additional condition
ensures that 2 can in fact be used to characterize block beginnings. Given an allocation g of G
we define for x ∈ ↓G

block(x, g)
def≡ [g(x) 7→ 2] ∪

⋃
i∈[1:|G(x)|]

[(g(x) + i) 7→ g(G(x)[i])] .

We set
fields(x, g)

def≡ (↓block(x, g))\{g(x)} ≡ {g(x) + i | i ∈ [1 : |G(x)|]} .

We have

Lemma 3.2.1

isinterval(↓block(x, g)) .

9

An allocation g of G is overlap-free if

x 6≡ y ⇒ ↓block(x, g) ∩ ↓block(y, g) ≡ ∅ .

For an overlap-free allocation we can extend the function block to sets s ⊆ ↓G by setting

block(s, g)
def≡

⋃
x∈s

block(x, g) .

Then the following state is a representation of G:

blockrep(G, g)
def≡ block(↓G, g) .

Lemma 3.2.2
Let G1, G2 ⊆ G and let g be an allocation of G. Then

blockrep(G1 ∪G2, g) ≡ blockrep(G1, g) ∪ blockrep(G2, g) .

We call a state m a pseudo-graph state if the predicate ispgstate(m) holds where

ispgstate(m)
def⇔ ∃ G, g : m ≡ blockrep(G, g) .

Then
keys(m)

def≡ 2↓m ≡ (↓G)↑g

denotes the set of keys of m, i.e., the set of addresses that are the beginnings of blocks. We set

arcs(m)
def≡ m	 keys(m) .

Moreover we define

followers(m, y) ≡ if y + 1 ∈ ↓arcs(m) then <y + 1> +followers(m, y + 1) else <> fi.

Lemma 3.2.3
Let g be an overlap-free allocation of G and let m ≡ blockrep(G, g).

1. 2 6∈ ↓m ∧ ↑m ∩ ↓m ⊆ keys(m) .

2. g is injective.

3. arcs(m) ≡
⋃

x∈keys(m)

followers(m,x) .

4. For all x ∈ ↓G we have fields(x, g) ≡ set(followers(m, g(x))).

5. ↓G ≡ keys(m)↓g and
G ≡

⋃
x∈keys(m)

[x↓g 7→ g−1 ∗ (m ∗ followers(m,x))].

1. means that 2 in m designates an “improper” cell that does not contain a value. 4. and 5. show
how a graph can be reconstructed from its block representation.

Assume now that the set ↓G of nodes is linearly ordered by some order ≤. Then an allocation g
is called order-preserving if

∀ x, y ∈ ↓G : x ≤ y ⇒ g(x) ≤ g(y) .

10

Lemma 3.2.4
Let g be an injective and order-preserving allocation. Then for x, y ∈ ↓G we have

1. x < y ⇒ g(x) < g(y) .

2. x ≤ y iff g(x) ≤ g(y), i.e., ↓G and ↑g are order-isomorphic.

Proof: 1. is immediate from the injectivity of g.

2. We only need to show (⇐). Assume g(x) ≤ g(y) but x 6≤ y. By linearity of ≤ then
y < x and hence also g(y) < g(x) by 1. Contradiction!

This lemma holds for arbitrary order-preserving injections between linear orders. For the special
case of storage linearization we get

Lemma 3.2.5
Let g be an overlap-free and order-preserving allocation. Then

x < y ⇒ ↓block(x, g) < ↓block(y, g) ,

where for subsets s, t of an ordered set

s < t
def⇔ ∀ x ∈ s : ∀ y ∈ t : x < y .

Proof: Since g is order-preserving, g(x) < g(y). Let now u ∈ ↓block(x, g) and v ∈ ↓block(y, g) and
assume v ≤ u. Since g(y) ≤ v, we have then g(x) ≤ g(y) ≤ u and hence g(y) ∈ ↓block(x, g)
by isinterval(↓block(x, g)). But then ↓block(x, g) ∩ ↓block(y, g) 6≡ ∅, a contradiction.

We now want to characterize contiguous block representations. Call an overlap-free allocation g
of G gap-free if isinterval(↓blockrep(G, g)) holds. g is called perfect if it is overlap-free, order-
preserving, and gap-free.

Theorem 3.2.6
Let g : node −→ cell be a perfect allocation of G and x ∈ ↓G such that x is not the
maximum of ↓G. Then

g(succ↓G(x)) ≡ g(x) + size(x) .

Proof: Since g is order-preserving and injective, we have g(x) < g(succ↓G(x)). By the above

lemma then ↓block(x, g) < ↓block(succ↓G(x), g) and in particular ↓block(x, g) < {succ↓G(x)}.
Let

z
def≡ max (↓block(x, g)) ≡ g(x) + |G(x)| .

Assume z < u < g(succ↓G(x)) for some u. By isinterval(↓blockrep(G, g)) we get u ∈
↓blockrep(G, g), say u ∈ ↓block(w, g) for some w ∈ ↓G. Then g(w) ≤ u < g(succ↓G(x))

and hence w < succ↓G(x) since g is order-preserving and injective. This is equivalent to

w ≤ x. But then ↓block(w, g) ≤ ↓block(x, g) contradicting g(x) ≤ z < u ∈ ↓block(w, g).
Therefore

g(succ↓G(x)) ≡ z + 1 ≡ g(x) + |G(x)|+ 1 ≡ g(x) + size(x) .

11

Corollary 3.2.7

Let g : node −→ cell be a perfect allocation of G and x ∈ ↓G such that | ∨
x ∩↓G| > i.

Then
g(succi↓G(x)) ≡ g(x) +

∑
j<i

size(succj↓G(x)) .

Proof: Induction on i.

A pseudo-graph state m is called compressed if the predicate iscgstate(m) holds, where

iscgstate(m)
def⇔ ispgstate(m) ∧ ↓m ≡ (↓m)∧\{2} ,

i.e., if its domain is an initial interval of cell\{2}. By the above corollary, given a pseudo-graph G
there is exactly one perfect allocation g of G such that blockrep(G, g) is compressed; g is called
the compressing allocation of G.

4 The Garbage Collection Problem

4.1 The Reachable Subgraph

When garbage collection becomes necessary, there is a set of immediate entries into the store.
All blocks reachable from these entries need to be saved whereas everything else is garbage to be
removed. We first treat the reachability problem at the level of storage graphs.

Let G be a pseudo-graph and let x, y ∈ node. A sequence p ∈ node∗ is called a path in G from
x to y iff the predicate ispathG(p, x, y) holds, where

ispathG(p, x, y)
def⇔ p ∈ node+ ∧ set(p)\{last(p)} ⊆ ↓G ∧

x = first(p) ∧ y = last(p) ∧
∀ i ∈ [1 : |p| − 1] : p[i+ 1] ∈ G(p[i]).

We define
nodeset

def≡ {s|s ⊆ node ∧ |s| <∞} .
Given a pseudo-graph G, a node x ∈ nodes(G) is reachable from some set s ∈ nodeset iff the
predicate isreachableG(x, s) holds where

isreachableG(x, s)
def⇔ ∃ z ∈ s, p ∈ node+ : ispathG(p, z, x)

The function rnsetG : nodeset −→ nodeset, defined by

rnsetG(s)
def≡ { x ∈ node | isreachableG(x, s) }

computes the set of nodes reachable from a given set.

Now, for a storage graph G and a set s ⊆ ↓G, the subgraph of G reachable from s is

Gs
def≡ G|rnsetG(s). It is easily verified that the pseudo-graph Gs indeed is a storage graph.

4.2 Statement of the Garbage Collection Problem

Consider a storage graph G with a perfect allocation g and a set s ⊆ ↓G. Moreover, set n
def≡

blockrep(G, g). The problem consists in computing the reachable subgraph Gs together with the

compressing allocation gs of Gs as well as the corresponding state ns
def≡ blockrep(Gs, gs). In fact,

ultimately we are interested in an algorithm that computes ns directly from n.

12

4.3 A First Analysis of the Problem

Assume G, g, n and Gs, gs, ns as in Section 4.2. Define

n1
def≡ blockrep(Gs, g) .

Thus, n1 is the accessible but not yet compressed part of the storage. To compute ns from n1,
define a collapsing map k : ↓n1 −→ cell by

k(g(x) + i)
def≡ gs(x) + i

for x ∈ ↓Gs and 0 ≤ i ≤ |Gs(x)|.

Lemma 4.3.1

(1) k is well-defined. Moreover, k is an order-embedding and ↑k ≡ ↓ns (which is an
initial interval of cell).

(2) ns ◦ k ≡ k ◦ n1.

Proof: (1) is obvious.

(2) ns(k(g(x) + i))
≡ ns(gs(x) + i)
≡ gs(G(x)[i])
≡ k(g(G(x)[i]))
≡ k(n1(g(x) + i))

The preceding considerations suggest a decomposition of the problem into the following parts:

1. Compute Gs from G and s (reachability).

2. Compute nc ≡ blockrep(Gs, g) from Gs and g.

3. Compute k from nc.

4. Compute ns from nc and k (copying).

Diagrammatically the situation can be described as follows:

G
reach
=⇒ Gswww�g www�g gs

blockrep(G, g) ⊇ blockrep(Gs, g)
k

=⇒ blockrep(Gs, gs)

Here the double arrows indicate that the respective functions are of second order, since their
arguments, viz. pseudo-graphs and states, are mappings themselves.

13

5 Determining the Reachable Subgraph

5.1 A First Recursive Solution

Let pgraph be the set of pseudo-graphs and nodeset be the set of finite subsets of node. The
specification of the reachability problem now reads

funct reach ≡ (pgraph G, nodeset s : s ⊆ ↓G)pgraph :
G|rnsetG(s) .

From the specification of rnset we derive immediately the property

Lemma 5.1.1

rnsetG(s ∪ t) ≡ rnsetG(s) ∪ rnsetG(t) for arbitrary s, t ∈ nodeset.

To derive a recursive algorithm for reach, let a pseudo-graph G and a node set s ⊆ ↓G be given.
If s ≡ ∅, then

G|rnsetG(s) ≡ G|∅ ≡ ∅ .

If s 6≡ ∅, we may choose an arbitrary node z ∈ s. Then we have

Lemma 5.1.2

(1) ispathG(p, x, y) ∧ z 6∈ lead(p) ≡ ispathG	z(p, x, y),

where lead(p)
def≡ <p[1], . . . , p[|p| − 1]>.

(2) ∃ x ∈ s : ∃ p : ispathG(p, x, y) ∧ z ∈ lead(p) ≡
∃ p : ispathG(p, z, y).

(3) ∃ p : ispathG(p, z, y) ∧ z 6= y ≡
∃ u ∈ set(G(z))\{z} : ∃ p1 : ispathG(p1, u, y) ∧ z 6∈ set(p1).

Proof: (1) Holds, because ↓(G	 z) ≡ ↓G\{z}.
(2) Assume ispathG(p, x, y) ∧ z ∈ lead(p). Let q be the shortest postfix of p that contains

z. Then first(q) = z and last(q) = y, so that ispathG(q, z, y). The reverse implication
is trivial.

(3) Assume ispathG(p, z, y) ∧ z 6= y. Let q be the shortest postfix of p that contains z.
Then first(q) = z and last(q) = y, so that ispathG(q, z, y). Since z 6= y we have |q| ≥ 2
and there must be a u ∈ set(G(z)) with u = q[2]. But then ispathG(rest(q), u, y) and,
by construction, z 6∈ set(rest(q)) as well as u 6= z.
Assume conversely that ispathG(p1, u, y) ∧ z 6∈ set(p1) for some p1 and u ∈
set(G(z))\{z}. Then ispathG(<z> +p1, z, y) and z 6= y.

Now we obtain

rnsetG(s)
≡ {y | ∃ x ∈ s : ∃ p : ispathG(p, x, y)}
≡ {y | ∃ x ∈ s : ∃ p : ispathG(p, x, y) ∧ z 6∈ lead(p)}∪
{y | ∃ x ∈ s : ∃ p : ispathG(p, x, y) ∧ z ∈ lead(p)}

≡ {y | ∃ x ∈ s\{z} : ∃ p : ispathG(p, x, y) ∧ z 6∈ lead(p)}∪
{y | ∃ x ∈ s : ∃ p : ispathG(p, x, y) ∧ z ∈ lead(p)}

≡ (by (1))

14

{y | ∃ x ∈ s\{z} : ∃ p : ispathG	z(p, x, y)}∪
{y | ∃ x ∈ s : ∃ p : ispathG(p, x, y) ∧ z ∈ lead(p)}

≡ rnsetG	z(s\{z})∪
{y | ∃ x ∈ s : ∃ p : ispathG(p, x, y) ∧ z ∈ lead(p)}

≡ (by (2))

rnsetG	z(s\{z})∪
{y | ∃ p : ispathG(p, z, y)}

≡ rnsetG	z(s\{z}) ∪ rnsetG({z}) .
Moreover,

rnsetG({z})
≡ {y | ∃ p : ispathG(p, z, y)}
≡ {y | ∃ p : ispathG(p, z, y) ∧ y = z}∪
{y | ∃ p : ispathG(p, z, y) ∧ y 6= z}

≡ (since ispath(<z>, z, z) holds)

{z} ∪ {y | ∃ p : ispathG(p, z, y) ∧ y 6= z}
≡ (by (3))

{z} ∪ {y | ∃ u ∈ set(G(z))\{z} : ∃ p1 : ispathG(p1, u, y) ∧ z 6∈ set(p1)}
≡ {z} ∪ {y | ∃ u ∈ set(G(z))\{z} : ∃ p1 : ispathG(p1, u, y) ∧ z 6∈ lead(p1) ∧ z 6= y}
≡ (by (1))

{z} ∪ {y | ∃ u ∈ set(G(z))\{z} : ∃ p1 : ispathG	z(p1, u, y) ∧ z 6= y}
≡ {z} ∪ {y | ∃ u ∈ set(G(z))\{z} : ∃ p1 : ispathG	z(p1, u, y)}\{z}
≡ {z} ∪ rnsetG	z(set(G(z))\{z})\{z}
≡ {z} ∪ rnsetG	z(set(G(z))\{z}) .

Hence,

rnsetG(s)
≡ rnsetG	z(s\{z}) ∪ {z} ∪ rnsetG	z(set(G(z))\{z})
≡ (by Lemma 5.1.1)

rnsetG	z((s\{z}) ∪ (set(G(z))\{z})) ∪ {z}
≡ rnsetG	z((s ∪ set(G(z)))\{z}) ∪ {z}
≡ {z} ∪ rnsetG1(ŝ)

where

G1
def≡ G	 z ,

ŝ
def≡ (s ∪ set(G(z)))\{z} .

Now we obtain

reach(G, s)
≡ G|rnsetG(s)
≡ G|({z} ∪ rnsetG1(ŝ))
≡ ([z 7→ G(z)] ∪G1)|({z} ∪ rnsetG1(ŝ))
≡ [z 7→ G(z)]|{z} ∪ [z 7→ G(z)]|rnsetG1(ŝ) ∪G1|{z} ∪G1|rnsetG1(ŝ)
≡ [z 7→ G(z)] ∪ [z 7→ G(z)]|rnsetG1(ŝ) ∪ ∅ ∪G1|rnsetG1(ŝ)

≡ (since [z 7→ G(z)]|rnsetG1(ŝ) ⊆ [z 7→ G(z)])

[z 7→ G(z)] ∪G1|rnsetG1(ŝ) .

Next, we observe that we can shrink ŝ even further using

15

Lemma 5.1.3
For a pseudo-graph H and a set s ∈ nodeset we have

H|rnsetH(s) ≡ H|rnsetH(s ∩ ↓H) .

Proof: Note first that, by definition of ispath, we have for z 6∈ ↓H that

ispath(p, z, x) ≡ x = z ∧ p =<z> .

Therefore, if t ∩ ↓H ≡ ∅ then rnsetH(t) ≡ t. Now,

rnsetH(s)
≡ rnsetH((s ∩ ↓H) ∪ (s\↓H))

≡ (by Lemma 5.1.1)

rnsetH(s ∩ ↓H) ∪ rnsetH(s\↓H)
≡ rnsetH(s ∩ ↓H) ∪ s\↓H

and hence

H|rnsetH(s)
≡ H|(rnsetH(s ∩ ↓H) ∪ s\↓H)
≡ H|rnsetH(s ∩ ↓H) ∪H|(s\↓H)
≡ H|rnsetH(s ∩ ↓H) ∪ ∅
≡ H|rnsetH(s ∩ ↓H) .

This gives us finally

reach(G, s)
≡ [z 7→ G(z)] ∪G1|rnsetG1(ŝ)

≡ (by the previous Lemma)

[z 7→ G(z)] ∪G1|rnsetG1(ŝ ∩ ↓G1)
≡ [z 7→ G(z)] ∪G1|rnsetG1(((s ∪ set(G(z)))\{z}) ∩ ↓G1)
≡ [z 7→ G(z)] ∪G1|rnsetG1((s ∪ set(G(z))) ∩ ↓G1)

≡ (since (s ∪ set(G(z))) ∩ ↓G1 ⊆ ↓G1)

[z 7→ G(z)] ∪ reach(G1, (s ∪ set(G(z)) ∩ ↓G1)
≡ [z 7→ G(z)] ∪ reach(G1, s1)

where
s1

def≡ (s ∪ set(G(z))) ∩ ↓G1 .

Defining

elem(s)
def≡ s 6= ∅ � some node x : x ∈ s ,

we obtain from this the following recursive version for reach :

funct reach ≡ (pgraph G, nodeset s : s ⊆ ↓G)pgraph :
if s = ∅ then ∅

else node z ≡ elem(s) ;
pgraph G1 ≡ G	 z ;
nodeset s1 ≡ (s ∪ set(G(z))) ∩ ↓G1 ;
[z 7→ G(z)] ∪ reach(G1, s1) fi .

16

Termination is guaranteed, since |↓G1| < |↓G|. The restriction of reach to proper graphs yields a
solution to the original subgraph problem, viz. Gs ≡ reach(G, s) for every s ∈ nodeset and every
graph G.

5.2 Improvement of the Solution

Since map union is associative, we may by a standard method embed reach into a tail-recursive
function reach1 :

reach(G, s) ≡ reach1 (∅, G, s)

where

funct reach1 ≡ (pgraph H, pgraph F, nodeset s : s ⊆ ↓F) pgraph :
if s = ∅ then H

else node z ≡ elem(s) ;
pgraph H1 ≡ H ∪ [z 7→ F (z)] ;
pgraph F1 ≡ F 	 z ;
nodeset s1 ≡ (s ∪ set(F (z))) ∩ ↓F1 ;
reach1 (H1, F1, s1) fi .

In a second step we eliminate the parameter F from the recursion: Obviously the property

PG(H,F)
def⇔ F = G\H

is an invariant of reach1 (i.e., PG(H,F) ⇒ PG(H1, F1)), and PG(∅, G) holds. Therefore we may
replace F by G\H in reach1 . Moreover, s ⊆ ↓F ⊆ ↓G ∧ F |s = G|s is an additional invariant for
the call reach1 (∅, G, s); hence it follows that

s1
≡ (s ∪ set(F (z))) ∩ ↓F1

≡ (s ∪ set(G(z))) ∩ (↓G\↓H1)
≡ (s ∪ (set(G(z))) ∩ ↓G))\↓H1 .

If furthermore G is even a storage graph, we have set(G(z)) ⊆ ↓G and therefore

s1 ≡ (s ∪ set(G(z)))\↓H1 .

Thus our final algorithm reads

funct reach ≡ (pgraph G, nodeset s : s ⊆ ↓G) pgraph :
reach2 (∅, s)

where
funct reach2 ≡ (pgraph H, nodeset s : s ⊆ ↓G) pgraph :

if s = ∅ then H
else node z ≡ elem(s) ;

pgraph H1 ≡ H ∪ [z 7→ G(z)] ;
nodeset s1 ≡ (s ∪ set(G(z)))\↓H1 ;
reach2 (H1, s1) fi .

This version corresponds to algorithm (7) derived in [Berghammer et al. 87] which computes the
set ↓Gs of nodes reachable from s (replace pgraph by nodeset, [z 7→ G(z)] by z, and ↓H1 by H1).

17

6 Copying Pointer Structures

6.1 Statement of the Problem

We now consider the task of copying a state to another part of a memory. Let M = (cell,2) be
a memory and let m,n be states of M such that 2 ∈ set(m) ∩ set(n). We call n a copy of m if
there is a total bijection k : set(m) −→ set(n) such that k(2) ≡ 2 and the following diagram
commutes:

↓m m−→ ↑myk yk
↓n n−→ ↑n

This means that k ◦m ≡ n◦k and, since k is bijective, that n ≡ k ◦m◦k−1. Hence, given k, we
can compute n from m in two passes: First we form k ◦m which means that the cell contents as
given by m are updated to contain the corresponding addresses of the copy (“pointer relocation
pass”); then we compose with k−1 which means the actual transport of the new contents to the
new locations (“copying pass”).

6.2 Copying Pass

Given p ≡ k ◦ m, the copying pass is easily performed. First, by totality of k, we have ↓p ≡
↓m (⊆ ↓k). Now

p ◦ k−1

≡ (by Lemma 2.3.3)

p ◦
⋃
x∈↓k

[k(x) 7→ x]

≡ (by Lemma 2.3.3)⋃
x∈↓k

p ◦ [k(x) 7→ x]

≡
⋃
x∈↓k

[k(x) 7→ p(x)]

≡
⋃
x∈↓p

[k(x) 7→ p(x)] ,

since [k(x) 7→ p(x)] ≡ ∅ for x ∈ ↓k\↓p ≡ ↓k\↓m. This union can be computed using the
algorithm developed in Section 2.3.2. We set

copass(p, k)
def≡ ↓p ⊆ ↓k � mapunion(↓p, k, p) .

6.3 Pointer Relocation

The more difficult subtask consists in computing the composition k ◦m efficiently. According to
Lemma 2.3.3 there are essentially two ways of forming k ◦m:

1. domain-oriented:
k ◦m ≡

⋃
x∈↓m

[x 7→ k(m(x))]

18

If we look at the union as a loop, this way of forming k ◦m needs an explicit representation
of k, since the same value of k may be needed repeatedly at irregular intervals.

2. range-oriented:
k ◦m ≡

⋃
z∈↑m

[(z↓m) 7→ k(z)]

For evaluating this by a loop we only need one value of k at a time to process a whole subset
of ↓m. Hence we can avoid explicit representation of the complete k, which is particularly
important in garbage collection, where storage is almost exhausted. Moreover, the repeated
lookups are avoided and thus also time-efficiency is improved. Of course, this is only inter-
esting if m is highly non-injective so that the inverse images z↓m are large. However, for
block representations especially of dense graphs just this is the case.

We follow now the range-oriented variant. We need a way of representing the component maps
[z↓m 7→ y] suitably. For this we use an idea that is presented e.g. in [Dewar, McCann 77]: All
elements of s are chained into a linked list; then [s 7→ y] can be formed as⋃

x∈s
[x 7→ y]

following the chain.

6.3.1 Chains

In this section we list a number of basic properties of singly linked lists; proofs not stated here
can be found in [Möller 90].

Since a partial map m : cell −→ cell can be thought of as representing a graph of maximal
outdegree 1, we may represent linked lists again by maps. The idea of following a chain starting
from a point x in a graph of maximal outdegree 1, represented by m : cell −→ cell, is captured by
considering m as a relation and passing to its transitive closure m+: For x, y ∈ set(m),

x m+ y
def⇔ y ∈

⋃
i∈IN\{0}

x↑mi

where

m0 def≡ id set(m)

mi+1 def≡ m ◦mi .

Hence x m+ y holds iff y can be reached from x following the links of m (at least once). We also
need the reflexive transitive closure m∗ of m given by

x m∗ y
def⇔ y ∈

⋃
i∈IN

x↑mi .

We call a state m a chain, if m+ is a linear strict-order on set(m), i.e., iff the predicate ischain(m)
holds where

ischain(m)
def⇔ ∀ x, y, z ∈ set(m) :
¬ x m+ x (irreflexivity)

∧ x 6≡ y ⇒ (x m+ y ∨ y m+ x) (linearity) .

19

Irreflexivity excludes the existence of cycles within the list, whereas linearity implies that the list
is connected, i.e., that, given two distinct cells in the list, one of them can be reached from the
other following the links of the list. The definition implies that a chain is injective and thus that
each cell in a chain is referred to by at most one cell. Note also that ∅ is a chain. m is a finite
chain if m is both a chain and a finite set of pairs.

Lemma 6.3.1

1. For a map [x 7→ y] we have [x 7→ y]+ ≡ [x 7→ y], i.e., all such maps are transitive.

2. [x 7→ y] is a chain iff x 6≡ y.

Proof: 1. [x 7→ y] ◦ [x 7→ y] ≡ if x = y then [x 7→ x] else ∅ fi. Now a straightforward induction
shows that for all i ≥ 2 we have [x 7→ y]i ≡ if x = y then [x 7→ x] else ∅ fi.

2. is immediate from 1.

The following lemma states a property that is very useful for treating combinations of chains:

Lemma 6.3.2

1. Let m and n be maps such that ↑n ∩ ↓m ≡ ∅. Then

(m ∪ n)+ ≡ m+ ∪m+n+ ∪ n+ ,

where m+n+ is the relational product of m+ and n+ (in diagrammatic order).

2. Let (mi)i∈I be a family of maps such that ↓mi ∩ ↑mj ≡ ∅ for i 6≡ j. Then

(
⋃
i∈I

mi)
∗ ≡

⋃
i∈I

m∗i

(
⋃
i∈I

mi)
+ ≡

⋃
i∈I

m+
i

Proof: 1. From ↑n ∩↓m ≡ ∅ it follows that nm ≡ ∅. Now a straightforward induction shows

(m ∪ n)i ≡
i⋃

k=0

mi−knk

for i > 1. From this the claim is immediate.

2. Because of ↓mi∩↑mj ≡ ∅ we have mimj ≡ mjmi ≡ ∅ for i 6≡ j. Hence (
⋃
i∈I

mi)
k

≡
⋃
i∈I

mk
i for all k and the claim is immediate.

We now restrict our attention to finite chains.

Lemma 6.3.3

20

Let m 6≡ ∅ be a finite chain. Then

1. set(m) contains a least element first(m) and a greatest element last(m) w.r.t. m+.

2. ↑m ⊆ ↓m ∪ {last(m)} and ↓m ⊆ ↑m ∪ {first(m)}.

3. ↓m ≡ set(m)\{last(m)} and ↑m ≡ set(m)\{first(m)}.

4. ↓m\↑m ≡ {first(m)} and ↑m\↓m ≡ {last(m)}.

5. ↓m\{first(m)} ≡ ↑m\{last(m)} .

We set, for well-founded m 6≡ ∅

rest(m)
def≡ if m = ∅ then ∅ else m	 first(m) fi ,

inner(m)
def≡ ↓m\{first(m)} ≡ ↑m\{last(m)} .

Note that rest is total whereas inner is partial.

Lemma 6.3.4
Let m 6≡ ∅ be a finite chain. Then

1. m ≡ [first(m) 7→ m(first(m))] ∪ rest(m) .

2. rest(m) 6≡ ∅ ⇒ first(rest(m)) ≡ m(first(m)) .

3. If m is also anchored, rest(m) ≡ ∅ ⇔ m(first(m)) ≡ 2 .

6.3.2 Chained Representation of Sets

It would be attractive to call a chain m a representation of set(m). However, we have

Lemma 6.3.5

Let m 6≡ ∅ be chain. Then |set(m)| ≥ 2.

Proof: By definition, |set(m)| ≥ |↓m|. Hence, if |↓m| ≥ 2 we are finished. Otherwise, |↓m| = 1,
i.e., m ≡ [x 7→ y] for some x, y ∈ M and set(m) ≡ {x, y}. However, since m is
irreflexive, we have x 6≡ y and thus |set(m)| ≡ 2.

According to this lemma, then sets of cardinality 1 would not be representable. To remedy this,
we use the distinguished cell 2 as a chain terminator and consider all other elements in chains as
the elements of the represented sets. Therefore we define the predicate

isanchored(m)
def⇔ ischain(m) ∧

(m ≡ ∅ ∨ last(m) ≡ 2) .

Thus, a nonempty chain is anchored iff it is terminated by 2. An anchored chain m represents
the set ↓m. A corresponding representation function is

funct chainrep ≡ (cellset s) state :
some state m : isanchored(m) ∧ ↓m = s .

We want to develop an incrementation function for extending a set representation to a representa-
tion of a larger set. To deal in a satisfactory way with the non-determinacy involved, we need an

21

auxiliary notion concerning non-determinacy. Let E be a possibly non-determinate expression. An
atom of E is a determinate descendant of E. From this definition it is immediate that E1 ⊆ E2

iff every atom of E1 is also an atom of E2; likewise, E1 ≡ E2 iff E1 and E2 have the same sets of
atoms.

Let now s be a set of cells, m be an atom of chainrep(s), and x 6∈ s ∪ {2} be a cell. We want
to extend m to an atom n of chainrep(s ∪ {x}). Since this requirement implies ↓n = ↓m ∪ {x},
we try to set n ≡ m ∪ [x 7→ y] for some y ∈ M . The union is well-defined since x 6∈ ↓m by the
assumption. We now have to choose y in such a way that n becomes an anchored chain. First, we
compute the transitive closure of n:

n+

≡ (m ∪ [x 7→ y])+

≡ (by Lemma 6.3.2)

[x 7→ y]+ ∪ [x 7→ y]+m+ ∪m+

≡ (by Lemma 6.3.1)

[x 7→ y] ∪ [x 7→ y]m+ ∪m+

≡ (∗) .

Hence isanchored(n) implies x 6≡ y by irreflexivity. Next we compute first(n). By Lemma 6.3.3,

{first(n)}
≡ ↓n\↑n
≡ (↓m ∪ {x})\(↑m ∪ {y})
≡ (↓m\↑m\{y}) ∪ ({x}\↑m\{y})
≡ (↓m\↑m\{y}) ∪ ({x}\{y}\↑m)
≡ (↓m\↑m\{y}) ∪ ({x}\↑m)
≡ (∗∗) .

Since x 6∈ ↓m ∪ {2} ⊇ ↑m, we have {x}\↑m ≡ {x}. Hence

(∗∗) ≡ (↓m\↑m\{y}) ∪ {x}

and thus x ∈ {first(n)}, i.e. x ≡ first(n). Now it follows that ↓m\↑m\{y} ⊆ {x} and hence
↓m\↑m\{y} ⊆ ↓m ∩ {x} ≡ ∅, i.e., ↓m\↑m\{y} ≡ ∅. If m ≡ ∅ this holds trivially; however,
if m 6≡ ∅ this is equivalent to {first(m)}\{y} ≡ ∅ and thus also to y ≡ first(m). So we only
need to find y in the case m ≡ ∅. But by isanchored(n) we know last(n) ≡ 2. We calculate

{last(n)}
≡ ↑n\↓n
≡ (↑m ∪ {y})\(↓m ∪ {x})
≡ {y}\{x}
≡ {y},

and thus y ≡ 2. Therefore we define

init(m)
def≡ if m = ∅ then 2 else first(m) fi .

If we can now show isanchored(n) for

n
def⇔ m ∪ [x 7→ init(m)] ,

we have found an atom of chainrep(s ∪ {x}).

22

From (∗) we obtain
u n+ v ⇔ (u ≡ x ∧ v ≡ y) ∨

(u ≡ x ∧ y m+v) ∨
(u m+ v)

⇔ (u ≡ x ∧ v ∈ set(m)) ∨
(u m+ v) .

Now we show that n+ is a linear strict-order. Let u, v, w ∈ set(n).

(Irreflexivity) Assume x n+ x. Then x ∈ set(m) ≡ ↓m ∪ {2}, a contradiction to precond(x,m).
For u 6≡ x, u n+ u would mean u ∈ ↓m ∧ u m+ u, contradicting ischain(m) and
thus again precond(x,m).

(Linearity) Let u 6≡ v. If u ≡ x then v ∈ set(m) and thus u n+ v. Symmetrically, v n+ u if
v ≡ x. Otherwise, u, v ∈ set(m) and therefore u m+ v or v m+ u by linearity of
m. But then also u n+ v or v n+ u, resp.

Finally we show that last(n) ≡ 2. If m ≡ ∅ this is immediate. Otherwise, since x ≡ first(n),
we have x n+ last(m) and therefore last(n) ≡ last(m) ≡ 2 by isanchored(m).

If we now define

funct prefix ≡ (cell x, state m : isanchored(m) ∧ x 6∈ set(m)) cell :
[x 7→ init(m)] ∪m ,

the results of our development can be restated as

Lemma 6.3.6

1. If m is an atom of chainrep(s) and x 6∈ s ∪ {2}, then prefix (x,m) is an atom of
chainrep(s ∪ {x}).

2. first(prefix (x,m)) ≡ x ∧ rest(prefix (x,m)) ≡ m.

At this point, it is also interesting to note that

Lemma 6.3.7

If m 6≡ ∅ is an anchored chain, we have prefix (first(m), rest(m)) ≡ m.

Proof: prefix (first(m), rest(m))
≡ [first(m) 7→ init(rest(m))] ∪ rest(m)
≡ if rest(m) = ∅ then [first(m) 7→ 2]

else [first(m) 7→ first(rest(m))] ∪ rest(m) fi

≡ (by isanchored(m))

if rest(m) = ∅ then m
else [first(m) 7→ first(rest(m))] ∪ rest(m) fi

≡ (by Lemma 6.3.4)

if rest(m) = ∅ then m else m fi
≡ m .

23

6.3.3 Chained Representation of Maps

Let now n be a map. From the range-oriented decomposition n ≡
⋃
z∈↑n

[z↓n 7→ z] we obtain the

partition ↓n ≡
⋃
z∈↑n

z↓n. We represent m by a union of chains each of which represents one of

the sets z↓m; the cell z is prefixed as a header cell to the respective chain. To avoid confusion
between these chains we require that

ischainable(m)
def⇔ ↓m ∩ ↑m ≡ ∅

holds; otherwise there would be a link from one chain to the beginning of another and the partition
would be lost. We now define

funct chain ≡ (state m : ischainable(m)) state :⋃
z∈↑m

prefix (z, chainrep(z↓m))

Since the elements of z↓m are the starting points of mutually unconnected chains, they are also
sources (in the graph-theoretic sense) of the chained map. We set, for arbitrary state n,

src(n)
def≡ ↓m\↑m ;

this is the set of cells to which no pointer exists in n. To distinguish the sublist of a state n that
emanates from a given cell x, we define

from(x, n)
def≡ m|(

⋃
i∈IN

x↑ni) ≡ n|{y | x n∗ y} .

Note that this sublist need not be a chain, since there may be a cycle. Note also, that from(x, n) ≡
∅ if x 6∈ ↓n. With the help of these notions we can characterize chainings of maps by the following
predicate ischaining :

ischaining(l)
def≡ l =

⋃
z∈src(l)

from(z, l)

∧ ∀ z ∈ src(l) : isanchored(from(z, l))
∧ ∀ z1, z2 ∈ src(l) : z1 6= z2 ⇒ ↓from(z1, l) ∩ ↓from(z2, l) = ∅ .

Moreover, we can define the inverse operation to chaining:

unchain(l)
def≡ ischaining(l) �

⋃
z∈src(l)

[inner(from(z, l)) 7→ z] .

Lemma 6.3.8

Let l be an atom of chain(m). Then unchain(l) ≡ m.

Proof: By definition, l ≡
⋃

z∈↑m
lz where each lz is an atom of prefix (z, chainrep(z↓m)). Since

z ∈ ↑m we have ↓lz ≡ {z} ∪ z↓m and ↑lz ≡ z↓m ∪ {2}. Therefore, ↓lz ∩ ↑ly ≡ ∅
for z 6≡ y. Hence, for z ∈ ↓m, we have z l∗ x ⇔ z l∗z x. Moreover, by Lemma 6.3.2,
l∗ ≡

⋃
z∈↑m

l∗z . This gives

24

from(z, l)
≡ l|{x : z l∗ x}
≡ l|{x : z l∗z x}
≡ lz|{x : z l∗z x}
≡ from(z, lz)
≡ lz .

Moreover,

inner(lz)
≡ ↓lz\{first(lz)}
≡ ({z} ∪ ↓chainrep(z↓m))\{z}
≡ ↓chainrep(z↓m)
≡ z↓m .

Now the claim is immediate from Lemma 2.3.3.

As in the case of set representations, we want to develop an incrementation function for extending
a chained representation of a map into one of a larger map. Let therefore m,n be maps and x 6≡ 2

be a cell such that x 6∈ ↓m as well as n ≡ m ∪ [x 7→ y] for some y and ischainable(n) hold. Given
a chaining of m, we then want to extend it to a chaining of n. First we calculate

ischainable(n)
⇔ ↓(m ∪ [x 7→ y]) ∩ ↑(m ∪ [x 7→ y]) ≡ ∅
⇔ (↓m ∪ {x}) ∩ (↑m ∪ {y}) ≡ ∅
⇔ (↓m ∩ ↑m) ∪ (↓m ∩ {y}) ∪ ({x} ∩ ↑m) ∪ ({x} ∩ {y}) ≡ ∅
⇔ ↓m ∩ ↑m ≡ ∅ ∧ ↓m ∩ {y} ≡ ∅ ∧ {x} ∩ ↑m ≡ ∅ ∧ {x} ∩ {y} ≡ ∅
⇔ ischainable(m) ∧ y 6∈ ↓m ∧ x 6∈ ↑m ∧ x 6≡ y .

Let now l be an atom of chain(m). This means that l ≡
⋃

z∈↑m
lz where each lz is an atom of the

respective prefix (z, chainrep(z↓m)). Hence rest(lz) is an atom of chainrep(z↓m).
We have

↓l ≡
⋃

z∈↑m
({z} ∪ z↓m) ,

and hence x 6∈ ↓l.
Consider now an u ∈ ↑n. To achieve a more uniform calculation we set lu

def≡ ∅ if u 6∈ ↑m. Then
rest(lu) ≡ ∅ ≡ chainrep(u↓m), and hence rest(lu) ⊆ chainrep(u↓m) also in this case.
Case 1: u 6≡ y. Then u↓n ≡ u↓m, and hence lu is an atom of prefix (u, chainrep(u↓m)).
Case 2: u ≡ y. Then

prefix (u, chainrep(u↓n))
≡ prefix (u, chainrep(u↓m ∪ {x}))
⊇ prefix (u, prefix (x, chainrep(u↓m)))
⊇ prefix (u, prefix (x, rest(lu))) .

Hence

chain(n)

≡
⋃
z∈↑n

prefix (z, chainrep(z↓n))

≡
⋃

z∈↑m∪{y}
prefix (z, chainrep(z↓n))

25

≡
⋃

z∈↑m\{y}∪{y}
prefix (z, chainrep(z↓n))

≡
⋃

z∈↑m\{y}
prefix (z, chainrep(z↓n)) ∪ prefix (y, chainrep(y↓n))

⊇
⋃

z∈↑m\{y}
lz ∪ prefix (y, prefix (x, rest(ly)))

≡ l\ly ∪ prefix (y, prefix (x, rest(ly)))
≡ l 	 ↓ly ∪ prefix (y, prefix (x, rest(ly)))

≡ (by Lemma 2.3.4, since x 6∈ ↓l)
l /−prefix (y, prefix (x, rest(ly)))

≡ l /−([y 7→ first(prefix (x, rest(ly)))] ∪ prefix (x, rest(ly)))
≡ l /−([y 7→ x] ∪ [x 7→ init(rest(ly))] ∪ rest(ly))

≡ (by Lemma 2.3.4 (Annihilation), since rest(ly) ⊆ l)

l /−([y 7→ x] ∪ [x 7→ init(rest(ly))])
≡ if y ∈ ↑m then l /−([y 7→ x] ∪ [x 7→ first(rest(ly))])

else l /−([y 7→ x] ∪ [x 7→ 2]) fi
≡ if y ∈ ↑m then l /−([y 7→ x] ∪ [x 7→ ly(y)])

else l /−([y 7→ x] ∪ [x 7→ 2]) fi
≡ if y ∈ ↑m then l /−([y 7→ x] ∪ [x 7→ l(y)])

else l /−([y 7→ x] ∪ [x 7→ 2]) fi .

Hence we define

insert(l, y, x)
def≡ ischaining(l) ∧ x 6∈ set(l) ∧ y 6∈ set(l)\src(l) ∧ x 6= y�

if y ∈ src(l) then l /−([y 7→ x] ∪ [x 7→ l(y)])
else l /−([y 7→ x] ∪ [x 7→ 2]) fi .

The results of the above development then are summarized by

Lemma 6.3.9
Assume ischaining(l) ∧ x 6∈ set(l) ∧ y 6∈ set(l)\src(l) ∧ x 6= y. Then insert(l, y, x) is
an atom of chain(unchain(l) ∪ [x 7→ y]).

6.3.4 Pointer Relocation Completed

We are now in a position to describe our efficient algorithm for computing k◦m: We first construct
a chained representation l ≡

⋃
z∈↑m

lz of m. Now we define

relocate(l, k)
def≡ ischaining(l) � k ◦ unchain(l) .

We have

relocate(l, k)

≡ k ◦
⋃

z∈src(l)
[inner(lz) 7→ z]

≡
⋃

z∈src(l)
[inner(lz) 7→ k(z)] .

This is the main loop of our algorithm. We now want to develop a more direct version of the inner
loops that form the maps [inner(lz) 7→ k(z)] for z ∈ src(l). To this end we define

fibre(l, x, y)
def≡ isanchored(l) ∧ x ∈ ↓l � [ginner(l, x) 7→ y]

26

where
ginner(l, x)

def≡ {z | x l+ z}\{2} .

We have
ginner(l, x) ≡ if l(x) = 2 then ∅ else {l(x)} ∪ ginner(l, l(x)) fi

and hence

fibre(l, x, y)
≡ if l(x) = 2 then [ginner(l, x) 7→ y]

else [ginner(l, x) 7→ y] fi
≡ if l(x) = 2 then [∅ 7→ y]

else [{l(x)} ∪ ginner(l, l(x)) 7→ y] fi
≡ if l(x) = 2 then ∅

else [{l(x)} 7→ y] ∪ [ginner(l, l(x)) 7→ y] fi
≡ if l(x) = 2 then ∅

else [l(x) 7→ y] ∪ fibre(l, l(x), y) fi .

Hence we have the recursion (termination is obvious)

funct fibre ≡ (state l, cell x, y : isanchored(l) ∧ x ∈ ↓l) state :
d cell z ≡ l(x) ; if z = 2 then ∅

else [z 7→ y] ∪ fibre(l, z, y) fi c .

Finally, we obtain

relocate(l, k)

≡
⋃

x∈src(l)
[inner(lx) 7→ k(x)]

≡
⋃

x∈src(l)
fibre(l, x, k(x)) .

6.4 Combining Relocation and Copying

Suppose that unchain(l) ≡ m. Then

k ◦m ◦ k−1
≡ k ◦ unchain(l) ◦ k−1
≡ relocate(l, k) ◦ k−1
≡ copass(relocate(l, k), k) .

Therefore we define

copy(l, k)
def≡ ischaining(l) ∧ isinjective(k) ∧ ↓k = set(m) �

copass(relocate(l, k), k) .

Then the following diagram commutes:

set(m)
unchain(l)−→ set(m)yk yk

set(m)↑k copy(l,k)−→ set(m)↑k

This concludes our treatment of the pointer relocation pass.

27

7 Merging Reachability and Chaining

7.1 Statement of the Problem

In the previous section we have derived an efficient copying algorithm based on a chaining of the
state to be copied. In this section we want to integrate the construction of such a representation
with the computation of the reachable part.

A central assumption for chainable maps was that their domains should be disjoint from their
ranges. Since, however, pseudo-graph states do not have this property, we cannot chain the whole
reachable substate, but only its arcs (see 3.2).

More precisely, assume a pseudo-graph G, a set s ⊆ ↓G, and a perfect allocation g of G. Define

n
def≡ blockrep(G, g) ,

G1
def≡ reach(G, s) ,

n1
def≡ blockrep(G1, g),

t
def≡ s↑g .

We want to compute a chaining of arcs(n1). To this end, we shall first compute arcs(n1) from n
and t by a function sreach and then chain this using a function csreach . Hence sreach and csreach
should satisfy the equations

(SR) sreach(n, t) ≡ arcs(n1) ,
(CSR) unchain(csreach(n, t)) ≡ arcs(n1) .

In the sequel we shall assume that G is a fragment of a fixed storage-graph G0 (see 3.1), i.e., that

G ⊆ G0. Consequently, n ⊆ n0 where n0
def≡ blockrep(G0, g). This will considerably simplify the

invariants of the algorithms we shall derive in the sequel.

7.2 Reachability on Graph Representations

In Section 5.1 we have derived the following reachability algorithm for pseudo-graphs:

funct reach ≡ (pgraph G, nodeset s : s ⊆ ↓G) pgraph :
if s = ∅ then ∅

else node z ≡ elem(s) ;
pgraph G1 ≡ G	 z ;
nodeset s1 ≡ (s ∪ set(G(z))) ∩ ↓G1 ;
[z 7→ G(z)] ∪ reach(G1, s1) fi .

Our first task consists in transforming this into a corresponding algorithm for state representations
of pseudo-graphs. Let g be an allocation of a pseudograph G. The set s of starting nodes in the
pseudo-graph case is now replaced by a set t of starting keys. Thus we define

inreach1 (G, g, n, t)
def≡ n = blockrep(G, g) ∧ t ⊆ keys(n) �

blockrep(reach(G, t↓g), g) .

Now assume n ≡ blockrep(G, g) and ∅ 6≡ t ⊆ keys(n). Define

x
def≡ elem(t↓g) ,

G1
def≡ G	 x ,

s1
def≡ (t↓g ∪ set(G(x))) ∩ ↓G1 ,

n1
def≡ blockrep(G1, g) .

28

Then

inreach1 (G, g, n, t)
≡ blockrep([x 7→ G(x)] ∪ reach(G1, s1), g)

≡ (by Lemma 3.2.2)

blockrep([x 7→ G(x)], g) ∪ blockrep(reach(G1, s1), g)
≡ block(x, g) ∪ inreach1 (G1, g, n1, s1↑g) .

Now we calculate

s1↑g
≡ ((t↓g ∪ set(G(x))) ∩ ↓G1)↑g
≡ (by Lemma 2.3.2, since g is injective)

((t↓g)↑g ∪ set(G(x))↑g) ∩ (↓G1↑g)
≡ (t ∪ ↑(block(x, g)	 g(x))) ∩ keys(n1)
≡ (t ∪ ↑block(x, g)\{2}) ∩ keys(n1)
≡ (t ∪ ↑block(x, g)) ∩ keys(n1) .

since 2 6∈ keys(n1). Thus we obtain the recursion

funct inreach1 ≡ (pgraph G,map g, n, cellset t :
n = blockrep(G, g) ∧ t ⊆ keys(n)) state :

if t = ∅
then ∅
else node x ≡ elem(t↓g) ;

pgraph G1 ≡ G	 x ;
state n1 ≡ blockrep(G1, g) ;
cellset t1 ≡ (t ∪ ↑block(x, g)) ∩ keys(n1) ;
block(x, g) ∪ inreach1 (G1, g, n1, t1) fi .

7.3 Computing the Arcs of the Reachable Substate

Our next task consists in deriving from inreach1 an algorithm sreach satisfying (SR). An additional
requirement for this algorithm is that it should not use a separate parameter for the set t which
would occupy a lot of storage space. Everything should be done on the map-parameter n and on
some auxiliary cell-parameters.

A first idea how to realize this would be to represent the set t as a chain and to overwrite n with
this chain. However, one sees immediately that this is in conflict with the chaining for representing
the map which requires a different overwriting of n. We shall overcome these difficulties by not
storing t itself but (a code of) a set of cells pointing to the elements of t and, when adding
block(x, g), by chaining the cells not in their original order but in a different one arising during
the traversal of the reachable part.

Let again

n
def≡ blockrep(G, g) ,

G1
def≡ reach(G, s) ,

n1
def≡ blockrep(G1, g),

t
def≡ s↑g .

Using the fact that
G1 ≡ G|s ∪ reach(G̃, s̃)

29

where G̃
def≡ G	 s and s̃

def≡ (
⋃
x∈s

set(G(x))) ∩ ↓G̃, we calculate

arcs(n1)
≡ arcs(blockrep(G1, g))

≡ (by Lemma 3.2.2)

arcs(blockrep(G|s, g)) ∪ arcs(blockrep(reach(G̃, s̃)))

≡ ñ|u ∪ arcs(inreach1 (G̃, g,m, s̃↑g))

where

ñ
def≡ n	 t ,

u
def≡ setfollowers(n, t)

def≡
⋃
z∈t

set(followers(n, z)) (see 3.2),

m
def≡ blockrep(G̃, g) .

Furthermore,
s̃↑g ≡ u↑ñ ∩ keys(ñ) .

This suggests the definition

inreach2 (G, g, n,m, u)
def≡ P2(G, g, n,m, u) �

n|u ∪ arcs(inreach1 (G, g,m, u↑n ∩ keys(n))) ,

where

P2(G, g, n,m, u)
def≡ m = blockrep(G, g)
∧ n ⊇ m
∧ keys(n) = keys(m)
∧ u ⊆ ↓arcs(n)
∧ u ∩ ↓m = ∅
∧ setfollowers(n, keys(n)) ∩ u = ∅ .

Using the notation from above, we obtain

arcs(n1) ≡ inreach2 (G̃, g, ñ,m, u) .

Now we have to develop a recursion for inreach2 . This turns out to be the most difficult step in
the whole development.

Suppose that P2(G, g, n,m, u) and u 6≡ ∅ hold and define

t
def≡ u↑n ∩ keys(n) ,

y
def≡ elem(u) ,

z
def≡ n(y) ,

n1
def≡ n	 y ,

u1
def≡ u\{y} ,

t̃
def≡ u1↑n1 ∩ keys(n1) .

First,

n|u
≡ n|({y} ∪ u1)
≡ n|{y} ∪ n|u1
≡ [y 7→ z] ∪ n1|u1 .

30

Moreover, since y ∈ ↓arcs(n) we have keys(n1) ≡ keys(n). Hence

t
≡ (u1 ∪ {y})↑n ∩ keys(n)
≡ (u1↑n ∩ keys(n)) ∪ ({y}↑n ∩ keys(n))
≡ (u1↑n1 ∩ keys(n1)) ∪ ({z} ∩ keys(n))
≡ t̃ ∪ ({z} ∩ keys(n)) .

Case 1: z 6∈ keys(n), i.e., ({z} ∩ keys(n)) ≡ ∅.
Then t ≡ t̃ and thus

inreach2 (G, g, n,m, u)
≡ n|u ∪ arcs(inreach1 (G, g,m, t))
≡ [y 7→ z] ∪ n1|u ∪ arcs(inreach1 (G, g,m, t̃))
≡ [y 7→ z] ∪ inreach2 (G, g, n1,m, u1) .

Case 2: z ∈ keys(n), i.e., ({z} ∩ keys(n)) ≡ {z}.
Then t ≡ t̃ ∪ {z}. Now we specialize the choice of elem(t↓g) in inreach1 to g−1(z), i.e., we set

x
def≡ g−1(z) ,

G1
def≡ G	 x ,

m1
def≡ blockrep(G1, g) ,

t1
def≡ (t ∪ ↑block(x, g)) ∩ keys(m1) .

We have keys(m1) ≡ keys(m)\{z}. Hence, setting

n2
def≡ n1 	 z

we have
keys(m1) ≡ keys(n2) and n1|u1 ≡ n2|u1 ,

since z 6∈ ↓n1 ≡ u1 ⊆ ↓arcs(n). Moreover,

inreach2 (G, g, n,m, u)
≡ n|u ∪ arcs(inreach1 (G, g,m, t))
≡ [y 7→ z] ∪ n1|u1 ∪ arcs(block(x, g) ∪ inreach1 (G1, g,m1, t1))
≡ [y 7→ z] ∪ n1|u1 ∪ arcs(block(x, g)) ∪ arcs(inreach1 (G1, g,m1, t1))
≡ [y 7→ z] ∪ n2|u1 ∪ arcs(block(x, g)) ∪ arcs(inreach1 (G1, g,m1, t1)) .

Now we observe that, since n ⊇ m ≡ blockrep(G, g),

block(x, g)
≡ n|({g(x)} ∪ set(followers(n, g(x))))
≡ n|({z} ∪ set(followers(n, z))) .

Let therefore
u2

def≡ set(followers(n, z)) .

Then

arcs(block(x, g))
≡ arcs(n|({z} ∪ u2))
≡ arcs(n|{z} ∪ n|u2)
≡ arcs(n|({z}) ∪ arcs(n|u2)

31

≡ (since z ∈ keys(n|{z}) and thus arcs(n|{z}) ≡ ∅)
arcs(n|u2)

≡ (since u2 ∩ keys(n) ≡ ∅ by n ⊇ block(x, g))

n|u2 .

Hence

[y 7→ z] ∪ n2|u1 ∪ arcs(block(x, g))
≡ [y 7→ z] ∪ n2|u1 ∪ n|u2
≡ ([y 7→ z] ∪ n|u2) ∪ n2|u1
≡ ([y 7→ z] ∪ n2|u2) ∪ n2|u1
≡ [y 7→ z] ∪ n2|(u2 ∪ u1) .

If we now can show (u1 ∪ u2)↑n2 ∩ keys(n2) ≡ t1 and (u1 ∪ u2) ∩ ↓m1 ≡ ∅, we have derived a
recursion relation for inreach2 . We have

t1 ≡ (t ∩ keys(m1)) ∪ (↑block(x, g) ∩ keys(m1)) .

Now,

t ∩ keys(m1)
≡ u↑n ∩ keys(n) ∩ keys(m1)

≡ (since m1 ⊆ m ⊆ n)

u↑n ∩ keys(m1)
≡ ({z} ∪ u1↑n1) ∩ keys(m1)
≡ u1↑n1 ∩ keys(m1)

≡ (since n2 ≡ n1 	 z and z ∈ keys(n) so that z 6∈ u1)
u1↑n2 ∩ keys(m1)

≡ u1↑n2 ∩ keys(n2)

and

↑block(x, g) ∩ keys(m1)
≡ ↑n|u2 ∩ keys(m1)
≡ u2↑n ∩ keys(m1)

≡ (since n(y) ≡ z 6∈ keys(m1))

u2↑n1 ∩ keys(m1)

≡ (since z 6∈ u2)
u2↑n2 ∩ keys(m1)

≡ u2↑n2 ∩ keys(n2)

and thus indeed (u1∪u2)↑n2∩keys(n2) ≡ t1. Furthermore,m1 ≡ blockrep(G1, g) ≡ m\block(x, g)
and u2 ⊆ ↓block(x, g) so that (u1 ∪ u2) ∩ ↓m1 ≡ ∅. Therefore in this case

inreach2 (G, g, n,m, u) ≡ [y 7→ z] ∪ inreach2 (G1, g, n2,m1, u1 ∪ u2) .

Altogether, we have obtained the following recurrent recursion for inreach2 :

inreach2 (G, g, n,m, u)
⊇ P2(G, g, n,m, u) �

if u = ∅

32

then ∅
else cell y ≡ elem(u) ;

cell z ≡ n(y) ;
state n1 ≡ n	 y ;
cellset u1 ≡ u\{y} ;
if z 6∈ keys(n)

then [y 7→ z] ∪ inreach2 (G, g, n1,m, u1)
else state n2 ≡ n1 	 z ;

pgraph G1 ≡ G	 g−1(z) ;
state m1 ≡ blockrep(G1, g) ;
[y 7→ z] ∪ inreach2 (G1, g, n2,m1, u1 ∪ set(followers(n, z))) fi fi .

According to the rule (DESCENDANT-FIXPOINT) now the least fixpoint of the corresponding
functional is a descendant of inreach2 . We will denote this fixpoint again by inreach2 .

Obviously, the parameters G, g, and m do not contribute to the computation proper and thus
may be eliminated. We define recursively

sreach2 (n, u)
≡ u ⊆ ↓arcs(n) �

if u = ∅
then ∅
else cell y ≡ elem(u) ;

cell z ≡ n(y) ;
state n1 ≡ n	 y ;
cellset u1 ≡ u\{y} ;
if z 6∈ keys(n)

then [y 7→ z] ∪ sreach2 (n1, u1)
else state n2 ≡ n1 	 z ;

[y 7→ z] ∪ sreach2 (n2, u1 ∪ set(followers(n, z))) fi fi .

A trivial computational induction proves that

sreach2 (n, u) ≡ inreach2 (G, g, n,m, u)

provided P2(G, g, n,m, u) holds. Now we have

arcs(n1)

≡ inreach2 (G̃, g, ñ,m, u)
≡ sreach2 (ñ, u)
≡ sreach2 (n, u) .

Therefore we define the function

sreach(n, t)
def≡ t ⊆ keys(n) �

sreach2 (n, setfollowers(n, t)) ,

which obviously satisfies (SR).

7.4 Specialization to a Depth-First Traversal

We now represent sets u ⊆ ↓arcs(n) of cells by sequences α such that set(α) ≡ u. Furthermore
we concretize elem to first , replace set union by concatenation and obtain in this way a first
deterministic algorithm for our problem. We specify sreach3 by

sreach3 (n, α)
def≡ P3(n, α) � sreach2 (n, set(α))

33

with the invariant

P3(n, α)
def≡ set(α) ⊆ ↓arcs(n)
∧ repetitionfree(α)
∧ setfollowers(n, keys(n)) ∩ set(α) = ∅

where

repetitionfree(α)
def⇔ isinjective(

|α|⋃
i=1

[i 7→ α[i]]) .

The last conjunct of P3 corresponds to the last conjunct of P2 and is needed in proving invariance
of repetitionfree(α). We have the embedding

sreach2 (n, u) ≡ sreach3 (n, sort(u)) .

Using again the rule (DESCENDANT-FIXPOINT) we immediately obtain the recursion

sreach3 (n, α)
⊇ P3(n, α) �

if α =<>
then ∅
else cell y ≡ first(α) ;

cell z ≡ n(y) ;
state n1 ≡ n	 y ;
cellsequ α1 ≡ rest(α) ;
if z 6∈ keys(n)

then [y 7→ z] ∪ sreach3 (n1, α1)
else state n2 ≡ n1 	 z ;

cellsequ α2 ≡ followers(n, z) + α1 ;
[y 7→ z] ∪ sreach3 (n2, α2) fi fi .

The choice y ≡ first(α) (rather than y ≡ last(α)) leads to a depth-first traversal.

7.5 Encoding the Arcs

We have started this chapter considering a (fixed) pseudo-graph state n0. From now on we will
assume that the keys of n0 are marked (for instance, using a bit-vector). We define, for n ⊆ n0,

bound(n)
def≡ sup(↓n) + 1 ,

keys+(n)
def≡ keys(n) ∪ {bound(n)} ,

nextn(z)
def≡ succkeys+(n)(z) ,

keys+

def≡ keys+(n0) ,

bound
def≡ bound(n0) .

Obviously all submaps n ⊆ n0 appearing in our reachability algorithms satisfy

keys(n) ⊆ keys+ ∧ ↓arcs(n) ∩ keys+ ≡ ∅ .

Moreover, we observe that the property

∃ β : α ≡ followers(n, β) ,

34

where
followers(m,β) ≡

∑
i∈[1:|β|]

followers(m,β[i]) ,

(see 3.2 for followers of single cells) is an invariant of sreach3 . Therefore we can reconstruct the
input α from the sequence β. Packing some other obvious invariants into the assertion

P4(n, β)
def≡ keys(n) ⊆ keys+

∧ ↓arcs(n) ∩ keys+ = ∅
∧ repetitionfree(β)
∧ ↓n ∩ set(β) = ∅
∧ ∀ z ∈ keys(n) ∪ set(β) :]z : nextn(z)[⊆ ↓arcs(n)\set(β) ,

we define
sreach4 (n, β)

def≡ P4(n, β) � sreach3 (n, followers(n, β)) .

We obtain for n ⊆ n0 and t ⊆ keys(n) the embedding

sreach(n, t)
≡ sreach2 (n, setfollowers(n, t))
≡ sreach2 (n, set(followers(n, sort(t))))
≡ sreach3 (n, followers(n, sort(t)))
≡ sreach4 (n, sort(t)) .

Now let n and β be such that P4(n, β) holds. Assume β 6≡ <> and let

y
def≡ first(β) + 1 ,

γ
def≡ rest(β) .

Case 1: y 6∈ ↓arcs(n).
Then followers(n, first(β)) ≡ <> and therefore

followers(n, β) ≡ followers(n, γ) .

Hence
sreach4 (n, β) ≡ sreach4 (n, γ) .

Case 2: y ∈ ↓arcs(n).
Then, setting

α
def≡ followers(n, β) ,

we have
y ≡ first(α)

and
followers(<y> +γ) ≡ rest(α) .

Therefore, if z ∈ keys(n) — where z
def≡ n(y) — then

followers(n,<z> + <y> +γ) ≡ followers(n, z) + rest(α) .

35

The test y ∈ ↓arcs(n) may be simplified as follows: P4 implies that

∀ z ∈ set(β) :]z : nextn(z)[⊆ ↓arcs(n) ,

which, in turn, entails that
y 6∈ keys+ ⇒ y ∈ ↓arcs(n) .

Hence
y 6∈ ↓arcs(n) ⇔ y ∈ keys+ .

Therefore

sreach4 (n, β)
≡ P4(n, β) �

if β =<>
then ∅
else cell y ≡ first(β) + 1 ;

cellsequ γ ≡ rest(β) ;
if y ∈ keys+

then sreach4 (n, γ)
else cell z ≡ n(y) ;

state n1 ≡ n	 y ;
cellsequ β1 ≡ <y> +γ ;
if z 6∈ keys(n)

then [y 7→ z] ∪ sreach4 (n1, β1)
else state n2 ≡ n1 	 z ;

cellsequ β2 ≡ <z> +β1 ;
[y 7→ z] ∪ sreach4 (n2, β2) fi fi fi .

7.6 Integration of Chaining

Next we transform sreach4 into a tail recursion and add chaining. In a first step we add a parameter
m that accumulates — not, as usual, the intermediate results themselves, but — chainings of the
intermediate results. This will make the chaining step very easy. We specify

sreach5 (n, β,m)
def≡ P5(n, β,m) � unchain(m) ∪ sreach4 (n, β) .

The assertion P5 collects all the invariants we need for the further development; in it we use the
function

cinner(m)
def≡

⋃
x∈src(m)

inner(from(x,m)) .

Then

P5(n, β,m)
def≡ P4(n, β)
∧ ischaining(m)
∧ cinner(m) ∩ keys(n) = ∅
∧ ↓n ∩ ↓m = ∅
∧ ↑arcs(n) ⊆ keys(n) ∪ src(m)
∧ keys+ = keys+(n) ∪ src(m)
∧ β 6= ∅ ⇒ set(rest(β)) ⊆ 2↓m
∧ src(m) = {z ∈ keys+ | set(β) ∩ [z : nextn(z)[6= ∅}
∧ cinner(m) =⋃

{]z : y] | z ∈ src(m) ∧ y ∈]z : nextn(z)[∩set(β)}

36

We have the embedding

sreach(n0, t) ≡ sreach5 (n0, sort(t), [t 7→ 2]) .

Note that unchain([t 7→ 2]) ≡ ∅. Recall now from Section 6.3.3 that for a chaining m and for
y, z 6∈ cinner(m)

unchain(m) ∪ [y 7→ z] ≡ unchain(insert(m, z, y))

where

insert(m, z, y) ≡ if z ∈ src(m) then m /−([z 7→ y] ∪ [y 7→ m(z)])
else m /−([z 7→ y] ∪ [y 7→ 2]) fi .

Therefore we obtain the recursion

sreach5 (n, β,m)
≡ P5(n, β,m) �

if β =<>
then unchain(m)
else cell y ≡ first(β) + 1 ;

cellsequ γ ≡ rest(β) ;
if y ∈ keys+

then sreach5 (n, γ,m)
else cell z ≡ n(y) ;

state n1 ≡ n	 y ;
cellsequ β1 ≡ <y> +γ ;
state m1 ≡ insert(m, z, y) ;
if z 6∈ keys(n)

then sreach5 (n1, β1,m1)
else state n2 ≡ n1 	 z ;

cellsequ β2 ≡ <z> +β1 ;
sreach5 (n2, β2,m1) fi fi fi .

Now chaining can be added simply by replacing unchain(m) by m in the body of sreach5 . We
take P6 ≡ P5 and define

sreach6 (n, β,m)
≡ P6(n, β,m) �

if β =<>
then m
else cell y ≡ first(β) + 1 ;

cellsequ γ ≡ rest(β) ;
if y ∈ keys+

then sreach6 (n, γ,m)
else cell z ≡ n(y) ;

state n1 ≡ n	 y ;
cellsequ β1 ≡ <y> +γ ;
state m1 ≡ insert(m, z, y) ;
if z 6∈ keys(n)

then sreach6 (n1, β1,m1)
else state n2 ≡ n1 	 z ;

cellsequ β2 ≡ <z> +β1 ;
sreach6 (n2, β2,m1) fi fi fi .

37

Now we have
sreach5 (n, β,m) ≡ unchain(sreach6 (n, β,m)) ,

(a proof of this fact is provided by the implementation rule RANGE in [Berghammer, Ehler 90])
and consequently

sreach(n0, t) ≡ unchain(sreach6 (n0, sort(t), [t 7→ 2])) .

Therefore
csreach(n, t)

def≡ sreach6 (n, sort(t), [t 7→ 2])

satisfies the required equation (CSR) from Section 7.1.

7.7 Improving Space Efficiency

As standing, the algorithm for csreach still uses the three “large” parameters n, β and m. In the
case of garbage collection, however, there is no space available for these parameters. So we need
to represent them by one map parameter, viz. by the store itself. The assertion P5(≡ P6) clearly
indicates how to proceed: The conjunct ↓m∩↓n = ∅ allows us to simply unify n and m; moreover,
since set(rest(β)) ⊆ 2↓m we may overwrite m with (a map representation of) rest(β) without
losing essential information about m. To this end, we define (using operations from Section 6.3)
for sequences γ ∈ (cell\{2})∗

map(γ)
def≡ repetitionfree(γ) �

if γ =<> then ∅ else prefix (first(γ),map(rest(γ))) fi ,

and for maps c and cells v such that isanchored(c) ∧ v ∈ set(c),

seq(v, c)
def≡ if v = 2 then <> else <v> +seq(c(v), c	 v) fi .

If v ≡ first(c) this may be rewritten as

seq(v, c) ≡ if v = 2 then <> else <v> +seq(c(v), rest(c)) fi .

Then obviously
seq(tfirst(γ),map(γ)) ≡ γ ,

where
tfirst(γ)

def≡ if γ =<> then 2 else first(γ) fi

and
set(γ)

def≡ ↓map(γ) .

Hence we have isanchored(map(γ)) and map(γ) represents set(γ).

We want to represent the sequence β in sreach6 by the triple (y, v, c) where

y
def≡ tfirst(β) + 1 ,

v
def≡ tfirst(trest(β)) ,

c
def≡ map(trest(β))

and
trest(γ)

def≡ if γ =<> then <> else rest(γ) fi .

38

We can retrieve β from (y, v, c) by virtue of

β ≡ <y − 1> +seq(v, c) .

Hence we define

sreach7 (n, y, v, c,m)
def≡ P7(n, y, v, c,m) � sreach6 (n,<y − 1> +seq(v, c),m)

where

P7(n, y, v, c,m)
def≡ isanchored(c) ∧ v ∈ set(c)
∧. P5(n,<y − 1> +seq(v, c),m)
∧ y 6∈ ↓c
∧ set(seq(v, c)) = ↓c .

We have
sreach(n0, t) ≡ unchain(sreach7 (n0, y, v, c,m))

where

y
def≡ tmin(t) + 1 ,

v
def≡ tmin(t\{tmin(t)}) ,

c
def≡ map(t\{tmin(t)}) ,

m
def≡ [t 7→ 2]

and
tmin(t)

def≡ min(t ∪ {2}) .

Note that v ≡ first(c). To find a recursion for sreach7 we consider values n, y, v, c,m satisfying
the invariant P7(n, y, v, c,m). Define

β ≡ <y − 1> +seq(v, c) .

Then
y ≡ first(β) + 1 ,
seq(v, c) ≡ rest(β) .

Case 1: y ∈ keys+.
Then

sreach7 (n, y, v, c,m) ≡ sreach6 (n, seq(v, c),m) .

If v ≡ 2 then seq(v, c) ≡ <> and hence

sreach6 (n, seq(v, c),m) ≡ m .

Otherwise,
seq(v, c) ≡ <v> +seq(c(v), rest(c)) ,

which implies that

sreach6 (n, seq(v, c),m) ≡ sreach7 (n, v + 1, c(v), rest(c),m) .

Case 2: y 6∈ keys+.
Define

z
def≡ n(y) and m1

def≡ insert(m, z, y) .

If z 6∈ keys(n)

39

sreach7 (n, y, v, c,m)
≡ sreach6 (n	 y,<y> +rest(β),m1)
≡ sreach6 (n	 y,<y> +seq(v, c),m1)
≡ sreach7 (n	 y, y + 1, v, c,m1) .

Otherwise,

sreach7 (n, y, v, c,m)
≡ sreach6 (n	 y 	 z,<z> + <y> +seq(v, c),m1)
≡ sreach7 (n	 y 	 z, z + 1, y, prefix (y, c),m1)

because y 6∈ ↓c implies

seq(y, prefix (y, c)) ≡ <y> +seq(v, rest(prefix (y, c))) ≡ <y> +seq(v, c) .

Hence we obtain the recursion

sreach7 (n, y, v, c,m)
≡ P7(n, y, v, c,m) �

if y ∈ keys+

then if v = 2

then m
else sreach7 (n, v + 1, c(v), rest(c),m) fi

else cell z ≡ n(y) ;
state m1 ≡ insert(m, z, y) ;
if z 6∈ keys(n)

then sreach7 (n	 y, y + 1, v, c,m1)
else sreach7 (n	 y 	 z, z + 1, y, prefix (y, c),m1) fi fi .

Now we unite the parameters n, c,m into one map parameter l. We define

sreach8 (n, y, v, c,m, l)
def≡ P8(n, y, v, c,m, l) � n /−sreach7 (n, y, v, c,m)

where
P8(n, y, v, c,m, l)

def≡ P7(n, y, v, c,m) ∧ l = n ∪ (m /−c) .

Let now n, y, v, c,m, l be such that P8(n, y, v, c,m, l) holds.

Case 1: y ∈ keys+.
If v ≡ 2 then c ≡ ∅ and hence

sreach8 (n, y, v, c,m, l) ≡ n /−m ≡ n ∪m ≡ l .

Otherwise,

sreach8 (n, y, v, c,m, l) ≡ sreach8 (n, v + 1, l(v), rest(c),m, l /−[v 7→ 2])

because c(v) ≡ l(v) and v ∈ ↓c ⊆ 2↓m together with n ∪ (m /−c) ≡ l implies n ∪ (m /−rest(c))
≡ l /−[v 7→ 2].

Case 2: y 6∈ keys+.

Define z
def≡ n(y) ≡ l(y) and m1

def≡ insert(m, z, y). If z 6∈ keys(n) then

sreach8 (n, y, v, c,m, l) ≡ sreach8 (n	 y, y + 1, v, c,m1, n	 y ∪ (m1 /−c)) .

Since z ∈ ↑arcs(n) ⊆ keys(n) ∪ src(m) and cinner(m) ∩ keys+ ≡ ∅, we have

z 6∈ keys(n) ⇔ z ∈ src(m) ⇔ m(z) 6≡ 2 ⇔ l(z) 6≡ 2 .

40

Moreover, z ∈ src(m) implies

m1 ≡ m /−([z 7→ y] ∪ [y 7→ m(z)])

by definition of insert . Furthermore, since

↓c ≡ set(seq(v, c)) ⊆ 2↓m

and y, z 6∈ 2↓m, we get y, z 6∈ ↓c and therefore

m1 /−c ≡ (m /−c) /−([z 7→ y] ∪ [y 7→ m(z)]) .

Hence
n	 y ∪ (m1 /−c) ≡ l /−([z 7→ y] ∪ [y 7→ m(z)]) .

If z ∈ keys(n) (i.e., if l(z) ≡ 2) then

sreach8 (n, y, v, c,m, l) ≡ sreach8 (n	 y 	 z, z + 1, y, prefix (y, c),m1, l1)

where
l1

def≡ n	 y 	 z ∪ (m1 /−prefix (y, c)) .

Since z 6∈ src(m),
m1 ≡ m /−([z 7→ y] ∪ [y 7→ 2]) .

Furthermore, since z ∈ keys+ and inner(m) ∩ keys+ ≡ ∅, we get z 6∈ ↓m and thus again z 6∈ ↓c.
Therefore

l1 ≡ l /−([z 7→ y] ∪ [y 7→ v]) .

Summarizing this we obtain

sreach8 (n, y, v, c,m, l)
≡ P8(n, y, v, c,m, l) �

if y ∈ keys+

then if v = 2

then l
else sreach8 (n, v + 1, l(v), rest(c),m, l /−[v 7→ 2]) fi

else cell z ≡ l(y) ;
cell x ≡ l(z) ;
state m1 ≡ insert(m, z, y) ;
if x 6∈ keys(n)

then state c1 ≡ prefix (y, c) ;
sreach8 (n	 y 	 z, z + 1, y, c1,m1, l /−([z 7→ y] ∪ [y 7→ v]))

else sreach8 (n	 y, y + 1, v, c,m1, l /−([z 7→ y] ∪ [y 7→ x])) fi fi .

Eliminating the redundant parameters n, c,m we obtain our final algorithm

sreach9 (y, v, l)
≡ if y ∈ keys+

then if v = 2

then l
else sreach9 (v + 1, l(v), l /−[v 7→ 2]) fi

else cell z ≡ l(y) ;
cell x ≡ l(z) ;
if x = 2

then sreach9 (z + 1, y, l /−([z 7→ y] ∪ [y 7→ v]))
else sreach9 (y + 1, v, l /−([z 7→ y] ∪ [y 7→ x])) fi fi .

41

7.8 Assembling the Parts

We have to follow the chain of embeddings to obtain the final program for sreach. For n, y, v, c,m
such that P7(n, y, v, c,m) holds we have

n /−sreach7 (n, y, v, c,m)
≡ sreach8 (n, y, v, c,m, n ∪ (m /−c))
≡ sreach9 (y, v, n ∪ (m /−c)) .

In the sequel we will — for convenience — consider only singleton sets s ≡ {z0} (denoted just
by z0) of starting keys z0 ∈ keys(n0). To see what sreach9 really does, we define

m0
def≡ sreach7 (n0, z0 + 1,2, ∅, [z0 7→ 2]) ,

l0
def≡ sreach9 (z0 + 1,2, n0) .

Since n0 ∪ ([z0 7→ 2] ∪ ∅) ≡ n0 ∪ [z0 7→ 2] ≡ n0 by z0 ∈ keys(n0), we have l0 ≡ n0 /−m0 and
unchain(m0) ≡ sreach(n0, z0). Actually we want to compute m0; but sreach9 computes l0 which
is m0 plus the garbage l0 	 ↓m0. Thus we must try to retrieve m0 from l0. Let now

keys
def≡ keys(n0) .

The invariant P8 implies

keys ⊆ ↓l0 ,
src(m0) ≡ {z ∈ keys | l0(z) 6≡ 2} .

Furthermore,
↓m0 ≡

⋃
z∈src(m0)

ginner(l0, z)

because m0 is a chaining (cf. Section 6.3.4). Hence

m0

≡ l0|↓m0

≡ l0|(
⋃ {ginner(l0, z) | z ∈ keys ∧ l0(z) 6≡ 2}) .

We set
retrieve(l0)

def≡ l0|(
⋃
{ginner(l0, z) | z ∈ keys ∧ l0(z) 6≡ 2}) .

However, the operation retrieve will not be executed; we will just use it for further development.

We define a function ocsreach (overwritten, chained state reachability) by

ocsreach(n, z)
def≡ iscgstate(n) ∧ z ∈ keys(n) � sreach9 (z + 1,2, n)

(see Section 3.2 for iscgstate). We will not compute the test

iskey+(z)
def≡ z ∈ keys+

occurring within sreach9 , but regard it as an additional global parameter (to be realized e.g. by
a bit vector). Thus the complete program reads

funct ocsreach ≡ (state n, cell z) state :
sreach9 (z + 1,2, n)

where
funct sreach9 ≡ (cell y, v, state l) state :

42

if iskey+(y)
then if v = 2

then l
else sreach9 (v + 1, l(v), l /−[v 7→ 2]) fi

else cell z ≡ l(y) ;
cell x ≡ l(z) ;
if x = 2

then sreach9 (z + 1, y, l /−([z 7→ y] ∪ [y 7→ v]))
else sreach9 (y + 1, v, l /−([z 7→ y] ∪ [y 7→ x])) fi fi .

ocsreach meets the specification

sreach(n, z) ≡ unchain(retrieve(ocsreach(n, z)))

if n is a compressed state and z ∈ keys(n).

8 Copying Chained Graph States

In the preceding chapter we have shown how to compute from a compressed graph state

n0 ≡ blockrep(G0, g) ,

a membership test iskey+ for keys+(n0), and

s ≡ {z0} ⊆ keys(n)

a map
l0 ≡ ocsreach(n0, iskey+, z0)

such that
m0

def≡ retrieve(l0)

is a chained representation of arcs(n1) (so that unchain(m0) ≡ arcs(n1) ≡ sreach(n0, s)), where

n1
def≡ blockrep(Gs, g)

and
Gs

def≡ reach(G0, s) .

According to our problem analysis in Section 4.3 we are left with the task of computing the
compressed state ns ≡ blockrep(Gs, gs) (where gs is a perfect allocation of Gs) from n1 and the
collapsing map k defined by

k(g(x) + i)
def≡ gs(x) + i (x ∈ ↓Gs, i ∈ [0 : |G(x)|]).

We generalize this to the following problem: Given a graph G and an overlap-free and order-
preserving (but not necessarily gap-free) allocation g, compute from

n
def≡ blockrep(G, g)

the compressed state

nc
def≡ blockrep(G, gc)

43

for the unique compressing allocation gc of G.

In Section 4.3 we have already seen that nc is the copy of n via the collapsing map k; i.e.,
nc ≡ k ◦ n ◦ k−1, where k now is defined by

(K) k(g(x) + i)
def≡ gc(x) + i

for x ∈ ↓G and i ∈ [0 : |G(x)|]). Assuming, in accordance with the situation above, that we

have a map l such that m
def≡ retrieve(l) is a chained representation of arcs(n), we have the

decomposition

n
≡ n2 ∪ arcs(n)
≡ n2 ∪ unchain(m)

where
n2

def≡ n|keys(n) (≡ n\arcs(n)) .

Now we can employ the functions derived in Chapter 6 to calculate

nc
≡ k ◦ n ◦ k−1
≡ k ◦ (n2 ∪ unchain(m)) ◦ k−1
≡ (k ◦ n2 ◦ k−1) ∪ (k ◦ unchain(m) ◦ k−1)
≡ (since k(2) ≡ 2)

(n2 ◦ k−1) ∪ copy(m, k)
≡ copass(n2, k) ∪ copass(relocate(m, k), k) .

By the definition of copass we have

copass(n2, k)

≡
⋃

z∈↓n2

[k(z) 7→ n2(z)]

≡
⋃

z∈↓n2

[k(z) 7→ 2] .

Furthermore we define

p
def≡ relocate(m, k) ≡ k ◦ arcs(n) ,

size(z)
def≡ succkeys+(z)− z .

Using that

↓p
≡ ↓arcs(n)

≡
⋃

z∈keys(n)
[z + 1 : z + size(z)]

we obtain

copass(p, k)

≡
⋃
x∈↓p

[k(x) 7→ p(x)]

≡
⋃

z∈keys(n)

⋃
i∈[1:size(z)]

[k(z + i) 7→ p(z + i)] .

Therefore

44

nc
≡ copass(n2, k) ∪ copass(p, k)

≡
⋃

z∈keys(n)
([k(z) 7→ 2] ∪ (

⋃
i∈[1:size(z)]

[k(z) + i 7→ p(z + i)])

since k(z + i) ≡ k(z) + i for i ∈ [1 : size(z)].

Thus our problem divides into two parts:

1. Compute p ≡ relocate(m, k) from l.

2. Compute the union above.

8.1 Relocation Pass

By the definition of relocate (cf. Section 6.3.4) it is immediate that

relocate(m, k) ≡
⋃

z∈keys(n)
fibre(m, z, k(z))

where
fibre(m, z, y) ≡ [ginner(m, z) 7→ y] ,

because src(m) ≡ keys(n). We aim at an algorithm that traverses the set keys(n) in ascending
order. Therefore we try to compute k(nextn(z)) (cf. Section 7.5) incrementally from k(z) (for

z ∈ keys(n) ∪ {2} such that
∨
z ∩keys+(n)\{z} 6≡ ∅; cf. Section 2.2.2 for

∨
z). Let

z1
def≡ nextn(z) ,

x
def≡ g−1(z) .

Then, since g is order-preserving,

z1 ≡ nextn(g(x)) ≡ g(succ↓G(x)) .

Therefore

k(z1)
≡ k(g(succ↓G(x)))

≡ (by (K))

gc(succ↓G(x))

≡ (by Theorem 3.2.6)

gc(x) + size(x)

≡ (since n ≡ blockrep(G, g))

k(g(x)) + size(g(x))
≡ k(z) + size(z) .

Suppressing the parameter k we define

relocate1 (m, z, y)
def≡ y = k(z) �

⋃
x∈keys(n)\

∧
z

fibre(m,x, k(x))

with the embedding
relocate(m, k) ≡ relocate1 (m,2,2) .

Immediately we obtain the recursion

45

relocate1 (m, z, y)
≡ y = k(z) � if nextn(z) 6∈ keys

then ∅
else fibre(m, nextn(z), y + size(z)) ∪

relocate1 (m, nextn(z), y + size(z)) fi .

Because we are given keys+ rather than keys+(n), we want to derive an algorithm based on

next(x)
def≡ succkeys+(x)

rather than on nextn. To this end we introduce

predn(x)
def≡ sup(keys(n) ∩ ∧

x \{x})

and define

relocate2 (m, z, y, x)
def≡ x ∈ keys+ ∧ predn(x) = z � relocate1 (m, z, y)

with the embedding

relocate(m, k) ≡ relocate1 (m,2,2) ≡ relocate2 (m,2,2,2 + 1) .

Now assume predn(x) ≡ z.

Case 1: x ≡ bound .
Then z ≡ bound(n) and therefore relocate1 (m, z, y) ≡ ∅.
Case 2: x ∈ keys\keys(n).
Then predn(next(x)) ≡ predn(x) ≡ z and thus

relocate2 (m, z, y, x) ≡ relocate2 (m, z, y, next(x)) .

Case 3: x ∈ keys(n).
Then predn(next(x)) ≡ x ≡ nextn(z). Therefore, by the recursion for relocate1 ,

relocate2 (m, z, y, x)
≡ relocate1 (m, z, y)
≡ fibre(m,x, y + size(z)) ∪ relocate1 (m,x, y + size(z))
≡ fibre(m,x, y + size(z)) ∪ relocate2 (m,x, y + size(z), next(x)) .

Thus, defining

R(m, z, y, x)
def≡ x ∈ keys+ ∧ y = k(x) ∧ predn(x) = z

we get the recursion

relocate2 (m, z, y, x)
≡ R(m, z, y, x) �

if x = bound
then ∅
else if x 6∈ keys(n)

then relocate2 (m, z, y, next(x))
else cell y1 ≡ y + size(z) ;

cell x1 ≡ next(x) ;
fibre(m,x, y1) ∪ relocate2 (m,x, y1, x1) fi fi .

46

The body of the function copass is, like the body of relocate , a union over the index set keys(n).
Thus, forming copass requires a second traversal of keys(n) and therefore of keys since we only have
keys (and not keys(n)) as a primitive. But if we compute nextn (as a map) simultaneously with
relocate , we can afterwards use it to traverse keys(n), thus improving speed efficiency considerably.
To this end we define

mapnext(n)
def≡ (

⋃
y∈keys(n)∪{2}

[y 7→ nextn(y)]) ∪ [bound(n) 7→ 2]

≡ (
⋃

y∈keys(n)
[predn(y) 7→ y])∪

[predn(bound(n)) 7→ bound(n)] ∪ [bound(n) 7→ 2] .

Then
mapnext(n)(y) ≡ nextn(y) for y ∈ keys(n) ∪ {2} (≡ ↓nextn) .

Applying similar techniques as in the case of relocate , we generalize mapnext to

mapnext1 (n, z, x)
def≡ x ∈ keys+ ∧ z = predn(x) �

(
⋃

y∈keys(n)\
∧
z

[predn(y) 7→ y])∪

[predn(bound(n)) 7→ bound(n)] ∪ [bound(n) 7→ 2]

with the embedding
mapnext(n) ≡ mapnext1 (n,2, n) .

We obtain the recursion

mapnext1 (n, z, x)
≡ x ∈ keys+ ∧ z = predn(x) �

if x = bound
then [z 7→ next(z)] ∪ [next(z) 7→ 2]
else if x 6∈ keys(n)

then mapnext1 (n, z, next(x))
else mapnext1 (n, x, next(x)) ∪ [z 7→ x] fi fi .

The recursions for relocate2 and mapnext1 fit together nicely. Furthermore, ↓relocate2 (n, z, y, x) ⊆
↓arcs(n) and ↓mapnext1 (n, z, x) ⊆ keys+(n) ∪ {2}, which implies that these domains are disjoint.
Hence we may define

relocate3 (m, z, y, x)
def≡ relocate2 (n, z, y, x) ∪mapnext1 (m, z, x)

and obtain by function combination (see [Berghammer, Ehler 90]) the recursion

relocate3 (m, z, y, x)
≡ R(m, z, y, x) �

if x = bound
then [z 7→ next(z)] ∪ [next(z) 7→ 2]
else if x 6∈ keys(n)

then relocate3 (m, z, y, next(x))
else cell y1 ≡ y + size(z) ;

cell x1 ≡ next(x) ;
fibre(m,x, y1) ∪ [z 7→ x] ∪ relocate3 (m,x, y1, x1) fi fi .

47

We have
relocate(m, k) ∪mapnext(m) ≡ relocate3 (m,2,2,2 + 1) .

Now we transform relocate3 in such a way that it works on l rather than on m ≡ retrieve(l).
Recall that

retrieve(l) ≡ l|↓m ≡ l|(
⋃
{ginner(l, z) | z ∈ keys ∧ l(z) 6≡ 2})

and keys(n) ≡ src(m) since n ≡ unchain(m). Thus, for x ∈ keys+,

x 6∈ keys(n) ⇔ l(z) ≡ 2

and
fibre(m,x, y) ≡ fibre(l, x, y) .

Hence we obtain for

relocate4 (l, z, y, x)
def≡ relocate3 (retrieve(l), z, y, x)

the recursion

relocate4 (l, z, y, x)
≡ R(retrieve(l), z, y, x) �

if x = bound
then [z 7→ next(z)] ∪ [next(z) 7→ 2]
else if l(x) = 2

then relocate4 (l, z, y, next(x))
else cell y1 ≡ y + size(z) ;

cell x1 ≡ next(x) ;
fibre(l, x, y1) ∪ [z 7→ x] ∪ relocate4 (l, x, y1, x1) fi fi .

Since for the initial call relocate4 (l,2,2,2+1) the assertion is satisfied, we may omit it (cf. [Möller
89] for a formal treatment of this step). Furthermore we may add an accumulating parameter q to
obtain a tail-recursive form. Finally — to prepare overwriting — we replace in the second recursive
call l by l 	 l∗(x) where

l∗(x)
def≡

⋃
i∈IN

x↑li(x) ;

this does not affect the algorithm. The result is

relocate5 (l, z, y, x, q)
≡ R(retrieve(l), z, y, x) �

if x = bound
then q ∪ [z 7→ next(z)] ∪ [next(z) 7→ 2]
else if l(x) = 2

then relocate5 (l, z, y, next(x), q)
else cell y1 ≡ y + size(z) ;

cell x1 ≡ next(x) ;
state l1 ≡ l 	 l∗(x) ;
state q1 ≡ q ∪ fibre(l, x, y1) ∪ [z 7→ x] ;
relocate5 (l1, x, y1, x1, q1) fi fi .

Defining

nrelocate(l)
def≡ relocate(retrieve(l), k) ∪mapnext(n) ,

48

where n is the state to be compressed, we obtain

nrelocate(l) ≡ relocate5 (l,2,2,2 + 1, ∅) .

Obviously the property ↓l ∩ ↓q = ∅ is an invariant for relocate5 . Thus we may carry l ∪ q on a
new parameter lq . This gives our final version

relocate6 (lq , z, y, x)
≡ if x = bound

then lq ∪ [z 7→ next(z)] ∪ [next(z) 7→ 2]
else if lq(x) = 2

then relocate6 (lq , z, y, next(x))
else cell y1 ≡ y + size(z) ;

cell x1 ≡ next(x) ;
state lq1 ≡ lq /−(fibre(lq , x, y1) ∪ [z 7→ x]) ;
relocate6 (lq1, x, y1, x1) fi fi .

relocate6 satisfies

l /−nrelocate(l) ≡ relocate6 (l,2,2,2 + 1)
def≡ onrelocate(l)

for l such that retrieve(l) is a chained map representation.

8.2 Copying Pass

We have seen that the relocation pass returns a union of the state p
def≡ relocate(m, k) and the

map l
def≡ mapnext(n) where

p ≡ relocate(m, k) ≡
⋃

z∈keys(n)
fibre(m, z, k(z))

and
l(y) ≡ mapnext(n)(y) ≡ nextn(y)

for y ∈ keys(n) ∪ {2}. We recall that l(2) is the minimum of keys+(n) and l(bound(n)) ≡ 2.

Moreover, ↓p ∩ ↓l ≡ ∅ making the union p ∪ l a well-defined map. We set lp
def≡ p ∪ l. Now we

have to construct nc from lp based on the values size(z) for z ∈ keys(n); we call the corresponding
function copypass , so that

nc ≡ copypass(lp) .

As stated before, nc is represented by

nc ≡
⋃

z∈keys(n)
([k(z) 7→ 2] ∪

⋃
i∈[1:size(z)]

[k(z) + i 7→ p(z + i)]) ,

where now lp can be substituted for p. We define, for z ∈ keys(n),

fibrecopass(z, lp, k(z))
def≡ [k(z) 7→ 2] ∪

⋃
i∈[1:size(z)]

[k(z) + i 7→ lp(z + i)])

and
fibrecopass(2, lp,2)

def≡ ∅ .

49

Next, for y ∈ keys+(n) ∪ {2} we define

copass1 (y, lp, k)
def≡

⋃
z∈keys(n)\

∨
y

fibrecopass(z, lp, k(z)) .

Then
nc ≡ copass1 (bound(n), lp, k) .

We have the following recursion equations:

copass1 (nextn(2), lp, k) ≡ ∅ ,
copass1 (nextn(y), lp, k) ≡ copass1 (y, lp, k) ∪ fibrecopass(y, lp, k(y))

for y 6≡ 2. Embedding with an accumulator nc leads to the “ascending” recursion

copass2 (nc, y, lp, k)
≡ nc = copass1 (y, lp, k) �

if y = bound(n)
then nc
else copass2 (nc ∪ fibrecopass(y, lp, k(y)), nextn(y), lp, k) fi

with
copass2 (∅, nextn(2), lp, k) ≡ copass1 (bound(n), lp, k) .

The last equation is a consequence of the recursion equations and of the finiteness of the function
nextn. Hence we can compute nc as

nc ≡ copass2 (∅, nextn(2), lp, k) .

Obviously, the collapsing map k is only used in computing fibrecopass(y, lp, k(z)); moreover, in
this k is only used to yield k(y). As already shown in Section 3.2, k satisfies the recursion equation

k(nextn(y)) ≡ k(y) + size(y)

for y ∈ keys(n) such that nextn(y) 6≡ bound(n). Hence we can eliminate k and use its values on
the single cells instead. Second, copass2 (nc, y, lp, k) in fact only depends on the restriction of lp

to
∨
y. Therefore we can replace copass2 by

copass3 (nc, y, lp, c1)
≡ if y = bound(n)

then nc
else cell y1 ≡ nextn(y) ;

cell c2 ≡ c1 + size(y) ;

copass3 (nc ∪ fibrecopass(y, lp, c1), y1, lp|
∨
y1, c2) fi .

Furthermore, the condition y = bound(n) can be equivalently replaced by lp(y) ≡ 2; also, lp(y)
can be substituted for nextn(y), since nextn(y) ≡ lp(y) for all y ∈ keys(n) ∪ {2}.

For our last modification we observe that under the assertion nc ∩ lp| ∨
y1= ∅ also

(nc ∪ fibrecopass(y, lp, c1)) ∩ lp| ∨
y1 ≡ ∅ .

Thus we can overwrite lp using

50

copass4 (nlp, y, c1)
≡ if nlp(y) = 2

then nlp
else cell y1 ≡ nlp(y) ;

cell c2 ≡ c1 + size(y) ;
copass4 (nlp ∪ fibrecopass(y, nlp, c1), y1, c2) fi .

Now we are in the position to compute nc from lp by a copy pass, viz.

nc ≡ copypass(lp) ≡ n′c|{|↓n|}∧

where
n′c

def≡ copass4 (lp, nextn(2),2 + 1) .

Note that, in general, nc 6≡ n′c since n′c may contain parts of lp that are not overwritten by copass4 .
It should also be clear that the computation of fibrecopass(y, nlp, c1) is elementary.

8.3 Integrating the Relocation and Copying Passes

Summarizing the results of the preceding sections we obtain the following: Assume that m ≡
retrieve(l) and n ≡ unchain(m). Then

copypass(onrelocate(l))
≡ copypass(l /−nrelocate(l))
⊇ copass(relocate(m, k), k)
≡ copy(n, k)
≡ nc .

Thus,

ocopy(l)
def≡ copypass(onrelocate(l))

is nc, generally together with some garbage attached to the end of nc which, however, is easily
deleted. Hence ocopy solves the copying part of our garbage collection problem. The complete
program for it reads

funct ocopy ≡ (state l) state :
d funct fibre ≡ (state m, cell z, y, x) state :� body of fibre � ,

funct relocate6 ≡ (state lq , cell z, y, x) state :� body of relocate6 � ,
funct onrelocate ≡ (state l) state :

relocate6 (l,2,2,2 + 1) ,
funct copass4 ≡ (state nlp, cell y, c1) state :� body of copass4 � ,
funct copypass ≡ (state l) state :

copass4 (lp, nextn(2),2 + 1)|{|↓n|}∧ ;

copypass(onrelocate(l)) c .

9 Summary and Conclusion

9.1 The Complete Algorithm

If we assemble the algorithms from Chapters 7 and 8, we obtain the following garbage collection
program:

51

funct garcoll ≡ (state n, cell z : iscgstate(n) ∧ z ∈ keys(n)) state :
d cell bound ≡ sup(↓n) + 1;

funct iskey+ ≡ (cell x) bool : x ∈ keys(n) ∪ {bound},

funct ocsreach ≡ (state n, cell z) state :
sreach9 (z + 1,2, n) ,

funct sreach9 ≡ (cell y, v, state l) state :
if iskey+(y)
then if v = 2

then l
else sreach9 (v + 1, l(v), l /−[v 7→ 2]) fi

else cell z ≡ l(y) ;
cell x ≡ l(z) ;
if x = 2

then sreach9 (z + 1, y, l /−([z 7→ y] ∪ [y 7→ v]))
else sreach9 (y + 1, v, l /−([z 7→ y] ∪ [y 7→ x])) fi fi ,

funct ocopy ≡ (state l) state :
copypass(onrelocate(l)) ,

funct onrelocate ≡ (state l) state :
relocate6 (l,2,2,2 + 1) ,

funct relocate6 ≡ (state lq , cell z, y, x) state :
if x = bound
then lq ∪ [z 7→ next(z)] ∪ [next(z) 7→ 2]
else if lq(x) = 2

then relocate6 (lq , z, y, next(x))
else cell y1 ≡ y + size(z) ;

cell x1 ≡ next(x) ;
state lq1 ≡ lq /−(fibre(lq , x, y1) ∪ [z 7→ x]) ;
relocate6 (lq1, x, y1, x1) fi fi ,

funct fibre ≡ (state l, cell x, y : isanchored(l) ∧ x ∈ ↓l) state :
d cell z ≡ l(x) ;

if z = 2 then ∅ else [z 7→ y] ∪ fibre(l, z, y) fi c ,
funct copypass ≡ (state l) state :

copass4 (lp, nextn(2),2 + 1)|{|↓n|}∧ ;
funct copass4 ≡ (state nlp, cell y, c1) state :

if nlp(y) = 2

then nlp
else cell y1 ≡ nlp(y) ;

cell c2 ≡ c1 + size(y) ;
copass4 (nlp ∪ fibrecopass(y, nlp, c1), y1, c2) fi ;

ocopy(ocsreach(n, z)) c .

In this version the compressed state

nc
def≡ garcoll(n, z)

may still contain garbage in the cells greater than bound(nc). But this does not matter because
we can easily calculate bound(nc) and thus we know which cells are free for subsequent re-use.
The computation of bound(nc) can even be combined with the routine relocate6 , since in the

52

termination case x = bound we have bound(nc) ≡ y + size(z). As a final step, one can now pass
immediately to a procedural version of this algorithm and thus introduce selective updating. Note
that no further development at that level is necessary.

9.2 Discussion

The algebra of maps has proved to be an invaluable tool in our derivation of the garbage collection
algorithm. It has allowed us to carry out the development in full detail without leading to unman-
ageably complex expressions. It also has allowed us to stay entirely at the applicative language
level where calculation is easy due to the strong algebraic properties of applicative languages.
We are convinced that this way of approaching machine-oriented programs is an important step
towards achieving systems software with guaranteed correctness.

It is to be hoped that the theory about states and chained representations developed in this paper
can be re-used for further transformational studies of pointer algorithms. Apart from this, the
development shows the importance and feasibility of early modularization of a specification; the
transformational approach is strong enough to allow efficiency-increasing integration of program
parts that have been developed independently.

Acknowledgement
We are grateful to R. Tobiasch for drawing our attention to the garbage collection problem.
Valuable comments and suggestions concerning this paper have been provided by F.L. Bauer,
R. Berghammer, R. Dewar, W. Dosch, M. Lichtmannegger, H. Partsch, P. Pepper, M. Sintzoff,
and, in particular, by H. Ehler.

53

10 References

[Bauer, Wössner 82]
F.L. Bauer, H. Wössner: Algorithmic language and program development. New York: Springer
1982

[Bauer et al. 85]
F.L. Bauer et al.: The Munich project CIP. Volume I: The wide spectrum language CIP-L. Lecture
Notes in Computer Science 183. New York: Springer 1985

[Berghammer, Ehler 90]
R. Berghammer, H. Ehler: On the use of elements of functional programming in program devel-
opment by transformations. This volume

[Berghammer et al. 87]
R. Berghammer, H. Ehler, H. Zierer: Development of graph algorithms by program transformation.
In: H. Göttler, H.-J. Schneider (eds.): Graph-theoretic concepts in computer science. Lecture Notes
in Computer Science 314. Berlin: Springer 1988, 206–218

[Broy, Pepper 82]
M. Broy, P. Pepper: Combining algebraic and algorithmic reasoning: An approach to the Schorr-
Waite-Algorithm. ACM TOPLAS 4, 362–381 (1982)

[Dewar, McCann 77]
R. Dewar, A. McCann: MACRO SPITBOL — a SNOBOL4 compiler. Software — Practice and
Experience 7, 95–113 (1977)

[Dewar et al. 82]
R. Dewar, M. Sharir, E. Weixelbaum: Transformational derivation of a garbage collection algo-
rithm. ACM TOPLAS 4, 650–667 (1982)

[van Diepen, de Roever 86]
N. van Diepen, W. de Roever: Program derivation through transformations: The evolution of
list-copying algorithms. Science of Computer Programming 6, 213–272 (1986)

[Möller 87]
B. Möller: Entwicklung eines Speicherbereinigungsalgorithmus. Institut für Informatik der TU
München, Manuscript, October 1987

[Möller 89]
B. Möller: Applicative assertions. In : J.L.A. van de Snepscheut (ed.): Mathematics of Program
Construction, Groningen, 26–30 June 1989. Lecture Notes in Computer Science 375. Berlin: Sprin-
ger 1989, 348–362

[Möller 90]
B. Möller: Formal derivation of pointer algorithms. In: M. Broy (ed.): Informatik im Kreuzungs-
punkt von Numerischer Mathematik, Rechnerentwurf, Programmierung, Algebra und Logik. Fest-
kolloquium, München, 12.–14. Juni 1989. Lecture Notes in Computer Science (to appear)

54

11 Appendix: Some Properties of Map Operations

All properties in this appendix are stated without proof. We group them according to the map
operations they involve.

11.1 Domain and Range

(1) t↓m ⊆ ↓m
(3) s ⊆ t ⇒ s↓m ⊆ t↓m
(5) s↓m ≡ ↓m\s↓m ∪ ↓m
(7) s ⊆ ↓m ⇒ (s↑m)↓m ⊇ s
(9) s ⊆ t↓m ⇒ s↑m ⊆ t
(11) (↑m)↓m ≡ ↓m
(13) s↓(m ∪ n) ≡ s↓m ∪ s↓n
(15) t↑(m ∪ n) ≡ t↑m ∪ t↑n
(17) m ⊆ n ⇒ s↓m ⊆ s↓n

(2) s↑m ⊆ ↑m
(4) s ⊆ t ⇒ s↑m ⊆ t↑m
(6) (↑m)\t ≡ t↓m↑m
(8) t ⊆ ↑m ⇒ (t↓m)↑m ≡ t
(10) t ⊇ s↑m ⇒ t↓m ⊇ s
(12) (↓m)↑m ≡ ↑m
(14) ↓(m ∪ n) ≡ ↓m ∪ ↓n
(16) ↑(m ∪ n) ≡ ↑m ∪ ↑n
(18) m ⊆ n ⇒ s↑m ⊆ s↑n

11.2 Restriction

(1) m|s ⊆ m
(3) s ⊆ ↓m ⇒ m|s ≡ ∅
(5) m|∅ ≡ ∅
(7) ↓m ⊆ s ⇒ m|s ≡ m
(9) m|↓m ≡ m
(11) (m|s)|t ≡ m|(s ∩ t)
(13) m|(s ∪ t) ≡ m|s ∪m|t
(15) m|(s ∩ t) ≡ m|s ∩m|t
(17) m|(s\t) ≡ m|s ∩m	 t
(19) t↓(m|s) ≡ (t↓m) ∩ s
(21) ↓(m|s) ≡ ↓m ∩ s
(23) t↑(m|s) ≡ (t ∩ s)↑m
(25) ↑(m|s) ≡ s↑m
(27) (m ∪ n)|s ≡ m|s ∪ n|s

(2) m	 s ⊆ m
(4) s ⊆ ↓m ⇒ m	 s ≡ m
(6) m	 ∅ ≡ m
(8) ↓m ⊆ s ⇒ m	 s ≡ ∅
(10) m	 ↓m ≡ ∅
(12) (m	 s)	 t ≡ m	 (s ∪ t)
(14) m	 (s ∪ t) ≡ m	 s ∩m	 t
(16) m	 (s ∩ t) ≡ m	 s ∪m	 t
(18) m	 (s\t) ≡ m	 s ∪m|t
(20) t↓(m	 s) ≡ (t↓m)\s
(22) ↓(m	 s) ≡ ↓m\s
(24) t↑(m	 s) ≡ (t\s)↑m
(26) ↑(m	 s) ≡ s↑m
(28) (m ∪ n)	 s ≡ m	 s ∪m	 t

11.3 Overwriting

(1) ∅ /−m ≡ m /− ∅ ≡ m
(2) (l /−m) /−n ≡ l /−(m /−n)
(3) m /−n ≡ n /−m iff m and n are compatible.

In this case, m /−n ≡ m ∪ n .
(4) s↓(m /−n) ≡ (s↓m\↓n) ∪ s↓n
(5) ↓(m /−n) ≡ ↓m ∪ ↓n
(6) m /−n ≡ n⇔ ↓m ⊆ ↓n
(7) m /−n ≡ m⇔ n ⊆ m
(8) (m /−n)	 s ≡ (m	 (↓n ∪ s)) ∪ n	 s ≡ (m	 (↓n)	 s) ∪ n	 s
(9) ↑(m /−n) ≡ ↓n↑m ∪ ↑n

55

