Slicing Programs with Arbitrary
Control Flow

Thomas Ball
Susan Horwitz

Technical Report #1128

December 1992

Slicing Programs with Arbitrary Control Flow

THOMAS BALL" SUSAN HORWITZ"
tom@cs.wisc.edu horwitz@cs.wisc.edu
Computer Sciences Department
University of Wisconsin — Madison
1210 West Dayton Street
Madison, Wisconsin 53706 USA

December 21, 1992

Abstract

Program slicing is a program transformation that is useful in program debugging, program maintenance, and
other applications that involve understanding program behavior. Given a program point p and a set of vari-
ables V, the goal of slicing is to create a projection of the program (by eliminating some statements), such
that the projection and the original program compute the same values for all variables in V at point p.

This paper addresses the problem of slicing programs with arbitrary control flow. Previous slicing algo-
rithms do not always form semantically correct program projections when applied to such programs. We
present an algorithm for slicing programs with complex control flow and a proof of its correctness. Our algo-
rithm works for programs with completely arbitrary control flow, including irreducible control flow.

1. INTRODUCTION

Program slicing, a program transformation originally defined by Mark Weiser [13], is useful in program debug-
ging [9], program maintenance [6], and other applications that involve understanding program behavior [7]. Given
a program point p and a set of variables V, the goal of slicing is to create a projection of the program (by eliminating
some statements), such that the projection and the original program compute the same values for all variables in V at
point p.

Example. The program shown in Figure 1(a) computes the sum and product of the numbers from 1 to N!. Figure
1(b) shows the result of slicing the example program with respect to the statement output(prod) and the set of vari-
ables { prod }. For any value of N, the example program and the program projection compute the same value for
variable prod in the output statement. []

This paper addresses a problem that has not been discussed in the literature on program slicing [8,10,12,13].
The problem is how to slice programs with unstructured control flow, i.e., programs that include constructs such as
break and goto. Previous algorithms do not slice such programs correctly. We give a program-slicing algorithm
that correctly handles such programs, and we prove that the program projections produced by our algorithm meet
the semantic goal of program slicing: Both the original program and the projection compute the same values at the
point of the slice. Our algorithm works for programs with completely arbitrary control flow, including irreducible
graphs [1]. (As given here, our algorithm has a slight restriction: A program is sliced with respect to a point p and
the set of variables used or defined at p rather than an arbitrary set of variables. Extending the algorithm to permit a

* This work was supported in part by the National Science Foundation under grant CCR-8958530, by the Defense Advanced Research Projects
Agency, monitored by the Office of Naval Research under contract N00014-88-K-0590, as well as by grants from Xerox and 3M.

'In the example program, variable N is used without being explicitly initialized. It is assumed that such variables get their values from an initial
state on which the program is executed.

begin 0 begin
sum :=
pr0d0:= 1 prod =1
= i=0
while i < N do while i < N do
P=i+] i=i+l
sum = sum+i
prod = prod*i rod := prod*i
d dP p
o 0
output(sum)
output(prod) output(prod)
end end
(a) Example Program (b) Result of slicing with respect to output(prod)

Figure 1. An example program, and the result of slicing with respect to output(prod).

slice to be taken with respect to an arbitrary set of variables V at point p is straightforward: Add artificial uses of all
variables in V at point p.)

Algorithms for slicing programs with structured control flow have been defined by Weiser [13] and by the Otten-
steins [10]. Let us consider the problems that arise if one tries to apply either of those algorithms to programs with
unstructured control flow. Both algorithms make use of a program’s control flow graph; Weiser’s algorithm
operates directly on the control flow graph, and the Ottensteins’ algorithm operates on the program dependence
graph [4], which includes edges that are defined in terms of relationships between vertices in the control flow graph.
Both algorithms have two steps. In Weiser’s algorithm, the output of Step 1 is a subset S of the vertices of the con-
trol flow graph. In the Ottensteins’ algorithm, the output of Step 1 is a subset §” of the vertices of the program
dependence graph. The sets § and §” identify the same set of program components. In both algorithms, Step 2 pro-
duces the projection by eliminating from the original program all components that do not correspond to a vertex
identified in Step 1. If one uses the standard control flow graph for programs with unstructured control flow (i.e., a
graph in which a jump such as break is represented as a single edge—see Figure 2(b)), the program projections
computed by both Weiser’s and the Ottensteins’ algorithms may fail to meet the semantic goal of program slicing;
that is, the projections may compute different values than the original program at the point of the slice.

Example. Consider the program shown in Figure 2(a). Figure 2(b) shows the standard control flow graph for this
program, and Figure 2(c) shows the program dependence graph that corresponds to this flow graph. In the two
graphs, shading is used to indicate the vertices that would be identified by Weiser’s and the Ottensteins’ algorithms
when slicing with respect to the statement “output(prod)”. Figure 2(d) shows the program projection obtained by
eliminating all components not identified by the slicing algorithms. It is clear that this projection does not satisfy the
semantic goal of program slicing because for some values of N and MAXINT, different final values of prod will be
output by the original program and by the projection. A projection that does satisfy the semantic goal (and that
would be produced by the slicing algorithm defined in this paper) is shown in Figure 2(e). U

The problem with both algorithms is that they do not correctly detect when unconditional jumps in the program
(such as break) are required in the program projection. Simply including a vertex for the break in the control flow
graph, as shown in Figure 3(a), does not solve the problem; both algorithms will still omit the break. (The Otten-
steins’ algorithm, which involves following edges backwards in the program dependence graph, will omit the break
from the slice because in the program dependence graph-—shown in Figure 3(b)—there is no path from the break
vertex to the vertex that represents the statement “output(prod)”; in fact, the break vertex has no outgoing edges,
so it will not be included in any slice other than the slice with respect to the break itself.)

begin
sum =0
prod =1
i=0
while i < Ndo
i=i+l
if prod > MAXINT/i then
[=i-1
break
fi
sum = sum-+i
prod = prod*i
od
output(i)
output(sum)
output(prod)
end

(a) Example program

(c) Program dependence graph

begin begin
prod =1 prod =1
i=0 i:=0
while i < Ndo while i < Ndo
=i+l i=i+l
if prod > MAXINT/i then if prod > MAXINT /i then
fi break
prod = prod*i fi
od prod = prod*i
output(prod) od
end output(prod)
end
(d) Incorrect projection (e) Correct projection

Figure 2. An example program, its control flow graph, its program dependence graph, the (incorrect) projection that would be
computed using Weiser’s or the Ottensteins’ algorithms to slice with respect to output(prod), and the correct projection.

The main result of this paper is a slicing algorithm for programs with unstructured control flow, and a proof of the
correctness of this algorithm; that is, we show that the program projections produced by the algorithm have the
desired semantic property: Both the original program and the projection compute the same values at the point of the
slice. In fact, we prove a stronger result (as done by Reps and Yang for structured programs [12]): the original pro-
gram and the projection compute the same values at every shared component. The algorithm is in the style of the
Ottensteins’ algorithm in that it operates on a program dependence graph representation of a program; however, the

— 4~

(b) Corresponding program dependence graph

Figure 3. The same sets of vertices are identified by Weiser’s and the Ottensteins’ algorithms whether or not a break vertex is
included in the control flow graph.

program dependence graph is based on an augmented control flow graph in which a jump is represented as a
pseudo-predicate vertex (that always evaluates to true). The jump vertex’s frue-successor is the target of the jump,
and its false-successor is the vertex that represents the jump statement’s continuation (that is, the vertex that would
be the jump vertex’s successor if it were a “no-op” rather than a jump). We are able to prove that by using this aug-
mented control flow graph, a projection of the program that has the desired semantic property can be formed.

The remainder of the paper is organized as follows. Section 2 provides background material, including a discus-
sion of the language under consideration, and the definitions of the control flow graph and program dependence
graph. Section 3 presents our slicing algorithm and gives an outline of its proof of correctness. Section 4 fills in the
details of the proof. Section 5 discusses the issues of minimal slices, the extensibility of our slicing algorithm, and
alternative methods for constructing slices for programs with arbitrary control flow. Section 6 discusses related
work and Section 7 summarizes our results.

2. BACKGROUND

2.1. The Language Under Consideration

To simplify our presentation and focus on the problem of slicing with arbitrary control flow, we consider a
simplified language with the following characteristics: Expressions contain only scalar variables and constants;
statements are either assignment statements, jump statements (break, halt, goto), output statements, conditional
statements (if-then or if-then-else), or loops (while or repeat). It is easy to generalize our techniques to handle
languages with N-way branch constructs, such as case statements, and other looping constructs, such as for loops.
The problems of slicing in the presence of multiple procedures, non-scalar variables, and dynamic control flow are
orthogonal to the problem discussed here.

2.2. The Control Flow Graph and Its Semantics

In this section we define the control flow graph and its execution semantics. We also give the standard translation
from a program written in the language described above to the corresponding control flow graph. In Section 3, we
discuss the augmented translation that we use as the basis for our slicing algorithm.

The Control Flow Graph

A control flow graph (CFG) is any directed, rooted graph? that satisfies the following conditions. The CFG has
three types of vertices: Fall-through vertices (either assignment statements or output statements), which have one
successor, predicate vertices, which have one true-successor and one false-successor, and an EXIT vertex, which has
no successors. The root of the CFG is the ENTRY vertex, which is a predicate that has the EXIT vertex as its false-
successor. Every vertex is reachable from the ENTRY vertex, and the EXIT vertex is reachable from every vertex.
Edges in the CFG are labeled; the outgoing edges of a predicate vertex are labeled true or false (as appropriate) and
the outgoing edge of a fall-through vertex is labeled null.

Standard Control Flow Translation

In the standard translation from a program to a CFG, the CFG includes a vertex for every assignment statement,
output statement, and predicate in the program. The edges of the CFG represent the flow of control (the ENTRY
vertex’s true-successor is the first statement in the program). Jump statements are not represented directly as ver-
tices in the CFG; instead, they are represented indirectly in that they affect the flow of control, and therefore the tar-
gets of some CFG edges.

Example. Figure 2(b) shows the CFG of the program in Figure 2(a). [

Figure 5 presents an attribute grammar for the example language, in which the attributes are used to define the
translation from a program fo its control flow graph. The grammar is given in the style used in [11], in which the
underlying context free grammar defines a program’s abstract (rather than concrete) syntax. Operator names are
used to identify productions uniquely. Each production in the grammar is of the form “xq: op(xy X2 = X)),
where op is an operator name and each x; is a nonterminal. Every nonterminal has a synthesized attribute entry and
an inherited attribute cont, both of which represent vertices in the CFG. The constructor Pred(¢,v,w) creates a predi-
cate vertex with text ¢, frue-successor v, and false-successor w, while the constructor FallThrough(z,v) creates a
fall-through vertex with text ¢ and successor v.

2A directed graph G consists of a set of vertices V(G) and a set of edges E(G), where E(G) cV(G)xV(G). Eachedge (b, c)e E(G) is directed
from b to ¢ (b—>c); we say that b is the source and c the target of the edge.

The notation “attr = { - - - }” is an upward remote attribute reference; its value is the first instance of a set element
encountered on the path to the root in the abstract syntax tree. For example, a break statement passes control to the
continuation of the innermost enclosing loop. A global symbol table (with operations insert and lookup) is used to
manage the control flow between Goto and Label. In a pure attribute grammar the symbol table would be threaded

through the abstract syntax tree.

The grammar presented in Figure 5 makes precise the relationship between a program’s abstract syntax tree and
its CEG. Every vertex in the CFG is associated with the stmt production that created the vertex. In the remainder of
the paper, we use the term program component 1o refer to an instance of a stmt production in a program (i.e., a node
in the abstract syntax tree) that creates a CFG vertex (some productions, such as Label do not create a vertex).
Given a stmt subtree T, vert (T) denotes the CFG vertex associated with T’s root production.

We note that there are programs whose standard control fl

ow translation does not yield a CFG. For example, it is

possible to create code that is not reachable from ENTRY or from which the EXIT vertex is unreachable, or to define

a program whose control flow translation is not well-defin

ed (for example, a goto to an undefined label or a break

that is not enclosed in a loop). In the remainder of the paper, we consider only programs that yield a CFG under the

standard translation.

prog:
Program (seq) {
prog.entry = Pred("ENTRY", seq.entry, seq.cont)
prog.cont = seq.cont = FallThrough("EXIT", nuil)
b

seq:
NullSeq () {
seq.entry = seq.cont

| Sequence (stmtseq) {
seq; .entry = stmt.entry
stmit.cont = seq,.entry
seq,.cont = seq; .cont

b

stmt:
NullStmt () {
stmt.entry = stmt.cont

}
| While (exprseq) {
stmt.entry = Pred("expr”, seq.entry, stmt.cont)
seq.cont = stmt.entry

}
| Repeat (seqexpr) {
stmt.entry = seq.entry
seq.cont = Pred("expr", stmt.cont, seq.entry)

}

IfThen (exprseq) {
stmt.entry = Pred("expr”, seq.entry, stmt.cont)
seq.cont = stmt.cont

)

IfThenElse (expr seq seq) {
stmt.entry = Pred("expr", seq; .entry, seqy.eniry)
seq, .cont = seq.cont = stmt.cont

}
Assign (ID expr) {

stmt.entry = FallThrough("ID := expr", stmt.cont)
}

Label (ID) {
stmt.entry = stmt.cont
insert(ID, stmt.entry)

}
Break () {
stmt.entry = { Repeat.cont, While.cont }

)
Halt () {
stmt.entry = { Program.cont }

)
Goto (ID) {

stmt.entry = lookup(ID)
}s

Figure 5. Abstract syntax for example language with attributes that defines the control flow graph.

Control Flow Graph Semantics

The standard operational semantics for the CFG is defined as follows: Execution starts at the ENTRY vertex
(which always evaluates to true), with an initial state o; at any moment there is a single point of control together
with a state mapping variables to values; the execution of each fall-through or predicate vertex passes control to a
single successor (for a predicate vertex, that successor is determined by evaluating the predicate in the current state).
The execution of an assignment statement changes the state. Execution terminates normally if EXIT is reached
(execution can fail to terminate normally because of an infinite loop or an exception such as division by zero). An
execution of CFG G on initial state ¢ is denoted by G (o).

For an execution G (), we characterize the behavior at a vertex by the sequence of values that arise at that ver-
tex®. This is defined as follows: For an assignment statement, the sequence of values assigned to the left-hand-side
variable; for an output statement, the sequence of values output; and for a predicate vertex, the sequence of boolean

values to which the predicate evaluates. G(o)(v) denotes the sequence of values that arise at vertex v in execution
G(o).

The following definition defines what we mean for two vertices in different CFGs to have equivalent behavior.
Because a CFG includes a vertex for every program component, this definition also makes precise the semantic goal
of slicing a program with respect to component c: To create a projection whose behavior at ¢ is equivalent to that of
the original program at c.

DEFINITION. Vertices vg and vy of CFGs G and H, respectively, have equivalent behavior iff all the following hold:

° For all ¢ such that both G (o) and H(c) terminate normally, G(6)(ve) = H ©)(vy).
For all o such that neither G () nor H (o) terminates normally, either G(6)(vs) is a prefix of H(c)(vy), or vice
versa.

° For all 6 such that G(c) terminates normally but H(c) does not, H(¢)(vy) is a prefix of G (6)(vg).

. For all 6 such that H(c) terminates normally but G(c) does not, G(6)(vg) isa prefix of H(o)(vy).

2.3. The Program Dependence Graph

The program dependence graph (PDG) is defined in terms of a program’s control flow graph. The PDG includes the
same set of vertices as the CFG, excluding the EXIT vertex. The edges of the PDG represent the control and flow

dependences induced by the CFG as follows*:

DEFINITION (postdominance). Let v and w be vertices in a CFG. Vertex w postdominates vertex v iff w # v and w is
on every path from v to the EXIT vertex. Vertex w postdominates the L-branch of predicate vertex v (where L is
either true or false) iff w is the L-successor of v or w postdominates the L-successor of v. While no vertex can post-
dominate itself, a vertex can postdominate its own L-branch.

INote that our definition of a vertex’s behavior differs from the more standard definition, which characterizes a vertex's behavior as the sequence
of states that arise at that vertex during an execution (where a state associates a value with every variable in the program). The standard definition
is not suitable for program slicing, since the semantic goal of slicing is not to preserve the values of all variables, but only to preserve the values
of the variables used or defined at the point with respect to which the slice is taken.

4 Tn addition to control and flow dependences, program dependence graphs usually include either def-order dependences [5] or output and anti-
dependences [4]. These additional edges are not needed for program slicing, and so are omitted from the definition given here. We also do not
need to distinguish between loop-independent and loop-carried dependences (which are ill-defined for irreducible control flow anyway).

~ 8-

DEFINITION (control dependence). Let v and w be vertices in a CFG. Vertex w is directly L-control dependent on v
(written v —>L w) iff w postdominates the L-branch of v and w does not postdominate v. A vertex can be directly
control dependent on itself. Intuitively, if v —>L w, then whenever v executes and evaluates to L, w will eventually
execute, barring abnormal termination. Furthermore, if v executes and does not evaluate to L, w might not execute.
In this way, v directly controls whether or not w executes. Note that a vertex with only one successor in the CFG
can never be the source of a control-dependence edge.

Under the standard definition, there is a flow dependence from vertex v to vertex w iff vertex v assigns to variable
x, vertex w uses x, and there is a path from v to w that does not include an assignment to x (excluding v and w).
However, the augmented translation from programs to CFGs that will be introduced in Section 3 causes the CFG to
include “non-executable” edges; that is, edges that are never traversed in any execution (namely, the false edges out
of vertices that represent jump statements). Under the standard definition of flow dependence, there would be
dependences that could never be realized in any execution. To eliminate these false dependences (and thus increase
the precision of our slicing algorithm), we use the following slightly non-standard definition of flow dependence:

DEFINITION (flow dependence). Let v and w be vertices in a CFG. There is a flow dependence from vertex v to ver-
tex w (written v —>pw) iff vertex v assigns to variable x, vertex w uses x, and there is a path from v to w that does
not include an assignment to x (excluding v and w) and that does not include any non-executable edge.

Example. Figure 2(c) shows the PDG of the program in Figure 2(a). Control-dependence edges are shown using
solid arrows; flow dependence edges are shown using dashed arrows. O

3. SLICING PROGRAMS WITH ARBITRARY CONTROL FLOW

In this section we present our slicing algorithm and we sketch a proof that it produces program projections with the
desired semantic property: Given program P and component ¢, our algorithm produces a projection of P such that
both P and its projection have equivalent behavior at every shared component, including component ¢.

3.1. The Slicing Algorithm

As discussed in the Introduction, our slicing algorithm (given in Figure 7) is similar to the Ottensteins’ algorithm in
that it uses a program dependence graph (PDG) to identify the program components in the slice. Given a PDG and
a vertex v from which to slice, Step 1 of the Ottensteins’ and our algorithm identifies the subset of the PDG’s ver-
tices from which there is a path along control and/or flow dependence edges to vertex v (i.e., Step 1 computes the
backwards reflexive transitive closure with respect to v). Step 2 creates a program projection by eliminating stmt
subtrees that do not correspond to the vertices identified in Step 1. For each vertex w that is not identified by Step 1
of the algorithm, Step 2 eliminates the stm¢ subtree T such that vert (T) =w. We discuss the exact details of subtree
elimination later in this section.

The important difference between our algorithm and the Ottensteins’ is that we use an augmented translation
from the program to the control flow graph (CFG) from which the PDG is built. In particular, jump statements are
explicitly represented in the CFG as pseudo-predicate vertices that always evaluate to true. Our augmented control
flow translation uses the same translation for structured constructs and Label given in Figure 5, but replaces the
translations for the unconditional jumps (i.e., Break, Halt, Goto) with those in Figure 6. A jump vertex’s true-
successor is the target of the jump; its false-successor is the vertex that represents the jump statement’s continuation
(that is, the vertex that would be the jump vertex’s successor if it were a “no-op” rather than a jump).

Representing a jump statement this way causes it to be the source of control dependence edges in the PDG. This

stmt:
Break () {
stmt.entry = Pred("break”, { Repeat.cont, While.cont }, stmt.cont)

)
| Halt({
stmt.entry = Pred("halt", { Program.cont }, stmt.cont)

}
| Goto(ID) {
stmt.entry = Pred("goto ID", lookup(ID), stmt.cont)
I

Figure 6. Augmented control flow translations for jump statements.

function Slice(P: program, c: component of P): program
declare
v: vertex
G: control flow graph
D: program dependence graph
S: subset of D’s vertices
Q: projection of program P
begin
/% STEP 0: BUILD THE (AUGMENTED) PDG */
G := the augmented control flow graph for P
D := the program dependence graph that corresponds to G
/% STEP 1: IDENTIFY VERTICES */
v := vertex in G corresponding to component ¢
§ := { w| v is reachable from vertex win D } v { EXIT }
/* STEP 2: CREATE THE PROGRAM PROJECTION */
Q:=P
eliminate from Q all stmt subtrees T such that vert(T) ¢ § /* see Figure 9 */
return(Q)
end

Figure 7. The main result of this paper: A slicing algorithm that correctly handles programs with arbitrary control flow.

in turn allows the jump vertex to be included in the set identified by Step 1 of our algorithm’.

Example. Figure 8(a) repeats the program of Figure 2(a) and shows the program’s augmented CFG. Figure 8(b)
shows the vertices, control edges, and some of the flow edges of the corresponding PDG (flow edge

relevant to the slice with respect to “output(prod)” are omitted).

s that are not

§ It is important to note that representing jump statements this way in the CFG does not change the semantics of the CEG as defined in Section
2.2. In particular, since a jump is treated as a predicate that always evaluates to true, and since the jump vertex's frue-successor is the target of the
jump, it is clear that for every vertex v in the standard CFG G and every initial state ©, the behavior at v when G is executed on © is the same as

the behavior at the corresponding vertex when the augmented CFG is executed on O.

-10 -

Note that in this PDG, the break vertex has three outgoing control dependence edges (which are not in the PDG of
Figure 2(c)). These edges are consistent with the intuition behind control dependence: Removing the break might
change the number of times the assignments to sum and prod as well as the evaluation of the loop predicate were
performed (and therefore there are control dependence edges from the break vertex to the vertices that represent
these three components). However, the presence or absence of the break has no effect on the execution of any
statement outside the loop (and therefore there are no control dependence edges from the break vertex to a vertex
that represents a statement outside the loop).

In Figure 8(b), shading is used to indicate the PDG vertices that are identified by Step 1 of our slicing algorithm
when slicing with respect to “output(prod)”. Note that the shaded vertices correspond to the program components
that are included in the correct program projection shown in Figure 2(e). [J

Eliminating a stmt subtree T that contains no Label subtrees is accomplished simply by replacing that subtree by
the NullStmt subtree (Figure 9(a)). If T contains Label subtrees, they are sequenced together to replace T (Figure
9(b)). The order of the labels in the sequence is not important. If there is no Goto to a Label subtree in the pro-
gram, then the Label subtree can be eliminated by replacing it with NullStmt.

begin
sum =0
prod:=1
i=0
while i < Ndo
=i+l
if prod > MAXINT/i then
i=i-1
break
fi
sum := sum-+i
prod = prod*i
od
output(i)
output(sum)
output(prod)
end

(b) Corresponding PDG

Figure 8. The example program from Figure 2(a), its augmented CFG, and the corresponding PDG. Shading is used to indicate
the PDG vertices identified by the slicing algorithm of Figure 7 when slicing with respect to “output(prod)”.

—11-

Sequence Sequence
stmt seq NullStmt seq
(@) ——-- A
Sequence Sequence
(b) stmt seq Label Sequence
L |

L1 Label
|

1.2

Figure 9. Eliminating a stmt subtree without labels (a) and with labels (b).

3.2. Proof of Correctness

In this section we sketch a proof that the slicing algorithm of Figure 7 produces a program projection with the
desired semantic property. The details of the proof can be found in Section 4. The proof has two main parts.

A semantics-preserving transformation on CFGs

The first step of the proof is to show that eliminating the vertices not identified by Step 1 of our slicing algorithm is
a semantics-preserving transformation on CFGs; that is, the behaviors of all the vertices in the resulting CFG are
equivalent to the behaviors of the corresponding vertices in the original CFGS. This part of the proof does not rely
at all on the augmented translation. That is, the results here are for arbitrary control flow graphs, irrespective of the
program from which they were derived.

Example. Figure 10 repeats the (augmented) CFG of Figure 8(b) and shows the CFG that results from eliminating
the vertices not identified by Step 1 of the algorithm of Figure 7 when slicing with respect to “output(prod)”. Itis
clear that the two CFGs have equivalent behavior at all of the shaded vertices. [

The proof that eliminating the CFG vertices not identified by Step 1 of the algorithm is a semantics-preserving
transformation relies on the following definitions and lemmas.

6 To eliminate a vertex x from CEG G: For every vertex a such that there is an edge a—"1x and for every vertex b such that there is an edge
Ty 8 Ty g
—>L2p, remove edges a—L1x and x—L2b; add edge a—*'b. Remove vertex x. If elimination results in two (or more) edges of the form v—Fw
then eliminate all but one of the edges.

~-12-

DEFINITION (path-projection). Graph H is a path-projection of graph G iff all of the following hold:

(1) The vertices of H are a subset of the vertices of G.

(2) For every path in G (a sequence of vertex, edge-label pairs), if the vertices that are not in H are eliminated
along with their outgoing edge labels, then the resulting sequence is a path in H.

(3) For every path PTH in H, there is a path in G whose projection is PTH.

DEFINTTION (flow/path-projection). CFG H is a flow/path-projection of CFG G iff:

(1) H is a path-projection of G, and
(2) for every vertex w € H, if G induces the flow dependence v —>w, then vertex v is also in H.

Example. Figure 11 shows four CEGs. Both H and J are path-projections of G; however, K is not. This is because
G includes the path ((Entry, T)(x >0, F)(y:=0, null)(output(y), null), (output(x), null)(Exit)), but the path
((Entry, T)(Exit)) isnotin K. His also a flow/path-projection of G, but J is not. This is because vertex “output(y)”
isin J, graph G induces a flow dependence from “y :=1” to “output(y)”, but vertex “y :=1"isnotinJ. [J

THEOREM 3.1. (flow/path-projections preserve CFG semantics). If CFG His a flow/path-projection of CFG G, then
the behavior of every vertex in H is equivalent to the behavior of the corresponding vertex in G.
PROOF. See Section 4.1,

(a) Original (augmented) CFG of the example pro- (b) After eliminating unshaded vertices.
gram. Shading indicates the vertices identified by

Step 1 of the algorithm of Figure 7 when slicing

from “output(prod)”.

Figure 10. Eliminating vertices not identified by Step 1 of the slicing algorithm of Figure 7 preserves CFG semantics.

13—

CFG G CFG H CFG J CFG K

Figure 11. H and J are path-projections of G; K is not. H is also a flow/path-projection of G; J is not.

THEOREM 3.2. (Step 1 of our slicing algorithm can be used to produce flow/path-projections). Given CFG G, its
PDG D, and program component c, eliminating from G the vertices not identified by Step 1 of the algorithm of Fig-
ure 7 (applied to D and c) produces a CFG that is a flow/path-projection of G.

PROOF. See Section 4.2.

A semantics-preserving transformation on programs

Recall that the goal of program slicing is to produce a projection of a given program, not to produce a projection of
a given CFG. As illustrated by the example of Figure 2, creating a program projection by eliminating components
that do not correspond to the vertices identified by Step 1 of Weiser’s or the Ottensteins™ algorithms does not result
in a projection with the desired semantic property (i.e., that elimination operation does not define a semantics-
preserving transformation on programs).

The second part of the proof of correctness of our algorithm involves showing that eliminating program com-
ponents that do not correspond to the vertices identified by Step 1 of our algorithm is a semantics-preserving
transformation on programs. To prove this, we show that the relationships pictured below hold.

make—-CFG
P G
| A
N licei P,c) flowlpath—projection-of
Q make—~CFG
Programs CFGs

That is, given a program P and a component ¢, we show that the program Q that results from applying our slicing
algorithm to P has a CFG H that is a flow/path-projection of P’s CFG G. By the results of the previous section, this
means that the vertices of H (in particular, the vertex that corresponds to ¢) have behaviors that are equivalent to the
behaviors of the corresponding vertices of G.

- 14 -

Rather than arguing directly that H is a flow/path-projection of G, we show that H is identical to the CFG
obtained from G by eliminating all vertices not identified by Step 1 of our slicing algorithm (i.e., we show that the
diagram shown below commutes). It follows from the results of the previous section that H is a flow/path-
projection of G.

make—CFG
P G
|
| eliminate vertices of G
Slice(P, ¢) not identified by
l Step 1 of Slice(P, c)
make-CFG ‘
B
Q H
Programs CFGs

See Section 4.3 for the proof.

4. PROOF OF CORRECTNESS

This section contains proofs of the results stated in Section 3.2.

4.1. The Behavior of flow/path-projections

This section proves Theorem 3.1. First, we precisely define path-projection. We denote a directed path in a graph
by a sequence of (vertex, label) pairs [(v1, [1), ..., (Vs, [,)] such that for any v; and v;,1, there is an edge v; b "Viq in
the CFG.” Given a path PTH and a set of vertices V, project(PTH,V) is defined to be the sequence resulting from
deleting from PTH each pair (v;, I;) such that v; & V. We refer to PTH as a generating path for project(PTH, V).

Restating the definition of path-projection in these terms, a graph H is a path-projection of graph G iff (1)
V(H) < V(G), and (2) for each path PTH in G project(PTH, V (H)) is a path in H, and (3) for each path in H there is
a generating path in G for that path.

The execution path of execution G (o) is the (possibly infinite) path executed by G(o). If the execution ter-
minates normally, the path ends with the EXIT vertex. Otherwise, the path is infinite or ends at the ﬁrst point of
failure (i.e., a vertex at which an exception occurs). The i™ instance of a vertex v in G(o), denoted by vi, is the i*
occurrence of vertex v in the execution path of G (o).

The proof of Theorem 3.1 relies on the following lemma. This lemma shows that if H is a flow/path-projection of
G, then, for any initial state o, the execution path of H (o) is a projection of the execution path of G (o) and, further-
more, that intermediate states at corresponding instances in the two executions agree on certain variables. This
result directly implies that each corresponding vertex of H and G has equivalent behavior, as discussed later. Since
H is a path-projection of G, it may omit some assignment statements that appear in G;. Therefore, we cannot expect
the intermediate states of H (6) and G (o) to agree on all variables. Instead, we show that the intermediate states
before an instance v in H (o) and its corresponding instance in G (o) are guaranteed to agree on all variables that
are live before vertex v in CFG H.

"The value of label /,, is unconstrained.

-15—

DEFINITION. state(G (o), v¥) denotes the state immediately before the execution of instance v! in G(o).

DEFINITION. live_before(G,v) = { x | there is a path in G from v to a vertex w that uses variable x such that no
vertex in the path (excluding w but including v) contains an assignment to x)E

LEMMA 4.1. If CFG H is a flow/path-projection of CFG G then for any initial state o, if PTH is a prefix of G(0)’s
execution path then

(1) project(PTH, V (H)) is a prefix of H(c)’s execution path, and

(2) for every instance v* in PTH such thatve V(H), Vx e live_before(H,v):
state(G (),v*)(x) = state(H (), v)(x).

PROOF. By induction on #, the number of vertices in PTH that are in V (H).
Base Case: n= 1. In this case, PTH = (ENTRY). Trivial.

Induction Step: Assume that the lemma holds when PTH includes n vertices that are in V (}). Show that the lemma
holds when PTH includes n+1 vertices that are in V(H). Let v’ be the n* vertex in PTH that is in V (H); let w/ be
the n+1% vertex in PTH that is in V(H). PTH can be considered as the concatenation of three paths (see Figure
12()):

PTH] is the prefix of PTH that includes every (vertex, edge) pair up to and including o4 D.

PTH2is the middle part of PTH that includes every (vertex, edge) pair in PTH from the end of PTHI up to and
including W, m).

PTH = PTHI \\ PTH2 || PTH3

" PTH2 =

@ T PTHI 1 f PTH3 =
A . &
VRES0S BRLUDREE 2R
A B c D

(™ project(PTH2, V(H))
®) — projec{PTHI1,V(H)) 1

Figure 12. An execution path in CFG G (a) and its projection in CFG H (b). The grey bars denote those vertices in the path in
CFG G that are in V(H).

8We can also add the restriction that no edge in the path is a non-executable edge (as done for flow dependences). This does not affect the correct-
ness of the proof.

-16 —

PTH3 (possibly empty) is the suffix of PTH that includes every (vertex, edge) pair from the end of PTHZ to the end
of PTH. Note that PTH3 does not include any vertex in V (H).

By point (1) of the Induction Hypothesis, project(PTHI, V (H)) is a prefix of H (c)’s execution path. By point
(2), Vx e live_before(H,v), state(G (6),v*)(x) = state(H (6),v’)(x). Every variable used at v* is in live_before(H,v),
so the value computed at v' is the same in the two executions. Since H is a path-projection of G, if v is a fall-
through vertex, then w will be the next vertex to execute after vt in H (o). If v is a predicate vertex, then since the
value computed at v* is the same in H (o) as in G (6), w will be the next vertex to execute after viin H (o). PTH3
does not include any vertices in V (H). Therefore, project(PTH, V (H)) is a prefix of H(G)’s execution path (see
Figure 12(b)).

We now show that Vxe live_before(H,w): state(G (),w/)(x) = state(H (6),w/)(x). Suppose that Jxe
live_before(H,w) such that state(G (o),w/)(x) # state(H (6),w’)(x). Since xe live_before(H,w), either x €
live_before(H,v) and v does not assign to x, or v assigns to x. By the Induction Hypothesis, if x € live_before(H,v),
state(G (6),v)(x) = state(H (6),v')(x). Furthermore, the difference in the value of x at w/ cannot have been caused
by an assignment at v, since the same value is computed at v¢ in both executions. Therefore, there must be a vertex
2 that occurs in PTH2 between v' and w/ such that: (a) z assigns to x, and (b) there is no other vertex that assigns to
x between z and w/. Let PTHy be a path in H from w to vertex y that induces x’s membership in live_before(H,w)
(y uses variable x and no vertex in PTHy, except y, assigns to x). Let PTH; be a generating path for PTHy.
Without loss of generality, assume that PTH begins with w and ends with y. Since H is a flow/path-projection of
G, no vertex in PTHg, except y, can assign to x (otherwise PTHy would contain an assignment to x that occurs
before y). This implies that G induces the flow dependence z —>¢y. Sinceye V(H/)andHisa flow/path-projection
of G, z must be a member of V (H). Contradiction. [J

Let CFG H be a flow/path-projection of CFG G. We now show that lemma 4.1 implies that for all ve V (H), vertex
v has equivalent behavior in CFGs G and H, as defined in Section 2.1. Let PTH be a prefix of G (0)’s execution
path. By point (1) of lemma 4.1, project(PTH,V (H)) is a prefix of H(c)’s execution path. Point (2) implies that the
value of the expressions in corresponding instances v! in PTH and project(PTH,V (H)) are the same. We make the
following observations with respect to terminating and nonterminating:

® If G (o) terminates normally then its execution path is finite and ends with EXIT, so H(c) must terminate nor-
mally. In this case, for all ve V(H), H{0)(v) = G(o)(v).

™ The previous point implies that it is not possible for G(o) to terminate and H (c) not to terminate.

° If G (o) does not terminate normally, then H(c) may or may not terminate normally, depending on whether or
not the non-terminating or exception-producing computation in G is present in H. In either case, for all
ve V(H), G(o)(v) is a prefix of H(5)(v).

4.2. A Semantics-preserving Operation on CFGs

In this section we argue that eliminating from CFG G the vertices not identified by Step 1 of the algorithm of Figure
7 produces a CFG H that is a flow/path-projection of G. In fact, we only need to argue that H is a path-projection of
CFG G. The slicing algorithm guarantees that if a vertex w is included in H then all of w’s flow dependence prede-
cessors in G’s PDG are also in H. Therefore, if H is a path-projection of G, it is guaranteed to be a flow/path-
projection too. We also show that CFG H is the minimal flow/path-projection that contains the vertex to which the
slicing algorithm was applied.

The set of vertices S identified by Step 1 of the algorithm has the property that if w is in § and v —>; w in CFG
G’s PDG, then v is in . The following lemma shows that for any set of vertices that satisfies this property,

-17-

eliminating the vertices not in § from G yields a graph H that is a CFG and a path-projection of G.

LEMMA 4.2. Let G be a CEG and let S be a set of vertices in G such that if w € S and v —>, w is in G’s PDG, then
v e S. Eliminating the vertices not in S from CFG G yields a graph H that is a CFG and a path-projection of G.
PROOF. The vertex elimination operation has two properties that are trivial to prove: first, the order in which the
vertex elimination operations are applied does not affect the resulting graph; second, if G is a CFG and vertex elimi-
nation is applied to some vertex (other than ENTRY and EXIT) then the resulting graph is a path-projection of G and
meets the reachability requirements of a CFG. The problem is that a single application of the vertex elimination
operation is not guaranteed to produce a graph that is a CFG. This happens because the operation may create a
graph that contains a vertex with two distinct L-successors. For example, consider the graph that results from elim-
inating the vertex (x>0) from CFG G in Figure 11: the ENTRY vertex in this graph has two T-successors, (y:=1) and
(y :=0).

To complete the proof we must show that there is no vertex with two distinct L-successors in H. The proof is by
contradiction. Suppose H contains a vertex v with distinct L-successors y and z. Since H is formed from G by elim-
inating vertices of G, H is a path-projection of G, as discussed before. Let P be a generating path in G for v—sly
and let P, be a generating path in G for vtz Let P’; be the tail of P, and let P, be the tail of P,. The first ver-
tex in both P’; and P’, is the L-successor of v in CFG G. The only vertex in P’; that is in V (H) (or equivalently, S)
is y. Similarly, the only vertex in P’, thatisin V(H) is z.

It is impossible for both y and z to postdominate each other in G. Without loss of generality, assume that z does
not postdominate y in G. Since z cannot occur in Py, it follows that z cannot postdominate any vertex in P’;. Leta
be the last vertex in P’ such that z # a and z does not postdominate @ in G (a vertex with these two properties must
exist: for example, the first vertex in P’,). Let b be the successor of a in P’,. It is clear that either z = b or z pd b.
Therefore, G induces a —>, z, implying that a € §. However, the only vertex in P’, that is in § is z and we already
have thatz #a. [

The next lemma shows that backwards closure over control dependence is necessary for creating CFG path-
projections. That is, if CFG H is a path-projection of CFG G, we V(H) and G induces v —>, w, then ve V(H).
This implies that our algorithm creates the minimal flow/path-projection that includes the slicing vertex.

LEMMA 4.3. If CFG H is a path-projection of CFG G, G induces v —>Lwandwe V(H), thenve V(H).

PROOF. Suppose that G induces v ~>Lw, we V(H),and ve V(H). Let P, be a path in G from ENTRY to v. Let z
be the last vertex in P, that is in V(H) (z #v since veé V(H)). Let L’ be the label on the outgoing edge from z in
P,. Because v —% w, the following two paths exist in G: P, a w-free path from a successor of v to EXIT; P, an
acyclic path from v’s L-successor to w. Since w postdominates the L-branch of v, w postdominates every vertex in
P (except itself). It is clear that w cannot postdominate any vertex in P . Therefore, P, and P ; have no vertices
in common.

Since H is a path-projection of G and z is the last vertex in P; that is in V (H), z must have an L’-successor in
project(P,,V (H)) and an L’-successor in project(P3,V (H)). As shown above, these two vertices must be distinct,
which means H is not a CFG. Contradiction. O

4.3. A Semantics-preserving Operation on Programs

This section shows that eliminating stmt subtrees that do not correspond to the vertices identified by Step 1 of our
algorithm is a semantics-preserving transformation on programs. To prove this, we show that given a program P
and a component ¢, the program @ that results from applying our slicing algorithm to P has a CFG H that is a
flow/path-projection of P’s CFG G. Rather than arguing directly that H is a flow/path-projection of G, we show that
H is identical to the CFG obtained from G by eliminating all vertices not identified by Step 1 of our slicing

~18—

algorithm. The results of the previous section imply that this CFG is a flow/path-projection of G.

The proof of this result focuses on the relationship between transitive control dependence and a program’s
abstract syntax tree. Given a CFG G and vertex v, transCD(G,v) denotes the set of vertices that are reflexively and
transitively control dependent on v (i.e., { w|v —>>w }). This set can be equivalently defined as the set of vertices

reachable from v in G via a path that does not include the immediate postdominator of v. The proof has three main

parts:

(D

@

©)

We first show that (under the augmented control flow translation) the CFG vertices generated by productions
in stmt subtree T are a subset of transCD(G, vert (T)). This implies that when the slicing algorithm eliminates
a stmt subtree (because vert (T) is not in the set § identified by Step 1) it does not eliminate any vertices that
are in §. (Section 4.3.1).

We next show that eliminating the subtrees (see Figure 9 in Section 3.1) from program P that correspond to
vertices in transCD(G,v) yields a program Q with CFG H that is identical to the CFG resulting from eliminat-
ing the vertices in transCD(G,v) from G (Section 4.3.2). Lemma 4.2 guarantees that eliminating the vertices
in transCD(G,v) from CFG G produces a CFG. The edge set of H is:

{ y-+z | neither y nor z is in transCD(G,v) and y—"z is in CFG G }
U { y—=% ipd(G,v) | y¢ transCD(G,v), and 3z € transCD(G,v) such that y—Fzis in CFG G }

Figure 13 illustrates the effect of eliminating the vertices in transCD(G,v) from CFG G.

Let S be the set of vertices identified by the slicing algorithm. Eliminating the vertices in V(G)-S§
corresponds to eliminating multiple transCD sets rather than just one transCD set (as in point (2)). Using the
above two tesults, we show the main result of this section: eliminating the subtrees from program P that
correspond to vertices in V(G)-S yields a program whose CFG is identical to the CFG obtained by

ransCD(G, v)

C ipd(G, v)

CFG G CFG H

Figure 13. Eliminating the vertices in transCD(G, v).

The immediate postdominator of a vertex v, denoted by ipd(G,v), is the postdominator of v such that there is no vertex w such that ipd(G,v) pd

wpdv.

-19 -

eliminating the vertices in V(G)-S from G (Section 4.3.3).

4.3.1. The relationship between transCD(G,v) and stmt subtrees

Consider any stmt subtree T in a program and the program’s augmented CFG. Let Verts(T) be the set of CFG ver-
tices defined by the productions in stmt subtree T. In the augmented translation, every vertex in Verts (T) is reach-
able from vert (T) and no vertex in Verts (T') postdominates vert (T) (this is clearly true for any stmt subtree that does
not contain a jump statement, even under the standard translation; because jump statements generate an edge to their
continuation as well as to their target in the augmented translation, it is also true for subtrees containing jump state-
ments). Therefore, Verts (T) < transCD(G,vert (T)). However, since unconditional jumps may transfer control to
any place in the program, transCD(G,vert (T')) may contain other vertices. It is clear that if w e transCD(G,v) then
transCD(G,w) c transCD(G,v). Therefore, if S is a stmt subtree and vert ($) e transCD(G,vert (T)) then

Verts (S) < transCD(G,vert(S)) < transCD(G,vert (T)).

This implies that any transCD(G,v) can be expressed as the union of the Verts sets of a set of subtrees. We say that
a stmt subtree T is contained in a set of vertices V iff Verts (T) # @ and Verts(T) c V.

Example. In Figure 8(b), transCD(G, break) corresponds to the subtree for the while loop. Figure 14 presents four
example programs that further illustrate this correspondence. In each program, the boxes outline the subtrees that
are contained in the transCD set for the jump statement identified with a bullet. In (a), the halt transfers control to
the end of the program, so transCD(G, halt) = { halt, 0,C, R, D, E, F). In (b), there is an edge from goto L to O
and an edge from goto L to D; transCD(G, goto L) = { goto L, D, E }. In (c), the presence of the break causes the
entire while loop to be contained in transCD(G, goto L). Case (d) presents an example of irreducible control flow.
0

begin begin begin begin
A A A A
if P then L:while Q do L:while Q do if P then
B B B B
while Q do if R then if R then
C C C fi
if R then . goto L
. halt fi fi repeat
fi D D D
D E if S then %]
od od break L. F
L EJ G fi G
fi end od until Q
E H
end end end
(@ () © (d)

Figure 14. The subtrees contained in the transCD sets for the statement marked with e.

-20 -

4.3.2. Vertex elimination and subtree elimination commute for transCD(G,v)

Let P be a program with CFG G. Under the augmented translation, eliminating a subtree from program P yields a
program that defines a CFG (this is not necessarily true under the standard translation). Let P; be the program with
CFG G; resulting from eliminating i subtrees in transCD(G,v) from program P. We show (by induction) that the
following invariant holds for all i: the edge set of G; minus the set { y—»z | both y and z are in transCD(G,v) } is

{ y—s%z | neither y nor z is in transCD(G,v) and y—*z is in CFG G }
U {y—Fz|ye transCD(G,v), z€ transCD(G,v) v ipd(G,v),
and 32’ € transCD(G,v) such that y—¥2’ is in CFG G))

Let Q be the program resulting from eliminating all subtrees in transCD(G,v) from program P. Since all the sub-
trees contained in transCD(G,v) have been eliminated, the CFG of program Q does not contain any of the vertices in
transCD(G,v). By the invariant, the CFG of program Qis:

{ y—Lz | neither y nor z is in transCD(G,v) and y—"z is in CFG G }
u { y-t ipd(G,v) | y ¢ transCD(G,v),and 3z € transCD(G, v) such that y—¥z is in CFG G }

which is exactly the graph that results from eliminating all vertices in transCD(G,v) from CFG G. The proof of the
above invariant relies on the following lemma, which characterizes how the elimination of a single stmt subtree
from a program affects control flow. Let Tp.attr denote the value of the attribute attr in the root production of sub-
tree T in program P.

LEMMA 4.4. Let P be a program with CFG G. Let Q be the program resulting from eliminating stmt subtree T from
program P. The edge set of program Q’s CFG is:

{ y—s%z | neither y nor z is in Verts (T) and y—"z is in CFG G)
 { y—ETp.cont | y & Verts(T) and 3z € Verts (T) such that y—*z is in CFG G)

PROOF. Subtree T is replaced by the NullStmt subtree (or a sequence of Label subtrees). Note that Ty.entry =
To.cont = Tp.cont. The proof of this lemma follows from the following observations: any attribute in program P
whose value is a vertex in Verts (T) has the value Tp.cont in program Q; any attribute in program P whose value is a
vertex not in Verts (T) has the same value in program Q. [J

We are now in a position to prove the invariant. Let P be the original program with CFG G. The proof is by
induction on the number of subtrees in transCD(G,v) that have been eliminated from program P.

Base Case: No subtrees eliminated. The invariant clearly holds.

Induction Step: Suppose that the invariant is true after the elimination of n subtrees contained in transCD(G,v) from
program P. Let P’ be the resulting program with CFG G’. Let T be a stmt subtree in transCD(G,v) that is in pro-
gram P’ and let Q be the program (with CFG H) resulting from eliminating T from P’. By lemma 4.4, the edge set
of H is:
{ y~>*z | neither y nor zis in Verts (T) and y—tzisin CFG G’)
v y—)LTp.cont | y ¢ Verts(T) and 3z € Verts (T) such that y—e"z isin CFG G’)

If we can show that Tp-.cont € transCD(G,v)wipd(G,v) then CFG H satisfies the invariant (since Verts(T) <
transCD(G,v) and CFG G’ satisfies the invariant). Suppose that Tp-.cont ¢ transCD(G,v) v ipd(G,v). Because of
the augmented translation, there must be a vertex y € Verts (T) such that y—Tp.cont is in CFG G’ (this is clearly
true if T does not contain a jump statement, even under the standard translation; because jump statements generate
an edge to their continuation as well as to their target in the augmented translation, it is also true if T contains jump
statements). The existence of this edge violates the invariant, which was assumed to have held for G’. [

-] -

4.3.3. Putting it all together

Let S be the set of CFG vertices identified by the slicing algorithm. Let V= V(G)~S. For every vertex v € V,
transCD(G,v) < V (equivalently, transCD(G,v) n S = @). Eliminating the vertices in V corresponds to eliminating
a set of transCD sets, which corresponds to a set of subtrees in program P. Let 0 be the program (with CFG H)
resulting from eliminating the subtrees associated with V. We show (by induction on the size of V) that the CFG H
is identical to the CFG obtained by eliminating the vertices in V from CFG G.

Base Case: |V | = 1. Thatis, V = {v}, so transCD(G,v) = {v}. The result of the previous section implies that CFG
H is the CFG resulting from eliminating v from CFG G.

Induction Step: Assume that the result is true for V of size less than n. Suppose that V is of size n. Letv be a vertex
in V. Let P’ be the program resulting from eliminating the subtrees in transCD(G,v) from program P, and let G’ be
the CEG of P’. By the results of the previous section, G’ is the CFG resulting from eliminating the vertices in
transCD(G,v) from CFG G.

Let V' =V — transCD(G,v). It can be shown (see lemma below) that for any vertex w in G’, transCD(G",w) =
transCD(G,w) — transCD(G,v). This fact implies the following: (1) the subtrees of P’ contained in V’ are the sub-
trees of P contained in V minus the subtrees of P contained in transCD(G,v); (2) for every vertex we v,
transCD(G’,w) < V". The size of V' is clearly less than n. By the Induction Hypothesis, eliminating the subtrees in
V’ from P’ yields a program Q whose CFG H is identical to the CFG resulting from eliminating the vertices in V’
from G’. Program Q is the program that results from climinating all subtrees in V from program P and CFG H is the
CFG that results from eliminating the vertices in V from G. This proves our main result. [

LEMMA. Let G be a CFG and let G’ be the CFG resulting from eliminating the vertices in transCD(G,v) from G.
For any vertex w in G’, transCD(G’,w) = transCD(G, w) — transCD(G,).
PROOF. Since G is a path-projection of G, for any distinct pair of vertices (y,2)inG’,ypdzinG'iff y pd zin G.
Any path PTH in G’ that starts with w and contains no postdominators of w contributes all its vertices to
transCD(G’,w). Any generating path in G for PTHg must contribute the same vertices to transCD(G,w). None of
these vertices are in transCD(G,v). Therefore, transCD(G’,w) < transCD(G,w) — transCID(G,v).
Any path PTHg in G that starts with w and contains no postdominators of w contributes all its vertices to
transCD(G,w). Any vertices in the projection of PTHg in G’ must be in transCD(G’,w). This projected path does
not include vertices from transCD(G,v). Therefore, transCD(G,w) — transCD(G,v) < transCD(G",w). O

5. MINIMALITY AND EXTENSIONS

This section addresses some interesting issues regarding slicing programs with arbitrary control flow.

5.1. Issues of minimality

A slicing algorithm identifies a program projection that behaves similarly to the original program at some point of
interest. As has been noted before, the usefulness of a slicing algorithm is inversely proportional to the size of the
slices it produces. While it is an undecidable problem to find slices of minimal size, it would be possible to employ
common compiler optimizations to further reduce the size of slices. For example, copy propagation could be used
to prune away copy chains from a slice, as shown below (of course, some renaming may need to be done also):

+1 X =X+l

i

X
X
y

N M

Z=X

We believe that smaller slices are useful, up to a point. In this paper, we have shown that our slicing algorithm
based on the program dependence graph produces programs that are flow/path-projections of the original program’s

-22

control flow graph. That is, they preserve paths of the original program (modulo projection) and the flow of values
between components. While these properties are useful for proving the semantic results in Section 4.1, they also are
intuitively appealing. A slice that does not preserve the paths in a program or the flow of values amongst its com-
ponents may compute the same result as the original program, but does so in a different way than the programmer
originally intended. Flow/path-projections retain the structure of the computation as well as its result.

We also have shown that our algorithm identifies the minimal flow/path-projection of a program that includes a
particular component from the original program (see Section 4.2). In particular, transitive control dependence
identifies the vertices that must necessarily be included in a slice in order to form a path-projection. Of course, the
flow/path-projections are minimal with respect to the augmented control flow translation, rather than the standard
translation. There are cases where a flow/path-projection that is minimal under the augmented translation is not
minimal under the standard translation. In the example below, program Y is the projection that results from slicing
program X with respect to A (using the augmented translation and assuming no flow dependences). However, under
the standard translation, the control flow graphs of programs Y and Z are identical, but program Z is clearly smaller
than program Y.

X Y Z
if P then if P then if P then
gotoL goto L
M: A M: A A
fi fi fi
goto N gotoN
L:B L:
goto M gotoM
N:C N:

However, it is possible to show that for certain languages with limited unstructured control flow, our algorithm also
produces programs that are minimal flow/path-projections with respect to the standard control flow translation. One
example of such a language is a structured language with multi-level break statements that pass control to the con-
tinuation of a specified enclosing control construct, be it a loop or conditional. Furthermore, as we show in Section
5.3, if we drop the requirement that the resulting program be a projection of the original program then it is easy to
construct programs that are minimal flow/path-projections with respect to the standard control flow translation.

5.2. Other control constructs

The language considered in this paper has arbitrary control flow, due to the inclusion of the goto statement. It also
has looping and conditional constructs found in many languages. However, the question naturally arises: do the
results of this paper extend to other control constructs, such as for loops and switch statements? As we have
shown, the program dependence graph can be used to form flow/path-projections of completely arbitrary control
flow graphs. However, to ensure that the program projection operation works (see the commutative square on page
13) control constructs must satisfy a few simple properties.

A looping construct must generate a vertex v in the control flow graph such that: (1) v passes control to the con-
tinuation of the loop construct (i.e., there is a loop exit); (2) every vertex generated by the (abstract syntax) subtrees
enclosed by the looping construct is reachable from v. A for loop meets these requirements. However, a construct
such as loop-forever does not. Fortunately, it is usually possible to translate a construct so that by the addition of
dummy vertices and non-executable edges, it meets the requirements. For example, a loop-forever construct can be
treated as a while loop where the predicate is true. This results in a dummy vertex with an outgoing false edge that
is not executable.

-23—

A selection construct must generate a vertex v such that: (1) every vertex generated by subtrees enclosed by the
selection construct is reachable from v; (2) every subtree immediately enclosed by the selection construct passes
control to the continuation of the selection construct; The translations of selection constructs such as if-then, if-
then-else, and switch meet these requirements.

5.3. Alternative methods for slicing

We have defined the slice of a program to be a projection of that program. That is, the program slice must be
formed by eliminating statements from the original program. Because one of the major applications of slicing is
debugging, this is a natural restriction. Presenting the programmer with a slice that does not resemble the original
program is clearly unsatisfactory.

1t is certainly possible to construct programs that meet the semantic goal of slicing but are not program projec-
tions. For example, given a program P with standard CEG G, one could construct the minimal flow/path-projection
of G with respect to some vertex and then synthesize a program from that CFG using a structuring algorithm such as
Baker’s [2]. However, in a language with unstructured control flow, there can be many programs with the same
CFG. The program that results from such an approach may not be a projection of the original program, even though
it meets the semantic goal (because its CFG is a flow/path-projection of the original program’s CFG).

6. RELATED WORK

As mentioned previously, Weiser defined the first program slicing algorithm [13]. The Ottensteins defined a more
efficient program slicing algorithm using the program dependence graph [10]. Neither algorithm handles unstruc-
tured control flow correctly.

Reps and Yang gave the first formal proof that the program slices formed by using the program dependence graph
have the desired semantic property [12]. Furthermore, they showed that slicing using the program dependence
graph guarantees equivalent behavior at every point in the slice (not just at the slicing vertex). However, they
proved this only for programs with structured control flow. We have shown that the program dependence graph can
be used to slice programs with arbitrary control flow with the guarantee of equivalent behavior at every point (see
Section 3.2). We note that Reps and Yang defined a program slice to allow the possible reordering of program
statements (including conditionals and loops). Under their definition, the second program shown below would be a
slice of the first (and vice versa):

1 2
2 1
a+b

(o2 = g

Lo I~

= at+b
Although the ordering of statements in the two programs differs, the same sequence of values is computed at each
point. Under our framework, neither program’s CFG is a path-projection of the other’s CFG, so our semantic result

about flow/path-projections cannot be applied to compare the programs’ behaviors. However, we believe it is possi-
ble to extend slicing with reordering even in the presence of complex control flow.

Choi and Ferrante independently discovered the same problem of slicing programs with complex control flow [3].
They proposed two solutions to the problem, both based on the program dependence graph. The first uses the idea
of an augmented control flow graph, much the same as ours. The second solution uses the PDG of the program’s
standard control flow graph to decide which statements to eliminate. In addition to deleting statements from the ori-
ginal program, their second approach inserts additional gotos to ensure correct control flow. Thus, the resultant pro-
gram may not be a projection of the original program. As discussed in Section 5.3, if it is not necessary to form a
program projection, then the PDG of the standard control flow graph can be used to form a minimal CFG
flow/path-projection (with respect to the standard translation). A structuring algorithm can then be used to form a

—-24—

program from the CFG. Structuring algorithms attempt to minimize the number of gotos needed and will probably
produce more readable code than the second approach of Choi and Ferrante.

The major difference between our work and the first solution proposed by Choi and Ferrante is the generality of
the results. Our algorithm is defined for a language that includes (arbitrarily nested) conditional statements and
loops as well as breaks and gotos. In addition, in Section 5.2 we state exactly what is needed to permit our results
1o be extended to new control constructs. In contrast, Choi and Ferrante’s first algorithm is defined for a much more
limited language in which the only constructs that affect control flow are conditional and unconditional gotes. As
Choi and Ferrante note, any structured control construct (such as an if-then-else or a while loop) can be synthesized
in this simple language. However, as the following example shows, synthesizing control constructs in their simple
language can lead to unnecessarily larger slices when the augmented control flow graph is used. Consider the fol-
lowing structured code and its translation into Choi and Ferrante’s language:

if P then if not(P) then goto 1;
A ;
if Q then if Q then goto 3;
halt goto 2;
fi 1. B;
else 2: C;
B 3:
fi
C

Under the augmented control flow translation of the first program, there is no path from predicate Q to statement B,
so B cannot be control dependent on Q. However, in the second program, statement B is control dependent on Q
because of the edge from “goto 2” to B. Thus, a slice with respect to B in this program picks up predicate Q. One
could argue that the statement “goto 2” should not be treated the same as other gotos that are explicitly written by
the programmer. However, then one must define some other procedure for determining when these implicit gotos
are needed in a slice.

Another difference is that we have characterized the structure of the control flow graphs produced using the pro-
gram dependence graph (flow/path-projections) and have shown that control dependence is necessary and sufficient
for forming minimal flow/path-projections.

7. CONCLUSIONS

This paper has addressed the problem of slicing programs with arbitrary control flow. Previous slicing algorithms
do not always form semantically correct program projections when applied to such programs. This is due to the fact
that the algorithms do not detect when a jump statement such as a break is required in a projection. Our work
solves this problem by using a program dependence graph defined using an augmented control flow graph that
represents jumps as psendo-predicates.

—25-

REFERENCES

L.

10.

11.

12.

13.

A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques and Tools, Addison-Wesley, Reading, MA
(1986).

B. Baker, “An Algorithm for Structuring Flow Graphs,” J. ACM 24(1) pp. 98-120 New York, NY, (January
1977). -

J. D. Choi and J. Ferrante, “What is in a slice,” Unpublished draft, IBM T.J. Watson Research Center
(December 1992),

J. Ferrante, K. Ottenstein, and J. Warren, “The program dependence graph and its use in optimization,” ACM
Transactions on Programming Languages and Systems 9(5) pp. 319-349 (July 1987).

S. Horwitz, J. Prins, and T. Reps, “On the adequacy of program dependence graphs for representing pro-
grams,” pp. 146-157 in Conference Record of the 15th ACM Symposium on Principles of Programming
Languages, (San Diego, CA, January 13-15, 1988), ACM, New York (1988).

S. Horwitz, J. Prins, and T. Reps, “Integrating non-interfering versions of programs,” ACM Trans. Program.
Lang. Syst. 11(3) pp. 345-387 (July 1989).

S. Horwitz, “Identifying the semantic and textual differences between two versions of a program,” Proceedings
of the ACM SIGPLAN '90 Conference on Programming Language Design and Implementation (published as
SIGPLAN Notices) 25(6) pp. 234-245 ACM, (June 20-22, 1990).

S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using dependence graphs,” ACM Transactions on
Programming Languages and Systems 12(1) pp. 26-60 (January 1990).

B. Korel, “PEL.AS—Program Error-Locating Assistant System,” IEEE Transactions on Software Engineering
SE-14(9) pp. 1253-1260 (September 1988).

K.J. Ottenstein and L.M. Ottenstein, “The program dependence graph in a software development environ-
ment,” Proceedings of the ACM SIGSOFTISIGPLAN Software Engineering Symposium on Practical Software
Development Environments, (Pittsburgh, PA, April 23-25, 1984), ACM SIGPLAN Notices 19(5) pp. 177-184
(May, 1984).

T. Reps and T. Teitelbaum, The Synthesizer Generator: A system for constructing language-based editors,
Springer-Verlag, New York, NY (1988).

T. Reps and W. Yang, “The semantics of program slicing and program integration,” in Proceedings of the Col-
loquium on Current Issues in Programming Languages, (Barcelona, Spain, March 13-17, 1989), Lecture Notes
in Computer Science, Springer-Verlag, New York, NY (March 1989).

M. Weiser, “Program slicing,” IEEE Transactions on Software Engineering SE-10(4) pp. 352-357 (July, 1984).

