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Abstract. We are interested in partitioning sparse rectangular matrices 
for parallel processing. The partitioning problem has been well-studied in 
the square symmetric case, but the rectangular problem has received very 
little attention. We will formalize the rectangular matrix partitioning 
problem and discuss several methods for solving it. We will extend the 
spectral partitioning method for symmetric matrices to the rectangular 
case and compare this method to three new methods - the alternating RECEI 

JON 1 0  partitioning method and two hybrid methods. The hybrid methods will 
be shown to be best. 

1 Introduction 

Organizing the nonzero elements of a sparse matrix into a desirable pattern is 
a key problem in many scientific computing applications, particularly load bal- 
ancing for parallel computation. In this paper we are interested in ordering the 
nonzeros of a given matrix into approximate block diagonal f o r m  via permuta- 
tions. This problem corresponds directly to the partitioning problem in graph 
theory, and so is often referred to as matrix partitioning. 

The partitioning problem has been well-studied in the symmetric case [l, 
2, 4, 11, 12, 13, 14, 15, 16, 21, 22, 231. The rectangular partitioning problem, 
however, has received very little attention; the primary reference in this area 
is Berry, Hendrickson, and Raghavan [3] on envelope reduction for hypertext 
matrices. 

Let A denote a sparse rectangular m x n matrix. We will assume throughout 
that we are working with pattern (0-1) matrices, but the results and methods can 
easily be extended to nonnegative weighted matrices. Our goal is to partition A 
into a block 2 x 2 matrix so that most of the nonzeros are on the block diagonal 
and so that each block diagonal has about the same number of nonzeros. In 
other words, we wish to find permutation matrices P and Q such that 
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where Bl2 and B21 are as sparse as possible and the block rows or block columns 
each have about the same number of nonzeros. In order to avoid a trivial solution 
(e.g., B11 = A),  we require that B11 have p rows and q columns where p is some 
integer between 1 and m- 1 and q is some integer between 1 and n- 1. The values 
p and g may or may not have been chosen in advance; typically we will want 
p x m/2 and q x n/2 to maintain load balance. If there exists P and Q such 
that B12 and B21 are identically zero, then we say that A is block diagonalizable. 
If we wish to partition A in a block 2k x Zk matrix, we can recursively partition 
the block diagonals. 

The matrix partitioning problem is equivalent to the edge-weighted graph 
partitioning problem: Given an undirected edge-weighted graph, partition the 
nodes into two sets of given sizes such that the sum of the weights of the edges 
that pass between the two sets is minimized. The graph partitioning problem 
is a well-known NP-complete problem (see problem ND14 on p. 209 in Garey 
and Johnson [6]).  A rectangular m x n matrix corresponds to a bipartite graph 
[3] with m left nodes and n right nodes. There is an edge between left node i 
and right node j if aij is nonzero, and the weight of the edge is one. See Fig. 1 
for an illustration. Suppose that we partition A so that the union of the first 
p rows and the first g columns form one partition and the remaining rows and 
columns form the other partition. The edges passing between the two partitions 
correspond to the nonzeros in the off-diagonal blocks of the partitioned matrix. 

Fig. 1. The bipartite graph of a rectangular matrix. 

Observe that the graph of A is disconnected if and only if the matrix A is 
block diagonalizable. Throughout we will assume that the graph of A is con- 
nected. If it is not, we will re-order the matrix so that it is block diagonalized 
with the blocks in decreasing order of size. We will only work with components 
that cross the boundary of the desired partition. In the discussion of the theory, 
we will assume that the graph of A is connected. 

Many iterative methods, e.g., LSQR[20] require matrix-vector and matrix- 
vector-transpose multiplies with rectangular matrices. In Sect. 2 we will describe 
how to  implement these kernels to take advantage of the partitioned matrix. 

In Sect. 3, we will present several algorithms for the rectangular partitioning 
problem. We will discuss the well-known spectral partitioning method and show 



how it can be applied to this problem. We will also introduce a new alternating 
partitioning method as well as two hybrid strategies. 

In Sect. 4, we will compare the various partitioning methods, and show that 
the hybrid methods are the best. 

2 Parallel Matrix-Vector Multiplication 
We propose the following parallel implementations for the matrix-vector and 
matrix-transpose-vector multiplications. Suppose that we have T = 2k proces- 
sors. We partition A into a block T x T matrix, 

A21 A22 * - A2r 

4 - 1  Ar2 * * Arr 

so that most of the nonzeros are in the diagonal blocks. Here block ( i , j )  is of 
size mi x nj where Ci mi = m and C j  nj = n. 

Matrix- Vector Multiply (Block Row). We do the following on each processor to 
compute y = Ax: 
1. 

2. 

3. 

4. 

5.  

Let i denote the processor id. This processor owns the ith block row of A,  
that is, [Ail Ai2 . - -  Ai , ] ,  and zi, the i th block of z of length ni. 
Send a message to each processor j # i for which Aji # 0. This message 
contains only those elements of zj corresponding to  nonzero columns in Aji.  
While waiting to receive messages, the processor computes the contribution 
from the diagonal matrix block, y j i )  = Aiizi. The block Aii, while still sparse, 
may be dense enough to  improve data locality. 
Then, for each j # i such that Aij is nonzero, a message is received containing 
a sparse vector Zj that only has the elements of xj corresponding to nonzero 
columns in Aij,  and yy) = Ai$+, is computed. (We assume that processor i 
already knows which elements to expect from processor j .) 
Finally, the i th block of the product y is computed via the sum yi = C j  yy). 
Block yi is of size mi. 

Matrix-Danspose-Vector Multiply (Block Row). To compute z = ATv, each 
processor does the following: 
1. Let i denote the processor id. This processor owns vi, the ith block of v of 

size mi, and the i th block row of A. 
2. Compute zJi) = Azvi,  for each j # i for which Aij # 0. Observe that the 

number of nonzeros in zji) is equal to the number of nonzero rows in A;, 
i.e., the number of nonzero columns in Aij. Send the nonzero' elements of 
z j  ( 2 )  to processor j .  

Here we mean any elements that are guaranteed to be zero by the structure of Aij. 
Elements that are zero by cancellation are still communicated. 



3. 

4. 

5 .  

While waiting to receive messages from the other processors, compute the 
diagonal block contribution zji) = AEvi. 
From each processor j such that Aji # 0, receive Zp) which contains only the 
nonzero elements of z p ) .  (Again, we assume that processor i already knows 
which elements to expect from processor j . )  
Compute the ith component of the product, zi = zji) + E. 3 f a  . d’). 1 Block zi 
is of size ni. 
Block column algorithms are analogous to those given for the block row 

layout. Observe that sparse off-diagonal blocks result in less message volume. 
See Hendrickson and Kolda [9] for more detail on the algorithm and for more 
details on potential applications. 

3 Algorithms for the Rectangular Partitioning Problem 

Here we will discuss how the well-known spectral method can be applied to the 
rectangular problem and introduce a new method that can be used on its own 
or in combination with other methods. The spectral method will be used as a 
basis for comparison to the new methods in Sect. 4. 

3.1 Spectral Partitioning 
In the symmetric problem, spectral partitioning based on the Fiedler vector is 
a well-known technique; see, for example, Pothen, Simon, and Liou [21]. Many 
people have studied the effectiveness of spectral graph partitioning; for exam- 
ple, Guattery and Miller [8] show that spectral partitioning can be bad, while 
Spielman and Teng [23] show that it can be good. 

One natural way to approach the rectangular problem is to symmetrize the 
matrix A,  yielding the (m + n) x (m + n) matrix 

and apply spectral partitioning to the symmetrized matrix. This approach is 
used by Berry et ai. [3]. Note that the graphs of A and A are the same. 

In order to apply spectral partitioning, we compute the Laplacian of A, 
L = D - A  , 

where D = diag(d1, dz,  . . . , dm+n} and di = C j  iiij. The matrix L is symmetric 
and semi-positive definite; furthermore, the multiplicity of the zero eigenvalue 
must be one since we are assuming that the graph of A,  and hence of A, is 
connected [5]. Let w denote the Fiedler vector of L, that is, the eigenvector 
corresponding to the smallest positive eigenvalue of L. Let u denote the first m 
and v the last n elements of w, and sort the elements of u and v so that 



Then {il,i~,. . . , im} and {jl,jz,. . . , jn }  define the row and column partitions 
respectively. In other words, assign rows il, iz, . . . , i, and columns j1, j 2 , .  . . , j q  to 
the first partition and the remaining rows and columns to the second partition. 
Note that the ordering is independent of p and q .  This means that the values of 
p and q may be fixed in advance as something like [m/21 and [n/21 respectively, 
or they may be chosen after the ordering has been computed to ensure good load 
balancing. 

In Sect. 4 we will use this method as a basis for comparison for our new 
methods. 

3.2 The Alternating Partitioning Method 

Rather than trying to compute both the row and column partitions simultane- 
ously as is done in the spectral method, the new method proposed in this section 
focuses on one partition at a time, switching back and forth. This method is de- 
rived from the Semi-Discrete Matrix Decomposition, a decomposition that has 
been used for image compression [19] and information retrieval [17, 181. 

Before we describe the method, we will re-examine the problem. If we let Z 
denote the set of row indices that are permuted to a value less than or equal to 
p and correspondingly let Z" denote the set of row indices permuted to a value 
greater than p and define the set ,7 in an analogous way for the columns, then 
we can write the rectangular partitioning problem as a maximization problem, 

Here the objective function is the sum of the nonzeros on the block diagonal 
minus the sum of the elements off the block diagonal. 

We can then rewrite this problem as an integer programming problem. Let x 
be a vector that defines the set membership for each row index; that is, xi = 1 
if row i is in Z, and xi = -1 if row i is in Z", and let the vector y be defined in 
an analogous way for the columns. Then we can rewrite problem (1) as 

maxsTAy , 
s.t. xi = f l  , yj = fl , 

x T e = 2 p - m  , y T e = 2 q - n ,  

where e denotes the ones vector whose length is implied by the context. 
Although we cannot solve (2) exactly, we can use an alternating method to get 

an approximate solution. We fix the partition for, say, the right nodes (y), and 
then compute the best possible partition for the left nodes (x). Conversely, we 
then fix the partition for the left nodes, and compute the best possible partition 
for the right nodes, and so on. 



Suppose that we have fixed the partition for the right nodes. To determine 
the best partition of the left nodes, we need to solve 

maxxTs , 
s.t. xi = fl , 

x T e = 2 p - m ,  
(3) 

where s = Ay is fixed. The solution to this problem can be computed exactly. If 
we sort the entries of s so that 

- then x defined by xil  = xi2 = = xi,  = +1 and xi,+l = xi,+2 = = Xi,,, - 
-1 is the exact solution to (3). Observe that the ordering of the elements of s 
does not depend on the value for p .  If p has not been specified ahead of time, 
we would choose p to  ensure load balancing. However, note that then p may be 
changing every iteration. An analogous procedure would be employed to find y 
when x is fixed. 

Assuming p and q are fixed, each time we fix one side’s partition and then 
compute the other, we are guaranteed that the value of the objective will never 
decrease. In other words, let dk) and y(k) denote the partitions at the kth 
iteration of the method, and let fk denote the objective value, x ( ~ )  A Y ( ~ ) ;  then 

2 fk for all I C .  In the experiments presented in this paper, the method 
terminates when the objective value stops increasing. Alternatively, the method 
could terminate after at most some fixed number of iterations. 

This method is called the alternating partitioning (AP) method and is specific 
to the rectangular problem since we are dealing with both row and column 
partitions and so we can alternate between working with one and then the other. 
In the symmetric case, we are only dealing with one partition. 

We have not yet specified how to choose the first partition when we start 
the iterations, but that choice is important. In the standard method, we simply 
use the identity partition; however the next subsection will present two hybrid 
methods that use other techniques to generate a starting partition. 

T 

3.3 Hybrid Alternating Partitioning Methods  

Since the alternating partitioning method is a greedy method, its key to success 
is having a good starting partition. Here we propose two possibilities. 

Hybrid Spectral - Alternating Partitioning Method. This method uses the par- 
tition generated by the spectral method described in Sect. 3.1 as the starting 
partition for the alternating partitioning method. 

Hybrid R C M  - Alternating Partitioning Method. The Reverse Cuthill-McKee 
(RCM) method is not generally used as a partitioning method, but it generates 
a good inexpensive starting partition for the alternating partitioning method. 



RCM is typically used for envelope reduction on symmetric matrices and 
is based on the graph of the matrix. Essentially, the method chooses a start- 
ing node and labels it 1. It then consecutively labels the nodes adjacent to  it, 
then labels the nodes adjacent to them, and so forth. Once all the nodes are 
labelled, the ordering is reversed (hence the name). See George and Liu [7] for 
further discussion. In the nonsquare or nonsymmetric case, we apply RCM to 
the symmetrized matrix as was done by Berry et al. 131. 

4 Experimental Results 

In this section we compare the various partitioning methods presented in Sect. 3 
on it collection of matrices listed in Table 1. These matrices were obtained from 
Matrix Market with the exception of ccealink, manl, man2, and nhse400 which 
were provided by Michael Berry and are those used in Berry et al. [3]. These 
matrices range in size from 100 x 100 to 4000 x 400. All of the square matrices 
are structurally nonsymmetric. 

Table 1. Rectangular test matrices. 

479 479 1910 
300 3155 

Tables 2, 3, and 4 show the results of partitioning the rectangular matrices 
into block 2 x 2 , 8  x 8, and 16 x 16 matrices. In these experiments, all the matrices 
were converted to pattern (0-1) matrices, but we could have converted them to 
nonnegatively weighted matrices instead. When partitioning into a block 2 x 2 

http : //math. nist . gov/MatrixMarket/ 



matrix, we choose p = [m/21 and q = [n/2),  (Alternatively, we could compute 
p and q on the fly.) When partitioning into more blocks, we first partition into 
a block 2 x 2 matrix and the recursively partition the diagonal blocks into block 
2 x 2 matrices until the desired number of blocks is reached. 

The tables are formatted as follows. Each row corresponds to a given ma- 
trix whose name is specified in the first column. The second column lists the 
number of nonzeros outside of the block diagonal in the original matrix. The 
number of nonzeros outside of the block diagonal is equivalent to the number 
of edge cuts in the graph partitioning problem. Columns 3 - 6 list the number 
of nonzeros outside the bIock diagonal after applying the method listed in the 
column header to the original matrix. The number in parentheses is the time in 
seconds it took to compute the ordering. All timings were done in MATLAB. 
Spectral partitioning requires the second eigenvector corresponding to the second 
smallest eigenvalue, and this was computed using the MATLAB EIGS routine. 
(Note that EIGS has a random element to it, so the results for the spectral and 
hybrid spectral - alternating partitioning method cannot be repeated exactly.) 
The alternating partitioning method was implemented using our own code. The 
MATLAB SYMRCM routine was used to compute the RCM ordering. 

Table 2. Approximate block diagonalization of rectangular matrices into block 2 x 2 
matrices. 

We are using the spectral method as a basis for comparison for our new 
methods. Let us first consider the alternating partitioning method. In the 2 x 2 
and 8 x 8 tests, the spectral method does better than the alternating partitioning 



Table 3. Approximate block diagonalization of rectangular matrices into block 8 x 8 
matrices. 

Table 4. Approximate block diagonalization of rectangular matrices into block 16 x 16 
matrices. 

Nonzeros outside of Block 16 x 16 Diagonal 1 



method on the majority of matrices, but on the 16 x 16 tests, the alternating 
partitioning method does better than spectral partitioning 11 out of 17 times. 
In terms of time, the alternating partitioning method is approximately 10 times 
faster than the spectral method. 

The hybrid RCM-AP method is overall better than the alternating parti- 
tioning method. It outperforms the spectral method in the majority of matrices 
in the 8 x 8 and 16 x 16 tests. This method is the best overall an average of 
2.3 times for each block size. The time for the hybrid RCM-AP method is only 
slightly more than that for the alternating partitioning method, and still about 
10 times less than that for the spectral method. 

For all three block sizes, we see that the hybrid spectral-AP method is the 
best overall in terms of reducing the number of nonzeros outside the block diag- 
onal. This method is only slightly more expensive than the spectral method in 
terms of time and yields consistently better results. Sometimes the improvement 
is remarkable; see, for example, ccealink in all four tables. Unfortunately, the 
spectral and hybrid spectral-AP methods are very expensive in terms of time 
since they require the computation of some eigenpairs. 

Figure 2 shows the effect of different partitioning strategies on the west0156 
matrix in the block 8 x 8 case. 

Original Matrix Spectral Partitioning Alternating Partitioning 

Hybrid RCM-AP Hybrid Spectral-AP 

Fig. 2. Comparison of block 8 x 8 partitions on west0156. 



. 

Given these results, we recommend the hybrid spectral- AP method when 
quality is the top concern and the hybrid RCM-AP method when both time and 
quality matter. 

5 Conclusions 

In this work we introduced the rectangular matrix partitioning problem which 
is an extension of the symmetric matrix partitioning problem. The rectangular 
partitioning problem has a number of potential uses in iterative methods such 
as LSQR. 

We introduced the alternating partitioning method as well as two hybrid 
methods and compared them with a rectangular version of the spectral par- 
titioning method. The hybrid methods compared extremely favorably, and we 
recommend these as the methods of choice. The hybrid spectral-AP method is 
the overall best when partition quality is more important than the time t o  com- 
pute the partition, and the hybrid RCM-AP method is recommended when time 
is more important. 

In other work [9, lo], this author and Bruce Hendrickson explore the multi- 
level method which is known to work very well for the symmetric partitioning 
problem [2, 11, 12, 13, 151. We develop a multilevel method specific for bipartite 
graphs with various refinement strategies including the alternating partition- 
ing method and a version of Kernighan-Lin for bipartite graphs. Eventually, we 
would also like to examine handling four or eight diagonal blocks directly [l, 111. 
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