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Abstract 

We develop a denotational semantics for POOL, a parallel object-oriented programming lan­
guage. The main contribution of this semantics is an accurate mathematical model of the most 
important concept in object-oriented programming: the object. This is achieved by structuring 
the semantics in layers working at three different levels: for statements, for objects, and for 
programs. For each of these levels we define a specialized mathematical domain of processes, 
which we use to assign a meaning to each language construct. This is done in the mathematical 
framework of complete metric spaces. We also define operators that translate between these 
domains. At the program level we give a precise definition of the observable input/output be­
haviour of a particular program, which could be used at a later stage to decide the issue of full 

abstractness. We illustrate our semantic techniques by first applying them to a toy language 
similar to CSP. 

1 Introduction 

In the design of a programming language, a formal stu<ly of its semantics can be of considerable 

advantage [AmeSDc]. First of all, the conciseness and mathematical elegance of the formal semantic 

definition of a language is a very good measure of its conceptual integrity. If the basic concepts 

of a language or the way in which they are combined are not well chosen, then an attempt to 

describe the meaning of programs written in that language by formal, i.e., mathematical, means 

will certainly run into problems. Second, a formal description of the semantics of a language may 

form a basis for proving the correctness of a certain implementation. Sometimes this may apply to 

a complete implementation, but more often it will only apply to specific techniques used in such an 

implementation. Last but not least, formal semantics for a language can function as a gauge for an 

equally formal theory of reasoning about the correctness of programs written in the language. Since 

reasoning about a program can be done at several levels of abstraction, it is important that for the 

formal description of the semantics the right abstraction level is chosen. 

In this paper we shall study the semantics of POOL, a parallel object-oriented language [Ame89b]. 

This language has been designed to support the development of symbolic (i.e., not only numerical) 

programs that can be run efficiently on a parallel computer without shared memory. Up to now, 

This paper describes work done in ESPRIT Basic Research Action 3020, Integration. 
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the formal semantics of POOL has been described in several different ways. First an operational se­

mantics was defined [ABKR86], using the technique of transition systems and Structural Operational 

Semantics [Plo81]. After that we developed a denotational semantic description of POOL [ABKR89]. 

This took place in the mathematical framework of complete metric spaces and used mathematical 

structures called processes [BZ82] to represent the behaviour of a program and its parts. In [Rut90] 

it was proved that these operational and denotational semantics, which were developed more or less 

independently, are in a certain sense equivalent. The semantics of POOL has also been described 

using other formalisms, for example process algebra [Vaa86]. 

Here we want to concentrate on denotational semantics. The main characteristic of denotational 

semantics is that it assigns a meaning (a value out of some mathematical domain) to each language 

construct in a compositional way. This means that the meaning of a composite construct only 

depends on the meanings of its constituents, not on their actual syntactic form. In general, this is 

the best way of describing each concept in the language accurately and individually. The denotational 

semantics developed so far for POOL [ABKR89] had two flaws. Firstly, it did not give a description 

of the semantics of a single object, clearly a very important concept in the language. Secondly, the 

denotational semantics was not sufficiently abstract, and certainly not fully abstract. This principle 

of full abstractness can be defined as follows: In denotational semantics, the meaning of a program 

fragment must contain sufficient information to be able to determine the meaning of any larger 

fragment that contains the first one as a constituent. However, if we look at a complete program, 

it is in general very clear which aspects of its behaviour can be actually observed, for example, its 

output as a function of its input. A semantic description is called fully abstract if the meaning of any 

program fragment contains only that information that is necessary to fix the observable behaviour 

of any complete program that contains it. More precisely, whenever two program fragments have 

different meanings then there should be a context (a program with a 'hole') that gives different 

observable behaviours when it is filled with these fragments. 

This paper develops a semantics for POOL that works at three different levels: the statement 

level, the object level, and the program level. For each level there is a specialized domain where 

the values reside that represent the meaning of the individual language constructs. The relationship 

between the levels is given by translation operators that map meanings at one level to meanings at 

the next higher level, forgetting whenever possible about details that are no longer relevant at the 

higher level. The semantics at the level of programs will define the behaviour that we can ultimately 

observe, and the statement level is of course necessary to get off the ground. The object level is most 

interesting, because it centres by definition around the most important concept of object-oriented 

programming. Getting a clear, formal idea of what constitutes the meaning of an object is not just 

an intellectual challenge. An object is the basic unit of encapsulation and reuse in object-oriented 

programming. As was argued in [Ame89a), it is important to abstract away from the internal details 

of an object, since these cannot be observed anyway. Therefore reasoning about the correctness of 

programs is best done at the level of the observable behaviour of the objects. This can also shed some 

light on the nature of inheritance and subtyping, two of the most interesting issues in object-oriented 

programming (see also [Ame!JO]). 

The techniques that we use in this paper are relatively complex. In order to introduce them 

to the reader, in Section 2 we first apply them to a language called Toy, which is semantically 

much simpler than POOL. Section 3 then applies these techniques to POOL. Both Section 2 and 

Section 3 first introduce the language and its syntax and then describe the semantics at the level of 

statements, objects, and programs. In Section 4 we draw some conclusions from our work and sketch 

some possibilities for further work. Appendix A sketches the mathematical preliminaries necessary 

to understand the technicalities in the rest of the paper. 
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2 A toy language 

In this section a simple language, called Toy, is introduced and supplied with a denotational semantics. 

Toy is very similar to CSP [Hoa78], but a little simpler. A program consists of a fixed, finite number 

of objects (the CSP terminology would be 'processes'), which can only communicate with each other 

by exchanging messages. In order to communicate, the sender and receiver of a message synchronize 

(the first one that is ready to communicate waits for the other) and then they exchange a single 
value.· 

A denotational semantics is given to this language in three stages: first for statements, then 

for objects, and finally for programs. At each stage a different kind of mathematical structures (a 

different domain) will be used to describe the meaning of the language constructs and operations to 

translate these structures into each other will be defined. 

2.1 Syntax of Toy 

The basic building blocks for the syntax of Toy are a set (x E) Var of variables (by this notation we 

mean that the set is called Var and that symbols like x,x',x1,x2, ... denote elements of this set), 

a set (e E)Exp of expressions, and a set (0 E)OLab of object labels. The symbol OLab+ is used 

as a shorthand for OLab U { * }, where * indicates that the object is left unspecified (see below for 

examples of its use). The expressions in the set Exp are considered to be simple, in the sense that 

they do not have side-effects. 

Now we can define the set (s E)Stat of Toy statements as follows: 

s .. - x := e 

O!e J *!e 

O?x I *?x 

if e then s 1 else s2 fi 

while e dos od 

The intended interpretation of the statements is as usual: The assignment statement x := e stores 

the value of the expression e in the variable x. The output statement O!e sends the value of the 

expression e to the object with label 0 and the input statement O?x stores the value it receives from 

object 0 in the variable x. These communication actions take place synchronously: the object that 

reaches its communication statement first must wait for its partner. When this partner also reaches 

a communication statement and moreover the two statements match (one is an output statement, 

the other is an input statement, and they mention each other's object labels), the transfer of the 

value is performed. After this communication both partners can continue their execution in parallel. 

In one of the partners (but not in both), the label of the other side can be replaced by an asterisk*, 

so that the statement takes the forms *!e or *?x. Such a statement is willing to communicate with 

an arbitrary partner object, as long as that partner explicitly mentions the name of the object in 

which the statement occurs. The standard control structures, sequential composition, conditional, 

and loop, are also present in the language. 
A program P E Prog in Toy is a finite sequence of objects, where an object is simply a statement 

labelled by an object name (in CSP terminology [Hoa78), an object would be called 'process', but 

we reserve the word 'process' for certain semantic entities to be introduced below): 

P ::= (01 :: St II · · · II On :: Sn) where n ~ 1. 
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These objects are executed in parallel and th~y can c~mmunicate with .each o~her by the commu­
nication statements described above. Each object h~s its own set of vanables; 1t cannot access the 
variables of another object. Therefore the same vanable name, used in different objects, refers to 

different variables. 

2.2 Semantics of Toy statements 

In order to give a semantics to our language, we first have to give an interpretation to its simplest 
elements, the variables. We assume that our variables can store values that are elements of a set 
(v E) Val, and that at the beginning of the program execution all variables are initialized to the 

special undefined value nil E Val. 
Now we define the set (a- E)~ of states by 

~ = Var -+ Val. 

Note that states are local: A state a- can store the values of all the variables of a single object. Each 

object has its own set of variables and therefore its own state. 
For the evaluation of expressions, we just assume the presence of an evaluation function 

[ J : Exp--+~ -+ Val. 

(The function space operator --+ always brackets to the right, so that this means Exp -+ (I; -+ Val).) 
Since expressions do not have side effects and cannot refer to the variables of other objects, a state rr 

contains enough information to determine the value of an expression instantly. 
For describing the semantics of the larger constructs in our language, we use processes. These are 

mathematical structures that describe exactly the execution of the language constructs in question 
(see also [BZS2)). We use different kinds of processes for statements, for objects, and for programs. 

The processes that describe the semantics of statements are called statement processes and are ele­

ments of the domain (p E)SProc. This domain is a complete metric space defined by the following 

reflexive domain equation: 

SProc 2:! {p0 } U (Ex SProc) 

U ( OLau+ x Val x SProc) 

U ( OLab+ x (Val --+ SProc)) 

In Appendix A we give an overview of the techniques that can be used to prove that this domain 

equation has exactly one solution up to isomorphism, provided we (implicitly) apply the functor id112 

to all occurrences of SProc at the right-hand side. 
Let us now look at the structure of statement processes: The process Po is the (successfully) 

terminated process, which does not perform any action. A statement process of the form [a, p] 

represents an internal computation step. The first component o- registers the new state after this 

step (which might be an assignment) and the second component p, called the resumption of this step, 
represents the activity that follows after this first step. A process of the form [O, v, p] represents a 

send step. The object label 0 (possibly equal to*, the unspecified object label) indicates the receiving 

object, the second component v is the value to be sent, and the third component, the process p is the 

resumption of this send step: it describes what happens after this step. Finally, a statement process 

can have the form [O,J], in which case it models a receive step. The object label 0 (possibly*) 
indicates from which process a value is expected. The resumption f of this step is a function from 

values to processes, since the behaviour of the statements after this step in general depends on the 
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value that is received: if this value is v then f ( v) is the process that describes what happens after 
this receive step. 

The semantics of statements is now given by a function Ms of type 

Ms: Stat --> Cont --> 2: --> SProc. 

The meaning Ms[.s] of a statement s depends on two arguments: a continuation g E Cont and a 
state u. The state u simply represent the values of the variables before the statements is executed. 
The set Cont of continuations is given by 

Cont = 2: --> SProc. 

Such a continuation g represents the meaning of everything that will happen after the statement s. 
Generally it depends on the state resulting from the execution of s. Using continuations can drasti­
cally reduce the complexity of the equations that define the semantics of a language. For a simple 
language like Toy this technique is not really necessary, but we present it here to prepare for Sec­
tion 3, where it is used to define the semantics of POOL. For a good introduction to continuation 
semantics, see (Gor79]. 

The function Ms is defined by the following clauses: 

• Assignment: 
Ms[x := e](g)(u) = [u',g(u')] 

where u' = u{[e](u)/x}. Here we have made use of the variant notation: If f: X--> Y is a 
function, x E X, and y E Y, then J{y / x} is again a function in X --> Y, defined by 

f {y/x}(z) = j y if z = x 

f(z) otherwise. 

Tlie statement process describing the execution of an assignment first performs an internal 
computation step. The first component of this step describes the new state u', which differs 
from the original state u in that the variable x has got the value [e](u) of the expression e 
in the original state u. The second component, the resumption of this step, which is the 
process describing everything that happens after the first step, can be obtained by applying 
the continuation g to the new state u'. 

• Output statement: 

Ms[O!e](g)(u) [O, [e](u),g(u)] 

Ms[*!e](g)(u) = [*, [e](u),g(u)] 

Here the first step is a send step. It contains the label 0 of the receiving object (or *, if the 
receiver is not specified), the value [e](u) to be transmitted, and the resumption, which is 
obtained by applying the continuation g to the (unchanged) state a. 

• Input statement: 

Ms[O?x](g)(u) 

Ms[*?x](g)(u) 

[O, .\v.g(u{v/x})] 

[*,Av.g(u{v/x})] 

The first step executed by an input statement is a receive step of the form [O,J]. The first 
component O is the label of the sending object (or*). The second component f is the resump­
tion, which depends on the value v that is received. The function f is defined in such a way 
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that for a given value v the resumption J ( v) is equal to g( u{ v / x}). This means that first a new 
state c;{ v / x} is determined, where v is stored in the variable x, and then the continuation g is 
applied to this new state, yielding the process g( u{ v / x}) = f ( v) that describes the actions of 
the current object after this receive step. 

• Sequential composition: 

Here we see most clearly the kind of simplification in the semantic equations that can result 
from the use of continuations. The sequential composition of two statements can be described 
by using the semantics of the second statement as the continuation for the semantics of the first 
statement. In more detail: g is a function in I: --+ SProc describing everything that happens 
after the two statements; Ms[s2](g) is also a function in 2:--+ SProc (so it can also be used as 
a continuation) and it describes the execution of s2 plus everything that happens afterwards, so 
Ms[s1](Ms[s2J(g)) is also a function in I:--+ SProc that, when applied to a state u, delivers a 
process that describes the execution of first the statement s1, then the statement s2 , and then 
the rest. 

• Conditional statement: 

if [e](a) # nil 

otherwise 

Since there is no special data type for Dooleans in the language Toy, we base the decision in a 
conditional statement on whether the value of the expression e is nil or not, where nil stands 
for 'false'. 

• Loop statement: 

{ 
Ms[s](Ms[whileedosod](g))(u) 

Ms[whileedosod](g)(u) = if [e](u) #nil 

g( u) otherwise 

If the condition is not nil, then executing the loop is equivalent to first executing the statements 
and then executing the loop again. If the condition is nil, then the loop immediately terminates 
and control passes to the statements following it, which are represented by the continuation g. 

The definition of Ms needs some formal justification, since it cannot be justified by a simple 
induction on the syntactic complexity of the statements (in the clause for the while statement, the 
function value to be defined occurs also at the right-hand side). Rather than treating the while 
statement separately, we give the definition of Ms as a whole as a fixed point of a higher-order 
contracting function, as follows. Define the domain D by 

(F E)D = Stat -+ Cont I_!; I: -+ SProc. 

(Here X '.!; Y is the space of all functions J: X-+ Y such that d(j(x 1),f(x2 )) ~ 1/2. d(x 1,x2 ) for 
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any xi,x2 EX.) Now we define the operator W: D-+ D by the following clauses: 

\l!(F)[x := e](g)(a-) [cr',g(a-')] where a-1 = a-{[e](a)/x} 

{ 
\ll(F)[s](F[whileedosod](g))(a) 

w(F)[whileedosod](g)(a) = if [e](a) #nil 

g( a) otherwise 

It is clear that the above definition of W can be justified by induction on the syntactic complexity. 
By induction on the complexity of a statements we can prove that for any FED the result w(F)[s] 
is indeed an element of Cont 1-4 I: -+ SProc, i.e., that it reduces distances by a factor 1/2. Here 
we use the fact that the functor id1; 2 is applied to all occurrences of SProc in its defining domain 
equation, and that in the basic clauses for w(F) the continuation g is always applied to a state to 
yield a process that serves as a resumption. Now we note that the only place where the function F 
occurs at the right-hand side without l}i being applied to it is in the clause for the while statement, 
where it occurs in the continuation for w(F)[s]. Therefore W is indeed a contracting function (see 
Appendix A), so by Banach's Theorem it has a unique fixed point. This fixed point satisfies exactly 
the equations that we have given above for Ms, so we can define Ms to be this fixed point. 

2.3 Semantics of objects 

The semantics of an object is obtained by taking the statement semantics (Ms) of the statement 
executed by the object and forgetting about the local computation steps. To this end we introduce 
a domain ( q E) OProc of object processes. This domain is defined by 

OProc ~ {q0} U (OLab+ x Val X OProc) 

U ( OLab+ x (Val-+ OProc)). 

The domain OProc can be viewed as being (isomorphic to) the subset of SProc consisting of those 
processes that do not contain internal computation steps. 

Next we define an abstraction operator a: SProc-+ OProc, which makes all the internal compu­
tation steps invisible, so that their effects only become apparent through the send and receive steps 
that the process performs. Note that this corresponds to the intuitive fact that we cannot observe 
the state of an object directly, but only indirectly through the messages that it sends and receives. 
We want the operator a to satisfy the following equations: 

C¥(Po) 

a([o-, p]) 

C¥([0,v,p]) 

C¥([0,J]) 

a([a-1, [u2, (0-3, · · .]])) 

f]o 

a(p) 

[O,v,a(p)] 

= [0,.Av.C¥(j(v))] 

(Note that the last clause is really necessary, since the first four clause do not fix the value of°' for 
an infinite sequence of internal steps.) We can obtain such an operator a as the.unique fixed point 
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of the higher-order contracting operator iP: (SProc--+ OProc)--+ (SProc--+ OProc) defined by 

<P(q))([u1i · · · [un,Po] · · ·]) = qo (n ~ 0) 

<P(q))([o-1, • · · [un, [O, v,p]] · · ·]) = (0, v, efi(p)] (n ~ 0) 

<P( q))([o-1, • • · [un, (0, /lJ · · ·]) = (0, v, >.v.efi(f(v))] (n ~ 0) 

(>(q))([o-1, (u2, (0-3, ..• ]]]) = qo 

It is not difficult to see that <P is indeed a contraction (at the right-hand side, q) occurs only inside 
a resumption, where the functor id112 applies) and that its unique fixed point satisfies the equations 
given above for a:. Note that a is not continuous: Ifwe define the sequence Pi.P2, ... by p1 = [O,v,p0] 

and Pn+l = [u,pn] for some arbitrary 0, v, and u, then lirn,, Pn =Poe = [u, [u, [u .. . ]]]. Applying a we 
get that o-(pn) = [O, v, q0] for all n, but a:(p00 ) = q0 • It is somewhat surprising that et can be defined 
as the fixed point of a higher-order contracting operator, although it is not continuous itself. 

Now we can introduce the second semantic mapping Mo: Stat--+ OProc, given by 

Mo[s) = a(Ms[s](>.u.p0 )(>.x.nil)). 

It is obtained by applying the abstraction operator a to the meaning of s as a statement (given by 
Ms), supplied with the empty continuation >.u.Po (indicating that after s nothing has to be done 
a.ny more) and the nowhere defined state >.x.nil (indicating that at the beginning of the execution 
of s all variables have been initialized to nil). 

The semantics of objects, given by the function Mo, contains all the details that are necessary 
to describe how objects interact with each other (by communication), but the information describing 
how an object works internally (e.g., how it accesses and changes its own state) has been removed. 

2.4 Semantics of programs 

The meaning of a program (the parallel composition of a number of objects) will consist of the 
communications between this program and the outside world. Therefore let us start by defining the 
latter. 

We assume the presence of two special elements O;,. and Oaut in OLab, representing the input and 
the output half of the outside world. These object labels may occur in the communication statements 
of a program, and in this way the program can communicate with the outside world. For instance, 
the statement 0 0 • 1!3 will output the value 3 to the outside world. Conversely, Oin ?x will input a 
value and store it in the variable x. 

Formally, the outside world is modelled by a pair of object processes, q;,, and q0 • 1 in OProc. More 
precisely, the process q;n depends on a finite or infinite sequence w E Val 00 , consisting of the values 
that are offered as input to the program. We define 

q;,.({)) = qo 

q;,.(v·w) = [*,v,q;,,(w)] 

The latter triple indicates that the value v is sent to any process that is willing to accept it (by a 
statement of the form O;,. ?x), after which the remaining values in w will be sent. (In order to define 
q;,. rigorously on infinite sequences, it can be taken as lhe fixed point of a contracting operator in 
the usual way.) 

The output half of the world, q0 .,, is given by 
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It represents a. continuous willingness to accept values from any process wishing to send a. value to 
the outside world (by a. statement of the form 0 0 ,.1!e). The process q.,., itself does nothing with the 
values it receives; we shall see below how they a.re extracted to arrive a.t the output of the program. 

In order to describe the global behaviour of programs, a. third kind of semantic domain is intro­
duced: the set (r E) GProc of global processes, defined by 

GP1'0c {To}U'Pc0 (GStep) 

(x E)GStep = (OLab x OLab+ x Val x GProc) 

U (OLab+ x OLab x (Val-+ GProc)) 

U (Comm x GProc) 

(c E)Comm OLab x Val x OLab 

The terminated process is indicated by To. All other kinds of global processes consist of a set of 
possible steps. This is the wa.y in which nondeterminism (which comes from the fa.et that parallelism 
is modelled by nondeterministic interleaving, a.s we shall see below) is modelled in our semantics: If 
such a process is executed, it will nondeterministically choose one step from among the members of 
the set. A step can have one of three possible forms: a send step, a receive step, or a communication 
step. The interpretation of send steps (of the form (Oi,02 ,v,T]) and receive steps (of the form 
[01, 02, J]) is similar to their counterparts in OProc. The only difference is that now the labels of 
both the sending and the receiving objects (in that order) are registered. (Note that in a send step 
[Oi, 0 2 , v, r] the receiver 0 2 might be unspecified(*) and symmetrically, in a receive step [Oi,02, !], 
the sender 0 1 may be*·) Finally, a step of type (c,T] represents a successful communication c with 
resumption r. Communications are of the form (011 v, 0 2], indicating that object 0 1 has sent the 
value v to object 0 2 • 

We shall need to be able to compose global processes in parallel. For this purpose we define the 
operator II : GProc x GProc -+ GPToc by 

T 11 To = ro 11 T = T 

T1 II T2 = T1 !L T2 U T2 lL r1 U T1 I r2 

T1 !L T2 = { x !L T2 : x E T1 } 

(01,02,v,TJ[ T2 = [Oi, 02, v, T II r2] 

[Oi, 0 2,f] !L Tz = (Oh 02, >.v.(f(v) II r2)] 

(c, r] lJ.. T2 = [c,T 11 T2] 

T1 I T2 U{ x I y : x E Ti, y E T2 } 

{ :[(O.,., o,),J(v) II r]) if x = [Oi.Ot,v,r] 

xly and y = [Ot, 0 2,J] or vice versa 

otherwise 

(Here Tt and r2 are supposed to be unequal to r 0 , and the notation Ot ha.s been used as a shorthand 
for O; or*• where at most one of Ot and Ot may be*·) 

A brief explanation: As already announced above, we model two processes executing in para.lie] 
by taking all the possible ways in which their individual steps can be combined or interleaved. 
Composing a process r in parallel with the terminated process yields r itself. The result of composing 
in parallel two processes r1 and T2 , both of which are not r 0 , is a set union of three parts: in the first 
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part, the first step is performed by r 1 (indicated by the left merge operator IJ_); in the second part, 
the first step is performed by r 2; and in the last part, the first step is a communication of a step 
from r 1 with a step from r 2 (indicated by the communication merge !). The left merge ll_ is applied 

to a. process by applying the derived operator lL to all of its steps. This derived operator effectively 
composes its second argument with the resumption of the first. The communication merge of two 
processes is the union of all the possible communications of their steps, and the communication merge 
of two steps yields a singleton if the steps match, and the empty set otherwise. 

Before we can define the global semantics of programs, one more definition is needed. It is an 
operator w: OProc-+ OLab -t GProc that translates an object process, together with the label of 
the object that executes it, into a global process, as follows: 

w(q0 )(0') = ro 

w([O, v, q])(O') = {[O', 0, v,w(q)(O')]} 

w([O,J])( O') {[O, 0', ,\v.w(f(v ))(0')]} 

Finally, we can define the meaning function for programs Mo : Prog -t Val00 -+ GProc: 

Ma[(01 :: S1 II · • · II On:: sn}](w) 

= w(Mo[s1])(01) II··· II w(Mo[sn])(On) II w(q;,.(w))(O;,.) II w(foi)(Oout) 

We see that the semantics of a program consists of the parallel composition of the object processes of 
all the objects plus the input and output object, after they have been translated to global processes. 

However, processes in GProc contain more information than we consider relevant for the observ­
able behaviour of a program. In particular, only the values sent by the program to the outside world 
are of importance. These can be extracted from a global process by means of the operator output 
defined below. First the operator path: GProc -t 'P( Comm X GProc)00 is introduced: 

path(r) = { ([c11 r1], ... , (c,.,r,.]) : [c11 ri] E r /I. Vl ~ i < n [c;+i, r;+i] E r; 

/I. -,3c, r' [c, r'] E rn} 

U { ([c1, r1], ... ) : (ci, r1] E r /I. Vi 2:: 1 (c;+i. ri+1] E r;} 

Now we can define the function output : GProc -+ P( Val00 ) by 

where 

output(r) = {V(c1) · V(c2) · ·· ·: ([c;,r;]}; E path(r)} 

V(c)={ (v) ifc=[O,v,00 ui] 
(} otherwise 

Finally, the observable behaviour of a program can be given as follows: 

obs : Prog -+ Va/00 -+ 'P( Va/00 ) 

obs[P](w) = outpul(Ma[P](w)) 

For a given program and a (finite or infinite) sequence of input values, this function obs delivers the 
set of all possible sequences of output values. 
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3 The language POOL and its semantics 

In this section we shall introduce the language POOL, a parallel object-oriented programming lan­

guage, and give a semantics for it at three levels, following the same basic scheme as that in Section 2. 

3.1 Informal introduction to the language 

The language POOL [Ame87, Ame89b] makes use of the principles of object-oriented programming 

in order to give structure to parallel systems. A POOL program describes the behaviour of a whole 

system in terms of its constituents, objects. Objects contain some internal data and some procedures 

that act on these data (these are called methods in the object-oriented jargon). Objects are entities 

of a dynamic nature: they can be created dynamically, their internal data can be modified, and 

they even have an internal activity of their own. At the same time they are units of protection: the 

internal data of one object are not directly accessible to other objects. 
An object uses variables (more specifically: instance variables) to store its internal data. Each 

variable can contain a reference to an object (another object or, possibly, the object under consid­

eration itself). An assignment to a variable can make it refer to a different object than before. The 

variables of one object cannot be accessed directly by other objects. They can only be read and 

changed by the object itself. 
Objects can only interact by sending messages to each other. A message is a request for the 

receiver to execute a certain method. Messages arc sent and received explicitly. In sending a mes­

sage, the sender mentions the destination object, the method to be executed, and possibly some 

parameters (which are again references to objects) to be passed to this method. After this its ac­

tivity is suspended. The receiver can specify the set of methods that will be accepted, but it can 

place no restrictions on the identity of the sender or on the parameters of messages. If a message 

arrives specifying an appropriate method, the method is executed with the parameters contained in 
the message. Upon termination, this method delivers a result (a reference to an object), which is 

returned to the sender of the message. The latter then resumes its own execution. Note that this 

form of communication strongly resembles the rendezvous mechanism of Ada [ANS83]. 
A method can access the variables of the object that executes it (the receiver of a message). 

Furthermore it can have some temporary variables, which exist only during the execution of the 

method. In addition to answering a message, an object can execute a method of its own simply 
by calling it. Because of this, and because answering a message within a method is also allowed, 

recursive invocations of methods are possible. Each of these invocations has its own set of parameters 

and temporary variables. 
When an object is created, a local activity is started: the object's body. When several objects 

have been created, their bodies may execute in parallel. This is the way parallelism is introduced into 

the language. Synchronization and communication takes places by sending messages, as described 
above. 

Objects are grouped into classes. All objects in one class (the instances of that class) have the 

same number and kind of variables, the same methods for answering messages, and the same body. 

In creating an object, only its desired class must be specified. In this way a class serves as a blueprint 

for the creation of its instances. 
There is a special object, nil, which can be considered to be an element of every class. If a message 

is sent to this object, an error occurs. Upon the creation of a new object, its instance variables are 

initialized to nil and when a method is invoked its temporary variables are also initialized to nil. 

There are a few standard classes predefined in the language. In this semantic description we shall 

only incorporate the classes Bool and lnt. The usual operations can be performed on these objects, 



102 

but they must be formulated by sending messages. For example, the addition 2 + 4 is indicated by 
the expression 2!add(4), sending a message with method name add and parameter 4 to the object 2. 

3.2 Syntax of POOL 

In this section we describe the syntax of the language POOL as we study it in this paper. The 
concrete syntax of the language that is used for actual programming is relatively complex, since it 
offers many convenient short-hand notations for programmers. In order to avoid this complexity in 
this paper, we shall define an abstract syntax, which is much simpler. Nevertheless, all the essential 
semantic ingredients of the language have been maintained, so that every concrete POOL program 
can be translated straightforwardly into our abstract syntax. 

As a starting point for the definition of the POOL syntax, we assume the existence of the set 
(x E)!Var of instance variables, the set (u E)TVar of temporary variables, the set (C e)CName of 
class names, and the set (m e)MName of method names. We define the set (</> e)SObj of standard 
objects as follows: 

SObj = Zu {t,f} U {nil} 

where Z is the set of all integers. 
Now we can define the set (e E)Exp of expressions by the following clauses: 

e .. - x 

tl 

m(ei, ... , en) 

e!m( ei, ... , en) 

condans{m1 , .•• , m,.} 

new(C) 

s; e 

self 

The set (8 E)Stat of statements is defined by 

8 .. - X+-e 

U+-e 

answer{m1, ... , mn} 

e 

if e then 8 1 else 82 fi 

while e dos od 

(n ~ 0) 

(n ~ 0) 

(n ~ 1) 

(n ~ 1) 

The set (µ E)MethDef of method definitions is given by 

/l ::= [(ui, ... , ttn}, e] (n ~ 0), 
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the set (d E)ClassDef of class definitions by 

d ::= [(m1 {:::µ1, ... , mn{:::µn), s] 

and finally the set (P E)Prog of programs is defined by 

P ::= {C1 {::di,.·., Cn{::dn) 

3.2.1 Informal explanation 

(n 2: 0), 

(n;?:l). 

First of all, it may be important to note that the di!ference between expression and statements in 
POOL is only that expressions result a value whereas statements do not. In particular, expressions 
can have quite drastic side-effects (but these are always defined exactly by the language). 

Expressions: An instance variable or a temporary variable used as an expression will yield as its 
value the object name that is currently stored in that variable. 

A method call simply means that the corresponding method is executed. This is done as follows: 
First the argument expressions e1, ••• , en a.re evaluated from left to right. Then a. new set of temporary 
variables is ta.ken, in the sense that their current values a.re remembered and they a.re given new values 
as follows: The argument values a.re assigned to the corresponding parameters, i.e., the temporary 
variables listed in the method definition, a.nd the other temporary variables a.re initialized to nil. 
Then the expression in the method definition is evaluated; the result of this evaluation will be the 
value of the method call. Before the method call terminates, the original values of the temporary 
variables a.re restored. 

The next kind of expression is a send expression. Here e is the destination object to which the 
message will be sent, m is the method to be invoke<l, and ei, ... , en are the arguments. When a 
send expression is evaluated, first the destination expression is evaluated, then the arguments a.re 
evaluated from left to right and then the message is sent to the destination object and the sending 
object does nothing while it a.waits the result. When the destination object answers the message, 
the corresponding method is executed, that is, the parameters a.re initialized to the argument values 
contained in the message, the other temporary variables are initia.lized to nil, and the expression in 
the method definition is evaluated. The value which results from this eva.luation is sent back to the 
sender of the message and this will be the value of the send expression. 

The conditional answer expression is a variant of the answer statement described below. This 
expression can answer a. message that mentions a. method name from the set { m1 , ••• , mn}, if such a. 
message is present. In this case its va.lue will bet (true). Otherwise it terminates without answering 
a. message, yielding the value f (fa.lse). 

A new-expression indicates that a. new object is to be created, an instance of the class C. The 
instance variables of this object a.re initialized to nil and its body starts executing in parallel with all 
other objects in the system. The result of the new-expression is (a reference to) this newly created 
object. 

The next type of expression checks whether e1 and e2 result in a. reference to the same object. 
If so, t is returned, otherwise f. An expression may also be preceded by a. statement. In this case 
the statement is executed before the expression is evaluated. The expression self always results in a. 
reference to the object that is executing this expression. Finally, the evaluation of a standard object 
tjJ results in that object itself. For instance, the value of the expression 23 will be the natural number 
23. 

Statements: The first two kinds of statements are assignments to an instance variable and to a. 
temporary variable. An assignment is executed by first eva.luating the expression on the right and 
then making the variable on the left refer to the resulting object. 
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The next kind of statement is an answer statement. This indicates that a message is to be 
answered. The object executing the answer statement waits until a message arrives with a method 

name that is contained in the set { m1 , ••• , mn}· Then it executes the method (after initializing the 

parameters and temporary variables). The result of the method is sent back to the sender of the 
message and the answer statement terminates. The difference with a conditional answer expression 
is that an answer statement always answers exactly one message before terminating, whereas a 
conditional answer expression answers at most one message. 

Next it is indicated that any expression may also occur as a statement. Upon execution, the 

expression is evaluated and the result is discarded. So only the side effects of the expression evaluation 
(e.g., the sending of a message) are important. Sequential composition, conditionals and loops have 

the usual meaning. 

Method definitions: A method definition describes a method. Here u1 , •.• , Un are the parameters 
and e is the expression to be evaluated when the method is invoked. Upon execution of this method, 
the para.meters are initialized to the corresponding argument values, the other temporary variables 
are initialized to nil, and the expression e is evaluated. Not only is the value of this expression 
important, but in general also its side-effects. 

Class definitions: A class definition describes how instances of the specified class behave. It 
indicates the methods and the body each instance of the class will have. The set of instance variables 

is implicit here: it consists of all the elements of IVar that occur in the methods or in the body. 

Programs: A program consists of a number of bindings of class names to class definitions. If a 
program is to be executed, a single new instance of ihe last class defined in the program is created 

and execution of its body is started. This object has the task of starting the whole system by creating 
new objects and putting them to work. 

3.2.2 Context conditions 

For a POOL program to be valid a few more conditions need to be satisfied. We assume in the 
semantic treatment that the underlying program is valid. These context conditions are the following: 

• All class names in a program are different. 

• All method names in a class definition are different. 

• All parameters in a method definition are different. 

• Every method name that is used in a method call, send expression, conditional answer expres­

sion, or answer statement within a certain class definition is bound to a method definition in 
that class definition. 

Any POOL program that is a translation of a valid POOL-T [Ame87] or POOL2 [Ame89b] 
program will automatically satisfy these conditions. POOL-T and POOL2 are even more restrictive. 
For example, they require that the type of every expression conforms with its use and they forbid 

assignments to formal parameters. However, the conditions above are sufficient to ensure that the 
program will have a well-defined semantics. 
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3.3 Semantics of POOL expressions and statements 

Defore the domain of statement (and expression) processes for POOL can be defined, we first need to 
introduce a few more sets. We assume the existence of a set AObj of active object names satisfying 
AObj n SObj == 0, together with a function v : 'Pfin(AObj) -> AObj such that v(X) rJ. X for any 
finite X ~ AObj. For a given finite set X of active object names, this function v delivers a name for 
an object which is new, i.e., it does not belong to X. 

Remark: An example of such a set AObj and function vis given by 

AObj {O} x N 

v(X) = (O,max{ n: [O, n] EX}+ l]. 

The set AObj of active object names and the set SObj of standard objects together form the 
set (a, (3, 'Y E) Obj of object names: Obj = AObj U SObj. Now we define the set (er E) OState of object 
states by 

OState = (!Var -> Obj) x ( TVar -> Obj). 

Every object state er consists of two components that register, for a particular object, the values of 
the instance variables and the values of the temporary variables. For readability we also introduce 
the following sets: 

New 

NewName 

Result 

Send 

CName 

AObj 

Obj 

Obj X MName x Obj* 

(For any set A, we denote by A* the set of finite sequences of elements of A.) 
Now we can define the domain (p E)SProc of statement processes to be the unique fixed point of 

the following domain equation: 

SProc ~ {p0 } U (OState x SProc) 

U (New x (NewName -> SProc)) 

U (Send x (Result-> SProc)) 

U (MName ~ (Obj*-> SProc)) 

U (MName ~ (Obj*-> SProc)) x SProc 

U (Result X SProc) 

(With A~ B we denote the set of finite partial maps from A to B.) 
We see that a statement process can have one of seven possible forms: 

1. The terminated process p0 • 

2. An internal computation step [cr,p]. The first component indicates the new state immediately 
after this step and the second component is the resumption, which describes everything that 
will happen after the first step. 

3. A creation step [C, f]. This describes the creation of an object of class C. The creation itself is 
done by a mechanism outside the object. The resumption of this step is given by f(/3), where 
f3 is the name of the new object. 
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4. A send step [(,8, m, ,8), f]. The first component desc~bes the contents of the message that is 
sent: (3 is the destination, m is the method name, and /3 is the sequence of argument values. The 
resumption of this send step is given by applying the function f to the result of the message. 

5. An answer step g. This step indicates that the object is ready to answer any message that 
mentions a method name m that is in the (finite) domain of g. If the argument values in the 
message are given by ,8, then the resumption of this step is g(m)(i]). 

6. A conditional answer step [g,p]. This process is similar to the previous one but it has an 
extra component. If a message of the form [(3,m,,8] with m E domg has arrived, it can be 
answered, in which case the resumption is g(m)(,6). Otherwise, no message is answered and 
the resumption is just p. 

7. A result step [i,p]. This step returns 'Y as a result of a message that has been sent earlier to this 
object (an external mechanism will deliver this result to the sending object). The resumption 
of this step is given by p. 

Next the semantics of expressions and statements in a class definition d is given by means of two 
meaning functions 

M~ Exp-+ AObj-+ ECont-+ OState-+ SProc 

M~ Slat -+ AObj -+ SCont -+ OState -+ SProc 

where 
(h E)ECont Obj -+ OState -+ SProc 

(c E)SCont = OState -+ SProc 

are the sets of expression continuations and statement continuations. 
We see that the types of the meaning functions for expressions and for statements are very similar. 

The reason why we cannot use a very simple meaning function for expressions such as the one in 
Section 2.2 is that in POOL an expression can have side-effects: the evaluation of an expression 
may involve creating new objects and sending or answering messages. Therefore the only difference 
between expressions and statements in POOL is that expressions yield a value whereas statements 
do not. This difference is reflected in their respective continuations: the continuation of a statement 
depends only on the state after this statement, but the continuation of an expression also depends 
on its value. 

If we compare the types of these semantic functions to the one in Section 2.2, we see that they 
need one extra argument: the name of the object that executes the expression or statement. This 
argument is in fact only needed to evaluate the expression self. 

We define the functions M~ and M~ by the following clauses: 
Expressions: 

• Instance variable: 

M~[xJ(a)(h)(o-) =[a-, h(o-(l)(x))(o-)] 

We deliver an internal computation step where the state is unchanged and the resumption is 
obtained by feeding the continuation h with the current value of the variable x, which can be 
found in the first component O"(i) of the state. 

• Temporary variable: 

M~[ttB(a)(h)(o-) = [a-,h(o-(2)(u))(o-)] 

This is similar to an instance variable, but now the value is found in the second component crc2). 
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MHm(e1,. .. ,en)](a)(h) = 

MHe1J(a)( 

.\,81 .MHe2]( a)( ... 

.\,8n.AO". [a-, MHeJ(a)(h')(u)j ... ) ) 

0- [0-(1), (.\u.nil){,8;/u;}7=1J 

h' >.-y.>.u'.h(t)(~) 

(;1 [ufo, 0"'(2)) 

and m{:::[ (ui, ... , un), e] occurs in the class definition d. 

The first action to be taken here is the evaluation of the first argument expression e1 • The 
corresponding meaning function M~[ei] is provided with a continuation that takes the value ,81 

of e1 and starts to evaluate the second argument expression e2 . This continues until all the 
arguments have been evaluated. The last continuation takes the last value f3n of en and a 
state u and performs an internal computation step where the state is changed to 0-, having 
new values for the temporary variables (in implementation terms, one could say that a fresh 
set of temporary variables is pushed onto the execution stack). Most of these temporary 
variables are initialized to nil, but the parameters ui, ... , Un of the method m are set to the 
corresponding argument values ,81 , ... , ,8n. After that (in the resumption of this computation 
step) the expression e in the method definition is evaluated. The meaning function M~[e] that 
does this is fed with a continuation h' that takes the value 'Y of e and the resulting state 0-1 and 
feeds these into the original continuation h, but only after restoring the original values of the 
temporary variables from O"(z) in (;i (the execution stack is popped). 

It might be instructive for the reader to write out explicitly the cases where the number of 
argument expressions is 0 or 1. 

• Send expression: 

MHe!m(e1, ... ,en)](a)(h) = 
M'.f,[e](a)( 

>.,8.MHe1](a)( ... 

>.,Bn .AO". [(,8, m, (,Bi, ... , ,8n}), ,\-y .h('Y) ( U)] · · .) ) 

This is similar to a method call, except that after evaluating the destination expression e and 
the argument expressions e1 , ••• , en, a send step is performed. The first component of this 
send step contains the destination object (3, the method name m, and the argument values 
,81, ••. , f3n· The resumption is obtained by applying the continuation h to the result value 'Y of 
the message and the state a just before the send step. 
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• Conditional answer expression: 

MHcondans{m1,. .. , mn}](a)(h)(11) = [g, h(f)(11)] 

where 

{ 
[a-, MHe](a)( >.1.>.111.['Y, h(t)(c7')J) (a)] 

g(m)((,81, ... 1 ,Bn}) = ifmE{m1 1 ... ,mn} 

undefined otherwise 

0- = (11(1)> (>.u.nil){,8;/u;}i':1] 

c7' = (11(i), 11(2)] 

and m<=[ {u1, ••• , un}, e] occurs in the class definition d. 

Here a conditional answer step is performed. The second component reflects the fact that 
such a step can be ta.ken if no suitable messages are present, in which case the value of the 
conditional answer expression is f (false). The first component is a. function g that is only 
defined on the method names mi, ... , mn mentioned in the conditional answer expression. 
When applied to such a method name m and a sequence (,81, ••. , .Sn} of argument values, it 
delivers a process, which starts with an internal step. In this first step a new set of temporary 
variables is prepared (cf. a) and in the resumption the expression e from the method definition 
is evaluated. The meaning function Mi;[e] that describes this is given a continuation that 
begins with a result step, in which the value 'Y of e is returned as a result to the sender of 
the method. The resumption is obtained by applying the continuation h to the value t of the 
conditional answer expression and the state :i1 in which the temporary variables have been 
restored to their original values. 

• New-expression: 
MHnew(C)](a)(h)(11) = [C,>.,8.h(,8)(0')] 

The meaning of a new-expression is represented by a creation step, which consists of the class 
name C of the object to be created and a resumption that depends on the name ,8 of the 
resulting object. 

• Identity test: 

Here the expressions ei and e2 are evaluated (in that order) and if they result in identical object 
names, t is returned; otherwise f is returned. 

• Statement before expression: 

M~[s;e](a)(h) = M~(s](a)(MHe](a)(h)) 

• The expression self: 

M~[self](a)(h) = h(cr) 

• Standard object: 

MHiPJ( a )(h) = h( iP) 
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Statements: 

• Assignment to instance variable: 

M~[xf-e](a)(c) = MMe](a) ( ,\,B.,\u.[u',c(u')J) 

where u' = [uc1i{,B/x},uc2il· 

The last action to be taken in an assignment statement is an internal step in which the state 
is modified: The variable x is given the value (J, which is the result of the expression e. The 
resumption is the result of applying the continuation c to the new state o-1• 

• Assignment to temporary variable: 

M~[uf-e](a)(c) = MMeJ(a) ( ,\(J.,\u.[u",c(u")J) 

where u" = [u(1)>0"(2){,B/u}]. 

• Answer statement: 
MHanswer{mi, ... , mn}](a)(c)(u) = g 

where 

{ 
[a-, MHe](a) ( ,\-y.,\u'.[l, c(;')J) (u)] 

g(m)((f31, ... ,,Bn)) = ifmE{mi, ... ,mn} 

undefined otherwise 

0- [u(l)i (,\u.nil){(J;/u;}i=1] 

;i = [0-(1)1 0"(2)] 

and m<=[(tti, ... , u,.), e] occurs in the class definition d. 

Here an answer step is performed. It is described by a function g that is defined only on the 
method names mi, ... , m,. that are mentioned in the answer statement. When given such a 
method name and a sequence of argument values, the function yields a process that first changes 
the state, thereby introducing a new set of temporary variables, evaluates the expression e in 
the method definition, and finally performs a result step, in which the value/ of the expression e 
is returned and the resumption consists of the continuation c applied to the state ;i, in which 
the original values of the temporary variables have been restored. 

• Expression as statement: 
M~[e](a)(c) = Mi(e](a)(,\,B.c) 

Here we fill in a continuation ,\(J.c that simply ignores the value (J of the expression. 

• Sequential composition: 

• Conditional statement: 

M~[if e then s1 elses2 fi](a)(c) = 
MHe]( a) ( ,\(J.if (J = t then MHsiJ(a)(c) else MHs2](a)(c)) 
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• While loop: 

MHwhileedosod](a)(c) = 
MHeJ(a)(.-\f3.,\a.[a,if /3 = t 

then M~[s](a) (M~[while e dos od]( a)( c)) (o-) 

else c( o-)]) 

As in Section 2.2, induction on the syntactic complexity of expressions and statements is not 

enough to justify the above definition of M'};; and M~. This time the while statement is not the 
only offending case: in the clauses for method calls, conditional answer expressions, and answer 
statements an expression is evaluated that comes from a method definition and therefore need not 
be smaller than the original statement/expression. Again we can define a higher-order contracting 

function cI> in such a way that the pair [M~, M~] is its unique fixed point. Note that the 'extra' 

internal computation steps that have been introduced precisely in the four above-mentioned cases 
are necessary to make sure that this function cI> is indeed contracting. 

3.4 Semantics of POOL objects 

The domain ( q E) OProc of object processes consists of those statement processes that do not contain 
any computation steps. It is given by 

OProc ~ {p0 } U (New x (NewName-+ OProc)) 

U (Send x (Result -+ 0 Proc)) 

U (MName ~ (Obj*-+ OProc)) 

U (MName ~ (Obj*-+ OProc)) x OProc 

U (Result x OProc) 

The semantics of an object is obtained by applying an abstraction operator abstr : SProc -+ OProc 
to the semantics of the body of this object. This operator abstr is characterized by the following 
equations: 

absfr(p0 ) 

abstr([o-, p]) 

abstr([C, J]) 

abstr([(/3, m, i3), J]) 

abstr(g) 

abstr([g, p]) 

abstr([I, p]) 

abstr([ai, [a2, [a3, · · ·]]]) 

qo 

abstr(p) 

= [C, .-\,8.abstr(f(/3))] 

= [(,8, m, ,8), .-\1.abstr(f(t))] 

Am.>.,8.abslr(g( m )(,8)) 

[>.m . .-\,8. abstr(g( m )(,8) ), abstr(p )] 

= [!, abstr(p)] 

(The last clause is needed because the previous clauses do not define the value of abstr for infinite 

sequences of internal steps.) As in Section 2.3, a unique (non-continuous) operator satisfying these 
equations can be obtained as the fixed point of a higher-order contraction. 
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Now we can define the semantics of objects, or rather of class definitions, by giving a meaning 
function Mo: ClassDef-+ AObj-+ OProc. This function Mo is defined by 

Mo[d](a) = abstr(M~[sJ(a)(eo)(uo)) 
where 

d = [( ... ), s] 

Co = ,\u.Po 

O"o = [).x.nil, ,\u.nil] 

3.5 Semantics of POOL programs 

So far we have only described the behaviour of objects in isolation. Next we want to see how several 
objects in parallel behave and interact. The object processes that describe the individual objects do 
not describe how to select a message to be answered, how to return a result to the sender, or how to 
create a new object. Therefore, some scheduling mechanism is needed that takes care of this. Such a 
mechanism is implemented by the operator w defined below. But in order to do that, the operator w 

needs a global state to maintain its administration. Formally, the set (u e)GState of global states is 
defined by 

GState = 'Pfi,.(AObj) x (Obj--+ RetStack) x (Obj--+ MQueue) 

where 
(p E)RetStack = ( Obj x (Result-+ OProc))* 

(e E)MQueue = (MName x OW x Obj x (Result--+ OProc))* 

A global state u consists of three components. The first component O"(i) is the set of all the 
currently existing objects. The second component 0"(2) registers for each active object Cl its return 
stack p, which consists of a sequence of frames. A frame [,8,J] indicates that object f3 is waiting for 
a result, say '"f, of a message that is being processed by Cl, after which it will continue its activity 
with the object process J('Y). The third component 0"(3l of a global state registers for every active 
object a its message queue e. Each element of such a list is of the form [m, fj, (J, f], which represents 
the fact that object fJ has sent a message to object a requesting the execution of the method m with 
argument values fj and that on receiving a result 'Y back, the object fJ will continue its activities with 
the process /(!). 

We shall need the following operations on global states: On RetStack there are the usual pop, 
top, and push operations: 

pop(p. [(J, J]) p 

top(p. [(J, J]) = [(J, !] 

push([(J,J],p) = p· [{3,f] 

On MQueue there are operations for appending and deleting a message: 

append(e,11) = e.µ 

delete(e1·ti·6,µ) = 6·6 

provided J' does not occur in 6 (in other words, the first occurrence ofµ from the left is removed). 
Finally the operation get looks at a given message queue e and a set V of method names to see 
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whether a. message mentioning one of the method names in vis present in e. If so, get delivers the 
first such message (from the left). Let (µ1 , ••• , µn) be a message queue. Then 

get( (µll ... ,µ,.), V) = µ; if (µ;){1) E V and Vl :5 j < i (µ;)(1) f/. V. 

(Remember that the first component µ(l) of a messageµ is the method name.) Note that among the 
above operators, pop, top, delete, and get are partial. 

Next we introduce the domain (r E)GProc of global processes, determined by the following domain 

equation: 

where 

GProc = {ro} U GState --+ 'P,1 (Comm+ x GState x GProc) 

Comm = Obj x MName+ x Obj* x Obj 

(c E)Comm+ = Comm U { *} 

MName+ = MName U { *} 

Again the terminated process is indicated by r0 • Otherwise a global process r is a function that for 
a. given global state u yields a. set r(u) of possible steps. These steps can be of two kinds: Com­
putation steps, of the form[*, o', r'J, represent a state transformation (like creating a. new object or 
appending a. message to a queue), whereas communication steps, of the form [c,cr', r'], represent both 
a communication and a state transformation. In both cases, r' is the resumption. A communication 
c of the form [,8, m, {J, a] indicates that object a sends a. message to object ,8, requesting execution 
of method m with arguments {J. A communication of the form [a,*• {J, ,8] indicates that ,8 returns fJ 
to a a.s the result of a message (in this case fl is always a singleton (/) ). 

The reason that in this domain equation we use the constructor P,1 (delivering a power set 
consisting of all the closed subsets of its argument set) instead of P00 (using only compact subsets) 
is that below we want to define a process that describes the behaviour of all the standard objects. 
In turns out to be impossible to describe an infinite number of integers with a compact process. 

The operator 11: GProc x GProc--+ GProc for parallel composition is defined as follows: 

r II ro = rollr=r 

r1 II r2 = >.u.(r1(u) IL r2 U r2(a-) lL r1) 

x ILr = {x[r:xEX} 

[c,u,r'J[ r = [c, er, r' II r] 

(Here r1 and r 2 are supposed to be unequal to r 0.) 

Now we introduce a.n opera.tor w : OProc --+ AObj --+ GProc, which translates object processes to 
global processes when given the name of the object that executes the object process. For a moment 
we suppose that we have a fixed program P, in which we can look up the class definition when a new 
object is to be created (whenever appropriate, we shall write wP). Our operator w is then defined 
by the following clauses: 

• Terminated process: 

w(qo)(a) = ro 
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• Creation step: 

w([C,f])(a) = >.i:r.{[*,i:r',w(f(,B))(a) II w(Mo[d](,8))(,8)]} 

where 
,8 v( <:T(l)) 

i:r' [i:r(1) u {,8}, <:T(2), <:T(3)] 

and C{=d occurs in the program P. 

An object of class C is to be created, so we find a new name ,8 for it, look up the corresponding 
class definition din the program, and thus we get an object process Mo[d](,8) representing its 

execution. After translating this into a global process, it is put in parallel with the resumption 
J(,8) of its creator, again translated into a global process. 

• Send step: 
w([(,8, m, i3), J])(a) = >.i:r.{[*, i:r', r0 ]} 

where 

i:r' = (i:r(ll• 0"(2), i:rt3l{U ,B}J 

e append(i:r(3j(,8), (m, "/3, a, J)) 

This send step only adds a message ( m, "/3, a, J) to the message queue of the destination object ,8. 

• Answer step: 

{ 
{ ((a, m, "/3, ,B), i:r', w(g( m) ("/J) )(a)]} 

w(g)(a) = >.i:r. if get(o-(3)(a),dom(g)) = [m,"/3,,8,f] 

0 if get ( 0"(3) (a), dom (g)) is undefined 

where 
0-1 [o-(1),<:T(2){{J/a},o-(3){Ua}] 

p push([,B,J],o-(2)(a)) 

e = delete(o-(3)(a),[m,"/3,,B,J]) 

An answer step can only be performed if in the message queue there is a message waiting with 
a method name in the domain of g, otherwise no steps are possible. If a suitable message 

(m, i3, (3, J] is found, a communication step is performed, which registers the communication 

(a,m,"/3,,8), the new state i:r', and the resumption g(m)(,8), translated into a global process. 
The new state a-' differs from the old i:r in that the message is deleted from the message queue 
of the object a and a new frame is pushed onto its return stack. 

• Conditional answer step: 

1 
{ [(a, m, "/3, ,8), i:r', w(g( m )("/J) )(a)]} 

w([g,q])(a) =>.a-. if get(o-(3J(a),domg) = [m,,8,,B,J] 

{[*,i:r,w(q)(a)]} if get(o-(3j(a),domg) is undefined 

where i:r' is defined as in the previous clause. 

This case is very similar to an answer step except that even if no suitable message is present, 

a step can be performed. 
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• Result step: 
w([7,q))(ci) = Ao-.{[(,8,*, (J),a],u',w(q)(a) II w(/(1))(,8)]} 

where 
[,8,J] = top(u(2j(a)) 

u' = [<7(1)t0"(2){pop(u(2)(a)/a},u(3)] 

A result step is translated to a global communication step, where the first component registers 

the returning of the result value, the second component gives the new state, where a frame is 

popped off the return stack of the object a, and the last component consists of the parallel 

composition of the resumptions of the sender and receiver, both translated into global processes. 

As in Section 2.4, the outside world is represented by objects, but here we need only one object, 
since we can distinguish between input and output by using different method names. So let world 

be a special element in AObj and let input, output E MName. Now we define a function qworld : 
SObj00 -+ OProc that gives us for any (finite or infinite) sequence w of input values (which are 

standard objects) a process 1world(w), which always starts with an answer step, so that qworld(w) E 

MName ~ (Obj*-+ OProc): 

= f >.,B.[world, q.,.,u( () )] if m = output 

l undefined otherwise 

j >.,B.[~,qworld(w)J if m =input 

>.,B.[wol'itl, <]world(~· w)] if m =output 

undefined otherwise 

(This function qworld can again be obtained as the unique fixed point of a suitable higher-order 
operator.) For a non-empty w, the process q.,0 ,u(w) is willing to answer either an input message, 
in which case it returns the first element of w and continues with the rest of the elements, or an 

output message, to which it replies with the name of the world process itself and continues with w 

unchanged. In both cases the actual argument values of the messages are ignored, but we shall see 
later how the output values are recovered. 

We shall also define processes that deal with messages sent to standard objects. Messages sent 
to nil are never answered, so we do not need any process for this. The Boolean t can be modelled 
by an object process qt defined by 

qt == 9t: MName ~ (Obj*-+ SProc) 

j [t,qt] if~= (t) 
9t(and) >.f3. [f, qt] if ,8 = (f) 

qo otherwise 

9t (or) = >./3. 
[t, qt] if ,8 = (t) or ,8 = (f) 

qo otherwise 

9t (not) = >..,8. 
[f, qt) if ,8 = () 
10 otherwise 

!Jt is undefined if m (j. {and, or, not} 
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An object process qr modelling the Boolean f can be defined analogously. Now the global process rsool 
modelling all Booleans is given by 

rsool = w(qt)(t) II w(qr)(f). 

In modelling the integers we run into a complication: It is not difficult to define for each integer k 
an object process qk that models k's behaviour, but composing this infinite number of processes in 
parallel is difficult, since 

Jim w(q-n)(-n) 11 ···II w(qn)(n) 
n-+oo 

does not exist. To overcome this problem, we define 'by hand' a process r1nt that performs exactly 
the steps that we would expect intuitively from the above limit: 

r1nt(u) = {[c,u',r1nt II r] :c= (/3,add,/J,a)A/3 E Z/\0-(2)(/3) = () 
/\ get(o-(3)(/3), {add, ... })= [add,fJ, a, fl} ... 

where 
u' [0-(1)> 

u<2d ([a, J])} I /3}, 

0"(3) {delete ( u (3) ((J), [add, fJ .a, J]) / /3}] 

r w( q)((J) 

q { [/3+1,qo] if fJ = (1) and/ E Z 

qo otherwise 

The process r1nt can perform a (potentially large) number of communication steps, subject to the 
condition that a suitable message must be waiting in the message queue 0"(3J(f3) of an integer object f3 
and /3's return stack must be empty (otherwise /3 is still busy with another message). If such a 
communication occurs, the resulting state 0-1 indicates that a frame [a, J) has been pushed onto 
/3's (initially empty) return stack and that the message has been deleted from its message queue. 
The resumption consists of the parallel composition of r1nt itself with a process r that takes care 
of returning the result to the sender. On the place of the ellipses ( ... ) in the above equation, 
there is room for other components, corresponding to additional methods defined for integers. (As 
a mathematical detail, note that the set r1 0 t(u) is certainly closed, because all its elements have a 
fixed minimum distance to each other. For all states O" occurring in the execution of a program, this 
set will also be finite and therefore compact, since only finitely many integers will have messages 
waiting for them. However, we cannot guarantee compactness for every arbitrary u E GState.) 

Now we can give the semantics of programs by the function Ma : Frog --; SObj 00 --; GProc, 
defined by 

Ma[P](w) = wp(Mo[dn](a)) II w(qworld)(world) II rsool II r1nt 

where 
P ( C1 <r=d1, ... , Cn <r=dn) 

a 11( {world}) 
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Finally we define the operators needed to extract the observable behaviour from a global process. 
The operator path : GProc -+ GState -+ 'P( Comm+ x GState x GProc) extracts all the possible 
computation paths out of a process, when given the initial state: 

path(r)(a) = { ((c17 u1 ,r1], .. .,[c,..,umrn)) : [ci,ui,r1) E r(u) 

A Vl :$ i < n [c;+i. ui+i. r;+i) E r;( u;) 

A (rn = ro V rn(un) = 0)} 

(ci, ui, r 1) E r( u) 

A Vi ~ 1 [c;+1 , u;+i, r;+i) E r;( u;)} 

Next we have the operator output : GProc-+ GState-+ SObj 00 defined by 

where 

output(r)(u) = { V(c1) • V(~) · · · ·: ([c;,u;, r;]); E path(r)(u)} 

( l (v} if c = [a, output, (v), world] and v E SObj 
V c) = 

() otherwise 

At last we can define the observable behaviour of a program by the function obs : Prog -+ SObj""' -+ 

'P(SObj00 ), which returns the set of all possible sequences of output values for a given sequence of 
input values: 

obs[PJ(w) = output(Ma[P](w))(uo) 

where 
uo = [{world,v({wol'!d})},,\j1.(),,\,B.()]. 

4 Conclusions 

In the preceding sections we have given a layered denotational semantics for the languages Toy and 
POOL, where 'layered' means that the semantics is defined at three different levels: for statements, 
objects, and programs. For each of these levels we have defined a specialized domain of processes 
and we have defined operators that translate between these domains. In both languages we allow 
programs to interact with the outside world by communicating with special objects. In this way we 
can define the overall observable behaviour of a program by specifying the set of possible sequences 
of output values for a given sequence of input values. However, the most important contribution of 
this work is that it provides an explicit model of the bel1aviour of a single object in isolation. 

There are several questions still to be answered. It might be interesting to see whether this new 
semantics for POOL can in some sense be related to the operational and denotational semantics 
developed previously [ABKR86, ABKR89). Despite the fact that these operational and denotational 
semantics use completely different formalisms, they have been proved to be equivalent to each other. 
Although this proof is quite complex [Rut90], their precise relationship can be described relatively 
easily by an operator that extracts all possible paths from a tree-like structure (very much like our 
operator path in Sections 2.4 and 3.5). This is only possible because the two semantics can be fine­
tuned to each ot.her, so that the operational semantics performs a step precisely when the denotational 
does so. With the present layered semantics such fine-tuning is clearly impossible, particularly 
because the abstraction operator that translates statement processes into object processes deletes all 
the internal computation steps. Establishing a precise relationship between the layered semantics 
and the older two is therefore a challenge that calls for the development of new semantic techniques. 
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Another open question is the issue of full abstractness. At the level of programs we have defined 
a clear notion of observable behaviour by the operator obs, which can serve as a gauge for defining 
the notion of full abstractness. Note that this notion itself now makes sense for the semantics at the 
statement level Ms as well as at the object level Mo (at the program level the semantics given by 
obs is trivia.Uy fully abstract; the semantics Ma is certainly not fully abstract and it was not intended 
to be). Intuitively, we have the impression that our semantics for Toy might well be fully abstract 
at the statement level and at the object level. Proving this, however, is another matter. For the 
statement level semantics of POOL, the question is completely open, but the object level is certainly 
not fully abstract: It is possible that the object creates another object that remains completely 
invisible to the rest of the system, but nevertheless a creation step will appear in its semantics. At 
this moment it is not at all clear how this problem could be solved. For our investigation on full 
abstractness we propose to tackle the issue for the Toy language first and then to concentrate on 
POOL a.gain. 
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A Mathematical preliminaries 

As mathematical domains for our semantics we use complete metric spaces satisfying a. so-called 
reflexive domain equation of the following form: 

P ~ F(P) 

(The symbol~ is defined below; it says that there is a. bijection from P to F(P) that respects the 
metric defined on the spaces.) Here F(P) is an expression built from Panda number of standard 
constructions on metric spaces (also to be formally introduced shortly). A few examples a.re 

P ~ AU (Bx P) 

p ~ AU'Pco(B x P) 

P ~ AU (B-+ P) 

(A.1) 

(A.2) 

(A.3) 

where A and B are given fixed complete metric spaces. De Bakker and Zucker have first described 
how to solve these equations in a metric setting [IlZ82]. Roughly, their approach amounts to the 
following: In order to solve P ~ F(P) they define a sequence of complete metric spaces (Pn)n by: 
Po =A and Pn+i = F(Pn), for n > 0, such that P0 ~ P1 ~ • • •• Then they take the metric completion 
of the union of these spaces Pn, say P, and show: P ~ F(P). In this way they a.re able to solve 
equations (A.1), (A.2) and (A.3) above. 

There is one type of equation for which this approach does not work, namely, 

P ~ AU (P 2+ G(P)) (A.4) 

in which P occurs at the left side of a function space arrow, and G(P) is a.n expression possibly 
containing P. This is due to the fact that it is not always the case that Pn ~ F(Pn)· 

In [AR89] the above approach is generalized in order to overcome this problem. The family of 
complete metric spaces is made into a category C by providing some additional structure. (For an 
extensive introduction to category theory we refer the reader to [ML71].) Then the expression Fis 
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interpreted as a. functor F: C-+ C which is (in a. sense) contracting. It is proved tha.t a generalized 
version of Ba.na.ch's theorem (see below) holds, i.e., that contracting functors ha.ve a fixed point (up 
to isometry). Such a fixed point, satisfying P ~ F(P), is a. solution of the domain equation. 

We shall now give a quick overview of these results, omitting many details a.nd a.II proofs. For a 
full treatment we refer the reader to [AR89]. We start by listing the basic definitions and facts of 
metric topology that we shall need. 

We assume the following notions to be known (the reader might consult [Dug66] or [Eng89]): met­
ric space, ultra-metric space, complete (ultra-)metric space, continuous function, closed set, compact 
set. In our definition the distance between two elements of a metric space is always between 0 and 
1, inclusive. 

An arbitrary set A can be supplied with a. metric dA, called the discrete metric, defined by 

{ 
0 if x = y 

dA(x,y) = 
1 ifx#y 

Now (A,dA) is a metric space (it is even an ultra-metric space). 
Let (M1,d1) and (M2,d2) be two complete metric spaces. A function f : M1 -+ M2 is ea.lied 

non-expansive if for all x,y E M1 
d2(f(x),f(y)) S d1(x,y) 

The set of all non-e.xpansive functions from M1 to M2 is denoted by M1 ~ M2. A function f: M1 -+ 

M2 is ea.lied contracting (or a. contraction) if there exists an e.< 1 such tha.t for all x,y E M1 

d2(f(x),J(y)) Sf· d1(x,y) 

(Non-expansive functions and contractions a.re always continuous.) 
The following fact is known as Banach's theorem: Let (M, d) be a complete metric space and 

f : M -+ M a contraction. Then J has a unique fixed point, that is, there exists a unique x E M 
such that f(x) = x. This x can be obtained by taking the limit of f"(x 0 ) for any arbitrary x0 EM 
(where f°(y) = y and f"+l(y) = f(f"(y))). 

We call M1 and M2 isometric (notation: M1 ~ M2) if there exists a bijective mapping f : M1 -+ 

M2 such that for all x,y E M1 

d2{f(x),J(y)) = cl1(x,y) 

Definition A.1 
Let (M, d), (Mi, cl1 ), ••• , (M,., d,.) be metric spaces. 

1. We define a metric dp on the set M1 -+ M2 of all functions from M 1 to M2 as follows: For 
every / 11 h E M1 --1 M2 we put 

dp(f11!2) = sup {d2(/1(x),f2(x))} 
:r:EM1 

This supremum always exists since the values taken by our metrics are always between O and 1. 
The set M1 ~ M2 is a subset of M1 -+ M2, and a metric on M1 ~ M2 ca.n be obtained by 
taking the restriction of the corresponding dF. 

2. With M1 0 · · · 0 M,. we denote the disjoint union of Mi, . .. , Mn, which can be defined as 
{l} X M1 U · · · U {n} X Mn. We define a metric du on M1 0 · · · 0 Mn as follows: For every 
x,y E Mi Q ••• OMn, 

d ( ) -{ d;(x,y) ifx,yE{j}xM;,lsjsn 
u x,y -

1 otherwise 

H no confusion is possible we often write U rather than 0. 
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3. We define a. metric dp on the Cartesian product M1 x · · · x Mn by the following clause: For 
every (xi, ... ,xn),(yi, ... ,yn) E M1 X ••• X Mn, 

dp((x1,. .. , Xn), (y1,. .. , Yn)) = m~x{ d;(x;, y;)} 
• 

4. Let P 01(M) = { X : X ~ MAX is closed}. We define a. metric dH on Pc1(M), called the 
Jlausdorff distance, as follows: For every X, Y E 'Pc1(M), 

dn(X, Y) = ma.x{sup{d(x, Y)}, sup{ d(y, X)}} 
:tEX yEY 

where d(x,Z) = infzez{d(x,z)} for every Z ~ M, x E M. (We use the convention that 
sup0 = 0 a.nd inf0=1.) The spaces P00 (M) = {X: X \;;;MAX is compact} a.nd P,.c(M) = 
{ X : X ~ M A X is non-empty a.nd compact } are supplied with a metric by taking the re­
striction of du. 

5. For any real number e with 0 < f ~ 1 we define 

id.((M,d)) = (M,d') 

where d'(x, y) = e · d(x, y), for every x and y in M. 

Proposition A.2 
Let (M,d), (Mi, d1),. •• , (Mni d,.), dp, du, dp and dll be as in Definition A.1 and suppose that (M, d), 
(M1 , d1), .•. , (Mn, dn) are complete. Then 

(M1-+ M2,dF) (M1 ~ M2,dF) (a) 

(M10· .. 0 M .. ,du) (b) 

(M1 X···XM .. ,dp) (c) 

(Pc1(M),dH) (Pco(M),dH) (P,.c(M),dH) (d) 

id.((M,d)) (e) 

are complete metric spaces. If (M, d) and (M;, d;) arc all ultra-metric spaces, then so are these 
composed spaces. (Strictly speaking, for the completeness of M1 -+ M2 a.nd M1 2+ M2 we do not 
need the completeness of M1 . The same holds for the ultra-metric property.) 

Whenever in the sequel we write lvli -+ M2 , Mi ~ J\f2 , M1 0 · · · 0 M,., M1 x · · · x M,., Pc1(M), 
'P00 (M), P,.c(M), or id.(M), we mean the metric space with the metric defined above. 

The proofs of Proposition A.2(a), (b ), (c), and (e) are straightforward. Part (d) is more complex. 
It can be proved with the help of the following characterization of the completeness of ('Pc1(M), dn ). 

Proposition A.3 
Let ('Pc1(M), du) be as in Definition A.I. Let (X;); be a Cauchy sequence in 'Pc1(M). We have 

Jim X; = { Jim x; : x; E X;, (x;); a Cauchy sequence in M} 
a ..... oo 1-+oo 

Proofs of Propositions A.2(d) an<l A.3 can be found in, for instance, [Dug66] and (Eng89]. The proofs 
are also repeated in [I3Z82]. The completeness of P 00 (M) is proved in [Mic51]. 

We proceed by introducing a category of complete metric spaces and some basic definitions, after 
whicl1 a categorical fixed point theorem will be formulated. 

Definition A.4 
Let C denote the category that has complete metric spaces for its objects. The arrows £ in C are 
defined as follows: Let M1 , M2 be complete metric spaces. Then M1 -+' M2 denotes a. pair of maps 
Mi t=} M2 , satisfying the following properties: 
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1. i is an isometric embedding, 

2. j is non-expansive, 

3. j O i = idM,. 

(We sometimes write [i,j] for i.) Composition of the arrows is defined in the obvious way. 

We can consider M1 as an approximation to M2 : In a sense, the set 1\12 contains more information 
than Mi, because M1 can be isometrically embedded into M2. Elements in 1112 are approximated by 
elements in M1 . For an element m2 E M2 its (best) approximation in M1 is given by j(mz). Clause 3 
states that M2 is a consistent extension of M 1 . 

Definition A.5 
For every arrow M 1 -+' M2 in C with t = [i,j] we define 

This number can be regarded as a measure of the quality with which M 2 is approximated by M1: 

the smaller 5( i), the better M2 is approximated by M1• 

Increasing sequences of metric spaces are generalized as follows: 

Definition A.6 

1. We call a sequence (Dn, tn)n of complete metric spaces and arrows a tower whenever we have 
that \In EN Dn -+'n Dn+l EC. 

2. The sequence (Dn, tn)n is called a converging tower when the following condition is also satisfied: 

\If.> 0 3N E NVm > n ~ N 8(tnm) <f. 

where lnm = tm-i o · · · o tn : Dn -+ Dm. 

A special case of a converging tower is a tower (Dn, tn)n satisfying, for some c with 0 Sc< 1, 

Note that 

o(t.nm) s 8(in) + ... + 8(tm-1) 

S f.n · 8(io) + · · · + f.m-l · 8(io) 
en 

s l-f.·8(10) 

We shall now generalize the technique of forming the metric completion of the union of an increasing 
sequence of metric spaces by proving that, in C, every converging tower has an initial cone. The 
construction of such an initial cone for a given tower is called the direct limit construction. Before 
we treat this direct limit construction, we first give the definition of a cone and an initial cone. 

Definition A. 7 
Let (Dn, ln)n be a tower. Let D be a complete metric space and ( 'Yn)n a sequence of arrows. vVe call 
(D, (l',.)n) a cone for (Dn, ln)n whenever the following condition holds: 

\In E N Dn -+ "Yn D E C /\"In = "fn+t O ln 
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Definition A.8 
A cone (D, ('Yn)n) for a tower (Dn, Ln)n is called initial whenever for every other cone (D', (l~)n) for 
(Dn, Ln)n there exists a unique arrow L: D-> D' in C such that: 

Vn E N i o "In = "I~ 

Definition A.9 
Let (Dn, Ln)n, with ln = [in, in], be a converging tower. The direct limit of (Dn, Ln)n is a cone 

(D, ("/n)n), with "In = [gn, hn], that is defined as follows: 

D = { (xn)n: Vn?: Oxn E Dn /\ j,,(Xn+1) = Xn} 

is equipped with a metric dv defined by 

for all (xn)n and (Yn)n ED. The mapping 9n: Dn-> Dis defined by g,,(x) = (xk)k, where 

{ 
ikn(x) ifk<n 

Xk = X if k = n 

ink(x) ifk>n 

and hn : D -> Dn is defined by hn((xk)k) = Xn· 

Lemma A.10 
The direct limit of a converging tower (as defined in Definition A.9) is an initial cone for that tower. 

As a category-theoretic equivalent of a contracting function on a metric space, we have the following 

notion of a contracting functor on C. 

Definition A.11 
'vVe call a functor F : C -> C contracting whenever the following holds: There exists an e., with 

0 :$ e < 1, such that, for all D ->' E E C, 

o(F(i)) :$e.· 5(t) 

A contracting function on a complete metric space is continuous, so it preserves Cauchy sequences 

and their limits. Similarly, a contracting functor preserves converging towers and their initial cones: 

Lemma A.12 
Let F : C -> C be a contracting functor, let (Dn, ln)n be a converging tower with an initial cone 

(D, ("l,,)n). Then (F(Dn), F(t,.))n is again a converging tower with (F(D), (Fbn))n) as an initial 

cone. 

Theorem A.13 
Let F be a contrading functor F : C -> C and let Do ->'° F(Do) E C. Let the tower (Dn, Ln)n be 

defined by Dn+l = F( Dn) and Ln+I = F( ln) for all n ?: 0. This tower is converging, so it has a direct 

limit (D, (ln)n)· We have D ~ F(D). 

In (Ail89] it is shown that contracting functors that arc moreover contracting on all hom-sets (the 

sets of arrows in C between any two given complete metric spaces) have unique fixed points (up 


