
Partitioning Sparse Rectangular Matrices for
Parallel Processing*

Tamara G. Kolda

Computer Science and Mathematics Division, Oak Ridge National Laboratory,
Oak Ridge, TN 37831-6367. kolda@msr . epm. orn l . gov.

Abstract. We are interested in partitioning sparse rectangular matrices
for parallel processing. The partitioning problem has been well-studied in
the square symmetric case, but the rectangular problem has received very
little attention. We will formalize the rectangular matrix partitioning
problem and discuss several methods for solving it. We will extend the
spectral partitioning method for symmetric matrices to the rectangular
case and compare this method to three new methods - the alternating RECEI

JON 1 0 partitioning method and two hybrid methods. The hybrid methods will
be shown to be best.

1 Introduction

Organizing the nonzero elements of a sparse matrix into a desirable pattern is
a key problem in many scientific computing applications, particularly load bal-
ancing for parallel computation. In this paper we are interested in ordering the
nonzeros of a given matrix into approximate block diagonal f o r m via permuta-
tions. This problem corresponds directly to the partitioning problem in graph
theory, and so is often referred to as matrix partitioning.

The partitioning problem has been well-studied in the symmetric case [l,
2, 4, 11, 12, 13, 14, 15, 16, 21, 22, 231. The rectangular partitioning problem,
however, has received very little attention; the primary reference in this area
is Berry, Hendrickson, and Raghavan [3] on envelope reduction for hypertext
matrices.

Let A denote a sparse rectangular m x n matrix. We will assume throughout
that we are working with pattern (0-1) matrices, but the results and methods can
easily be extended to nonnegative weighted matrices. Our goal is to partition A
into a block 2 x 2 matrix so that most of the nonzeros are on the block diagonal
and so that each block diagonal has about the same number of nonzeros. In
other words, we wish to find permutation matrices P and Q such that

* This work was supported by the Applied Mathematical Sciences Research Program,
Office of Energy Research, U.S. Department of Energy, under contract DE-AC05-
960R22464 with Lockheed Martin Energy Research Corporation.

"This submitted manuscript has been
authored by a contractor of the U.S.
Government under Contract No. DE-ACOS-
960R322464. Accordingly, the U.S.
Government retains a nonexclusive,
royalty-free license to publish or reproduce
the published form of this contribution. or
allow others to do so, for U.S. Government

DISTRINTON QF De{:(.%!@!4 1s ~~~~~~~~~~

I purposes."

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or mponsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or senice by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

where Bl2 and B21 are as sparse as possible and the block rows or block columns
each have about the same number of nonzeros. In order to avoid a trivial solution
(e.g., B11 = A), we require that B11 have p rows and q columns where p is some
integer between 1 and m- 1 and q is some integer between 1 and n- 1. The values
p and g may or may not have been chosen in advance; typically we will want
p x m/2 and q x n/2 to maintain load balance. If there exists P and Q such
that B12 and B21 are identically zero, then we say that A is block diagonalizable.
If we wish to partition A in a block 2k x Zk matrix, we can recursively partition
the block diagonals.

The matrix partitioning problem is equivalent to the edge-weighted graph
partitioning problem: Given an undirected edge-weighted graph, partition the
nodes into two sets of given sizes such that the sum of the weights of the edges
that pass between the two sets is minimized. The graph partitioning problem
is a well-known NP-complete problem (see problem ND14 on p. 209 in Garey
and Johnson [6]). A rectangular m x n matrix corresponds to a bipartite graph
[3] with m left nodes and n right nodes. There is an edge between left node i
and right node j if aij is nonzero, and the weight of the edge is one. See Fig. 1
for an illustration. Suppose that we partition A so that the union of the first
p rows and the first g columns form one partition and the remaining rows and
columns form the other partition. The edges passing between the two partitions
correspond to the nonzeros in the off-diagonal blocks of the partitioned matrix.

Fig. 1. The bipartite graph of a rectangular matrix.

Observe that the graph of A is disconnected if and only if the matrix A is
block diagonalizable. Throughout we will assume that the graph of A is con-
nected. If it is not, we will re-order the matrix so that it is block diagonalized
with the blocks in decreasing order of size. We will only work with components
that cross the boundary of the desired partition. In the discussion of the theory,
we will assume that the graph of A is connected.

Many iterative methods, e.g., LSQR[20] require matrix-vector and matrix-
vector-transpose multiplies with rectangular matrices. In Sect. 2 we will describe
how to implement these kernels to take advantage of the partitioned matrix.

In Sect. 3, we will present several algorithms for the rectangular partitioning
problem. We will discuss the well-known spectral partitioning method and show

how it can be applied to this problem. We will also introduce a new alternating
partitioning method as well as two hybrid strategies.

In Sect. 4, we will compare the various partitioning methods, and show that
the hybrid methods are the best.

2 Parallel Matrix-Vector Multiplication
We propose the following parallel implementations for the matrix-vector and
matrix-transpose-vector multiplications. Suppose that we have T = 2k proces-
sors. We partition A into a block T x T matrix,

A21 A22 * - A2r

4 - 1 Ar2 * * Arr

so that most of the nonzeros are in the diagonal blocks. Here block (i , j) is of
size mi x nj where Ci mi = m and C j nj = n.

Matrix- Vector Multiply (Block Row). We do the following on each processor to
compute y = Ax:
1.

2.

3.

4.

5.

Let i denote the processor id. This processor owns the ith block row of A,
that is, [Ail Ai2 . - - Ai ,] , and zi, the i th block of z of length ni.
Send a message to each processor j # i for which Aji # 0. This message
contains only those elements of zj corresponding to nonzero columns in Aji.
While waiting to receive messages, the processor computes the contribution
from the diagonal matrix block, y j i) = Aiizi. The block Aii, while still sparse,
may be dense enough to improve data locality.
Then, for each j # i such that Aij is nonzero, a message is received containing
a sparse vector Zj that only has the elements of xj corresponding to nonzero
columns in Aij, and yy) = Ai$+, is computed. (We assume that processor i
already knows which elements to expect from processor j .)
Finally, the i th block of the product y is computed via the sum yi = C j yy).
Block yi is of size mi.

Matrix-Danspose-Vector Multiply (Block Row). To compute z = ATv, each
processor does the following:
1. Let i denote the processor id. This processor owns vi, the ith block of v of

size mi, and the i th block row of A.
2. Compute zJi) = Azvi, for each j # i for which Aij # 0. Observe that the

number of nonzeros in zji) is equal to the number of nonzero rows in A;,
i.e., the number of nonzero columns in Aij. Send the nonzero' elements of
z j (2) to processor j .

Here we mean any elements that are guaranteed to be zero by the structure of Aij.
Elements that are zero by cancellation are still communicated.

3.

4.

5 .

While waiting to receive messages from the other processors, compute the
diagonal block contribution zji) = AEvi.
From each processor j such that Aji # 0, receive Zp) which contains only the
nonzero elements of z p) . (Again, we assume that processor i already knows
which elements to expect from processor j .)
Compute the ith component of the product, zi = zji) + E. 3 f a . d’). 1 Block zi
is of size ni.
Block column algorithms are analogous to those given for the block row

layout. Observe that sparse off-diagonal blocks result in less message volume.
See Hendrickson and Kolda [9] for more detail on the algorithm and for more
details on potential applications.

3 Algorithms for the Rectangular Partitioning Problem

Here we will discuss how the well-known spectral method can be applied to the
rectangular problem and introduce a new method that can be used on its own
or in combination with other methods. The spectral method will be used as a
basis for comparison to the new methods in Sect. 4.

3.1 Spectral Partitioning
In the symmetric problem, spectral partitioning based on the Fiedler vector is
a well-known technique; see, for example, Pothen, Simon, and Liou [21]. Many
people have studied the effectiveness of spectral graph partitioning; for exam-
ple, Guattery and Miller [8] show that spectral partitioning can be bad, while
Spielman and Teng [23] show that it can be good.

One natural way to approach the rectangular problem is to symmetrize the
matrix A, yielding the (m + n) x (m + n) matrix

and apply spectral partitioning to the symmetrized matrix. This approach is
used by Berry et ai. [3]. Note that the graphs of A and A are the same.

In order to apply spectral partitioning, we compute the Laplacian of A,
L = D - A ,

where D = diag(d1, dz, . . . , dm+n} and di = C j iiij. The matrix L is symmetric
and semi-positive definite; furthermore, the multiplicity of the zero eigenvalue
must be one since we are assuming that the graph of A, and hence of A, is
connected [5]. Let w denote the Fiedler vector of L, that is, the eigenvector
corresponding to the smallest positive eigenvalue of L. Let u denote the first m
and v the last n elements of w, and sort the elements of u and v so that

Then {il,i~,. . . , im} and {jl,jz,. . . , jn } define the row and column partitions
respectively. In other words, assign rows il, iz, . . . , i, and columns j1, j 2 , . . . , j q to
the first partition and the remaining rows and columns to the second partition.
Note that the ordering is independent of p and q . This means that the values of
p and q may be fixed in advance as something like [m/21 and [n/21 respectively,
or they may be chosen after the ordering has been computed to ensure good load
balancing.

In Sect. 4 we will use this method as a basis for comparison for our new
methods.

3.2 The Alternating Partitioning Method

Rather than trying to compute both the row and column partitions simultane-
ously as is done in the spectral method, the new method proposed in this section
focuses on one partition at a time, switching back and forth. This method is de-
rived from the Semi-Discrete Matrix Decomposition, a decomposition that has
been used for image compression [19] and information retrieval [17, 181.

Before we describe the method, we will re-examine the problem. If we let Z
denote the set of row indices that are permuted to a value less than or equal to
p and correspondingly let Z" denote the set of row indices permuted to a value
greater than p and define the set ,7 in an analogous way for the columns, then
we can write the rectangular partitioning problem as a maximization problem,

Here the objective function is the sum of the nonzeros on the block diagonal
minus the sum of the elements off the block diagonal.

We can then rewrite this problem as an integer programming problem. Let x
be a vector that defines the set membership for each row index; that is, xi = 1
if row i is in Z, and xi = -1 if row i is in Z", and let the vector y be defined in
an analogous way for the columns. Then we can rewrite problem (1) as

maxsTAy ,
s.t. xi = f l , yj = fl ,

x T e = 2 p - m , y T e = 2 q - n ,

where e denotes the ones vector whose length is implied by the context.
Although we cannot solve (2) exactly, we can use an alternating method to get

an approximate solution. We fix the partition for, say, the right nodes (y), and
then compute the best possible partition for the left nodes (x). Conversely, we
then fix the partition for the left nodes, and compute the best possible partition
for the right nodes, and so on.

Suppose that we have fixed the partition for the right nodes. To determine
the best partition of the left nodes, we need to solve

maxxTs ,
s.t. xi = fl ,

x T e = 2 p - m ,
(3)

where s = Ay is fixed. The solution to this problem can be computed exactly. If
we sort the entries of s so that

- then x defined by xil = xi2 = = xi, = +1 and xi,+l = xi,+2 = = Xi,,, -
-1 is the exact solution to (3). Observe that the ordering of the elements of s
does not depend on the value for p . If p has not been specified ahead of time,
we would choose p to ensure load balancing. However, note that then p may be
changing every iteration. An analogous procedure would be employed to find y
when x is fixed.

Assuming p and q are fixed, each time we fix one side’s partition and then
compute the other, we are guaranteed that the value of the objective will never
decrease. In other words, let dk) and y(k) denote the partitions at the kth
iteration of the method, and let fk denote the objective value, x (~) A Y (~) ; then

2 fk for all I C . In the experiments presented in this paper, the method
terminates when the objective value stops increasing. Alternatively, the method
could terminate after at most some fixed number of iterations.

This method is called the alternating partitioning (AP) method and is specific
to the rectangular problem since we are dealing with both row and column
partitions and so we can alternate between working with one and then the other.
In the symmetric case, we are only dealing with one partition.

We have not yet specified how to choose the first partition when we start
the iterations, but that choice is important. In the standard method, we simply
use the identity partition; however the next subsection will present two hybrid
methods that use other techniques to generate a starting partition.

T

3.3 Hybrid Alternating Partitioning Methods

Since the alternating partitioning method is a greedy method, its key to success
is having a good starting partition. Here we propose two possibilities.

Hybrid Spectral - Alternating Partitioning Method. This method uses the par-
tition generated by the spectral method described in Sect. 3.1 as the starting
partition for the alternating partitioning method.

Hybrid R C M - Alternating Partitioning Method. The Reverse Cuthill-McKee
(RCM) method is not generally used as a partitioning method, but it generates
a good inexpensive starting partition for the alternating partitioning method.

RCM is typically used for envelope reduction on symmetric matrices and
is based on the graph of the matrix. Essentially, the method chooses a start-
ing node and labels it 1. It then consecutively labels the nodes adjacent to it,
then labels the nodes adjacent to them, and so forth. Once all the nodes are
labelled, the ordering is reversed (hence the name). See George and Liu [7] for
further discussion. In the nonsquare or nonsymmetric case, we apply RCM to
the symmetrized matrix as was done by Berry et al. 131.

4 Experimental Results

In this section we compare the various partitioning methods presented in Sect. 3
on it collection of matrices listed in Table 1. These matrices were obtained from
Matrix Market with the exception of ccealink, manl, man2, and nhse400 which
were provided by Michael Berry and are those used in Berry et al. [3]. These
matrices range in size from 100 x 100 to 4000 x 400. All of the square matrices
are structurally nonsymmetric.

Table 1. Rectangular test matrices.

479 479 1910
300 3155

Tables 2, 3, and 4 show the results of partitioning the rectangular matrices
into block 2 x 2 , 8 x 8, and 16 x 16 matrices. In these experiments, all the matrices
were converted to pattern (0-1) matrices, but we could have converted them to
nonnegatively weighted matrices instead. When partitioning into a block 2 x 2

http : //math. nist . gov/MatrixMarket/

matrix, we choose p = [m/21 and q = [n/2), (Alternatively, we could compute
p and q on the fly.) When partitioning into more blocks, we first partition into
a block 2 x 2 matrix and the recursively partition the diagonal blocks into block
2 x 2 matrices until the desired number of blocks is reached.

The tables are formatted as follows. Each row corresponds to a given ma-
trix whose name is specified in the first column. The second column lists the
number of nonzeros outside of the block diagonal in the original matrix. The
number of nonzeros outside of the block diagonal is equivalent to the number
of edge cuts in the graph partitioning problem. Columns 3 - 6 list the number
of nonzeros outside the bIock diagonal after applying the method listed in the
column header to the original matrix. The number in parentheses is the time in
seconds it took to compute the ordering. All timings were done in MATLAB.
Spectral partitioning requires the second eigenvector corresponding to the second
smallest eigenvalue, and this was computed using the MATLAB EIGS routine.
(Note that EIGS has a random element to it, so the results for the spectral and
hybrid spectral - alternating partitioning method cannot be repeated exactly.)
The alternating partitioning method was implemented using our own code. The
MATLAB SYMRCM routine was used to compute the RCM ordering.

Table 2. Approximate block diagonalization of rectangular matrices into block 2 x 2
matrices.

We are using the spectral method as a basis for comparison for our new
methods. Let us first consider the alternating partitioning method. In the 2 x 2
and 8 x 8 tests, the spectral method does better than the alternating partitioning

Table 3. Approximate block diagonalization of rectangular matrices into block 8 x 8
matrices.

Table 4. Approximate block diagonalization of rectangular matrices into block 16 x 16
matrices.

Nonzeros outside of Block 16 x 16 Diagonal 1

method on the majority of matrices, but on the 16 x 16 tests, the alternating
partitioning method does better than spectral partitioning 11 out of 17 times.
In terms of time, the alternating partitioning method is approximately 10 times
faster than the spectral method.

The hybrid RCM-AP method is overall better than the alternating parti-
tioning method. It outperforms the spectral method in the majority of matrices
in the 8 x 8 and 16 x 16 tests. This method is the best overall an average of
2.3 times for each block size. The time for the hybrid RCM-AP method is only
slightly more than that for the alternating partitioning method, and still about
10 times less than that for the spectral method.

For all three block sizes, we see that the hybrid spectral-AP method is the
best overall in terms of reducing the number of nonzeros outside the block diag-
onal. This method is only slightly more expensive than the spectral method in
terms of time and yields consistently better results. Sometimes the improvement
is remarkable; see, for example, ccealink in all four tables. Unfortunately, the
spectral and hybrid spectral-AP methods are very expensive in terms of time
since they require the computation of some eigenpairs.

Figure 2 shows the effect of different partitioning strategies on the west0156
matrix in the block 8 x 8 case.

Original Matrix Spectral Partitioning Alternating Partitioning

Hybrid RCM-AP Hybrid Spectral-AP

Fig. 2. Comparison of block 8 x 8 partitions on west0156.

.

Given these results, we recommend the hybrid spectral- AP method when
quality is the top concern and the hybrid RCM-AP method when both time and
quality matter.

5 Conclusions

In this work we introduced the rectangular matrix partitioning problem which
is an extension of the symmetric matrix partitioning problem. The rectangular
partitioning problem has a number of potential uses in iterative methods such
as LSQR.

We introduced the alternating partitioning method as well as two hybrid
methods and compared them with a rectangular version of the spectral par-
titioning method. The hybrid methods compared extremely favorably, and we
recommend these as the methods of choice. The hybrid spectral-AP method is
the overall best when partition quality is more important than the time t o com-
pute the partition, and the hybrid RCM-AP method is recommended when time
is more important.

In other work [9, lo], this author and Bruce Hendrickson explore the multi-
level method which is known to work very well for the symmetric partitioning
problem [2, 11, 12, 13, 151. We develop a multilevel method specific for bipartite
graphs with various refinement strategies including the alternating partition-
ing method and a version of Kernighan-Lin for bipartite graphs. Eventually, we
would also like to examine handling four or eight diagonal blocks directly [l, 111.

Acknowledgments

The author is indebted to Bruce Hendrickson and Dianne O'Leary for many
helpful discussions. The author also thanks Eduardo D'Azevedo, Chuck Romine,
and the anonymous referees for their reviews, and Mike Berry for providing data.

References

[l] Charles J. Alpert and So-Zen Yao. Spectral partitioning: The more eigenvectors,
the better. In 32nd ACM/IEEE Design Automation Conference, pages 195-200,
1995.

[2] Stephen T. Barnard and Horst D. Simon. A fast multilevel implementation of
recursive spectral bisection for partitioning unstructured problems. Concurrency:
Practice and Experience, 6:lOl-117, 1994.

[3] Michael W. Berry, Bruce Hendrickson, and Padma Raghavan. Sparse matrix
reordering schemes for browsing hypertext. In James Renegar, Michael Shub,
and Steve Smale, editors, The Mathematics of Numerical Analysis, volume 32 of
Lectures in Applied Mathematics, pages 99-122. American Mathematical Society,
1996.

[4] Julie Falkner, Franz Rendl, and Henry Wolkowicz. A computational study of
graph partitioning. Math. Prog., 66:211-239, 1994.

[5] Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical
J., 23:298-305, 1973.

[6] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. F'reeman and Company, New York,
1979.

[7] Alan George and Joseph W. Liu. Computer Solution of Large Sparse Positive
Definite Systems. Prentice-Hall Series in Computational Mathematics. Prentice-
Hall, Englewood Cliffs, 1981.

[8] Stephen Guattery and Gary L. Miller. On the quality of spectral seperators.
Accepted for publication in SIAM J. Matrix Anal. Appl., 1997.

[9] Bruce Hendrickson and Tamara G. Kolda. Partitioning nonsquare and nonsym-
metric matrices for parallel processing. In preparation, 1998.

[lo] Bruce Hendrickson and Tamara G. Kolda. Partitioning sparse rectangular matri-
ces for parallel computations of Ax and ATv. Accepted for publication in Proc.
PARA98: Workshop on Applied Parallel Computing in Large Scale Scientific and
Industn'al Problems, 1998.

[ll] Bruce Hendrickson and Robert Leland. Multidimensional spectral load balancing.
Technical Report 93-0074, Sandia Natl. Lab., Albuquerque, NM, 87185, 1993.

[12] Bruce Hendrickson and Robert Leland. An improved spectral graph partition-
ing algorithm for mapping parallel computations. SIAM J. Sci. Stat. Comput.,

I131 Bruce Hendrickson and Robert Leland. A multilevel algorithm for partitioning

[14] Bruce Hendrickson, Robert Leland, and Rafael Van Driessche. Skewed graph

16:452-469, 1995.

graphs. In Proc. Supercomputing '95. ACM, 1995.

partitioning. In Proc. Eighth SIAM Conf. on Parallel Processing for Scientific
Computing. SIAM, 1997.
George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for
paritioning irregular graphs. Technical Report 95-035, Dept. Computer Science,
Univ. Minnesota, Minneapolis, MN 55455, 1995.
George Karypis and Vipin Kumar. Parallel multilevel graph partitioning. Techni-
cal Report 95-036, Dept. Computer Science, Univ. Minnesota, Minneapolis, MN
55455, 1995.
Tamara G. Kolda. Limited-Memory Matrix Methods with Applications. PhD
thesis, Applied Mathematics Program, Univ. Maryland, College Park, MD 20742,
1997.
Tamara G. Kolda and Dianne P. O'Leary. A semi-discrete matrix decomposition
for latent semantic indexing in information retrieval. Accepted for publication in
ACM Bans. Information Systems, 1997.
Dianne P. O'Leary and Shmuel Peleg. Digital image compression by outer product
expansion. IEEE Bans. Comm., 31~441-444, 1983.
Christopher C. Paige and Michael A. Saunders. LSQR An algorithm for sparse
linear equations and sparse least squares. ACM Zhns. Mathematical Software,

Alex Pothen, Horst D. Simon, and Kang-Pu Liou. Partitioning sparse matrices
with eigenvectors of graphs. SIAM J. Matrix Anal. Appl., 11:430-452, 1990.
Horst D. Simon. Partitioning of unstructured problems for parallel processing.
In Computing Systems in Engineering, number 213, pages 135-148. Pergammon
Press, 1991.
Daniel A. Speilman and Shang-Hua Teng. Spectral partitioning works: Planar
graphs and finite element meshes. Unpublished manuscript, 1996.

8~43-71, 1982.

M98005713
I11111111 Ill 11111 11111 11111 11111 11111 11111 11111 1111 1111

Report Number

Publ. Date (1 1)

Sponsor Code (1 8)
U C Category (1 9)

19980702 055

DOE

