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Abstract 

Much work has been done in the áreas of and-parallelism and data parallelism in Logic 
Programs. Such work has proceeded to a certain extent in an independent fashion. Both 
types of parallelism offer advantages and disadvantages. Traditional (and-) parallel mod-
els offer generality, being able to exploit parallelism in a large class of programs (including 
that exploited by data parallelism techniques). Data parallelism techniques on the other 
hand offer increased performance for a restricted class of programs. The thesis of this pa-
per is that these two forms of parallelism are not fundamentally different and that relating 
them opens the possibility of obtaining the advantages of both within the same system. 
Some relevant issues are discussed and solutions proposed. The discussion is illustrated 
through visualizations of actual parallel executions implementing the ideas proposed. 

Keywords: Parallel Logic Programming, And-Parallelism, Data-Parallelism, Fast Task 
Startup, Scheduling. 

1 Introduction 

The temí data parallelism is generally used to refer to a parallel semantics for (definite) 
iteration in a programming language such that all iterations are performed simultaneously, 
synchronizing before any event that directly or indirectly involves communication among 
iterations. It is often also allowed that the results of the iterations be combined by reduction 
with an associative operator. In this context a definite iteration as an iteration where the 
number of repetitions is known before the iteration is initiated. 

Data parallelism has been exploited in many languages, including Fortran-90 [MR90], 
C* [Thi90], Data Parallel C [HQ91], *LISP [TM86], etc. Recently, much progress has been 
reported in the application of concepts from data-parallelism to logic programming, both from 
the theoretical and practical points of view, including the design of programming constructs 
and the development of many implementation techniques [Vor92, NT88, BM88, Bla92, Kac90, 
Wis86, MÜ90, Bar90, BLM93a, BLM93b]. 

On the other hand, much progress has also been made (and continúes to be made) in the 
exploitation of parallelism in logic programs based on control-derived notions such as and-
parallelism and or-parallelism [Con83, DeG84, DeG87, Her86a, HG90, KK84, LK88, War87, 
Lus90, A1188, AK90, GJ89, GSCYH91, GHPSC94, Fag87, Kal87, She92, War88, SCWY91a, 
Ric90, Kar92, Car90]. It appears interesting to explore, even if only informally, the relation 
between these two at first sight different approaches to the exploitation of parallelism in logic 

http://upm.es


programs. This informal exploration is one of the purposes of this paper, the other being to 
explore the intimately related issue of fast task startup. 

1.1 Data Parallelism and And—Parallelism 

It is generally accepted that data parallelism is a restricted form of and-parallelism:1 the 
threads being parallelized in data-parallelism are usually the steps of a recursion or the itera-
tions a loop. This type of parallelism is obviously also supported in and-parallel systems: each 
thread in the data parallel approach would correspond to the parallel execution of different 
recursion steps / loop iterations of the same body. 

All and-parallel systems impose certain restrictions on the goals or threads which can be 
executed in parallel (such as independence and/or determinacy, applied at different granu-
larity levéis [HR95, Nai88, SCWY91a, dlBHM93, HC94]) which are generally the minimal 
ones needed in order to ensure vital desired properties such as correctness of results or "no-
slowdown", i.e. that parallel execution be guaranteed to take no more time than sequential 
execution. Data-parallel programs, since they are after all and-parallel programs, have to 
meet the same restrictions from this point of view. This is generally referred to as the "safe-
ness" conditions in the context of data parallelism. Such conditions are imposed among the 
iterations being parallelized (examples are requiring them to be deterministic, to have only 
one alternative, and/or to be independent). 

However, one of the central ideas in data-parallelism, as presented in many proposals, 
is to impose additional restrictions to the degree of parallelism allowed, in order to make 
possible further optimizations in some important cases, in return for a certain loss of paral­
lelism due to not being able to deal with the general case. Le., the additional restrictions 
imposed have the obvious drawback that they limit the amount of parallelism which can be 
obtained with respect to a more general purpose and-parallel implementation. On the other 
hand, when the restrictions are met, many optimizations can be performed with respect to 
an unoptimized general purpose and-parallel model, in which the implementation perhaps 
has to deal with backtracking, synchronization, dynamic scheduling, locking, etc. A number 
of implementations have been built which are capable of exploiting such special cases in an 
efficient way (e.g. [BLM93a, BLM93b]). The particular restrictions imposed over general pur­
pose and-parallelism vary slightly from one proposal to another. In general, only recursions 
of a certain type are allowed to be executed in parallel. Also, limitations are posed on the 
level of nesting of these recursions (e.g. sometimes no nesting is allowed). Often, a priori 
knowledge of the sizes of the data structures (generally lists or arrays) being operated on is 
required (but this data is also obtained dynamically in other cases). 

In a way, one would like to have the best of both worlds: an implementation capable 
of supporting general forms of and- (and also or-) parallelism, so that speedups can be 
exploited in as many programs as possible, and at the same time have the implementation be 
able to take advantage of the optimizations present in data-parallel implementations when 
the conditions are met. 

1.2 Compile—time and Run—time Techniques 

In order to achieve the above mentioned goal of a "best of both worlds" system, there are two 
classes of techniques which have to be studied. The first class is related to detecting when the 

1Note, however, that data parallelism can also be exploited as or parallelism [Pre94, CDO88]. 



particular properties to be used to perform the optimizations hold. However, this problem is 
common to both control- and data-parallel systems. The concept of "data parallelism" does 
not in any way make the task of the compiler or the implementation simpler in this regard. 
The solution of allowing the programmer to explicitly declare such properties or use special 
constructs (such as "parallel map," "bounded quantifications" [ABB93], etc.) which have 
built-in syntactic restrictions may help, but it is also true that this solution can be applied 
indistinctly in both of the approaches under consideration. Thus, we will not deal herein with 
how the special cases are detected. 

The second class of techniques are those related to the actual optimizations realized in the 
abstract machine to exploit the special cases. Given, as we have argued before, that data-
parallelism constitutes a special case of and-parallelism, one would in principie expect the 
abstract machine used in data-parallelism to be a "pared-down" versión of the more general 
machines. We believe that this is in general the case, but it is also true that the data-parallel 
machines also bring some new and interesting techniques. 

For the sake of discussion, we will concéntrate on the abstract machine of Reform Prolog 
[BLM93a, BLM93b]. In many aspects, the Reform Prolog abstract machine can in fact be 
viewed as a "pared-down" versión of a general-purpose and-parallel abstract machine such 
as the RAP-WAM/PWAM [Her86b, HG90], the DASWAM [She92], or the Andorra-I engine 
[SCWY91b]. For example, there are a number of agents or workers which are each essentially 
a WAM. Also, the dynamic scheduling techniques are very similar to the goal stealing method 
used in the RAP-WAM. 

Understandably, there are also some major differences. A first class of such differences 
is related to the optimizations in memory management which are possible with respect to 
general purpose abstract machines due to the special case of and-parallelism being dealt 
with. For example, because of the restrictions posed on backtracking among parallel goals, 
structures like the "markers" of the RAP-WAM, which delimit stack sections corresponding 
to different goals and to different backtracking points, are not necessary. However, it should 
be noted that the same optimizations can also be done in general-purpose abstract machines 
supporting and-parallelism, such as the RAP-WAM, if the particular case is identified, and 
without losing the general case [Her86a, PGH95, SH94, PGT95, PGT+96]. Both dynamic 
and static detection of such special cases has been studied. A similar argument can be 
made regarding some other minor optimizations that, for lack of space, will not be addressed 
explicitly. 

On the other hand, a number of optimizations, generally related to the "Reform Compi-
lation" done in Reform Prolog [Mil91], are more fundamental. We find these optimizations 
particularly interesting because they bring attention upon a very important issue regarding 
the performance of and-parallel systems: that of the speed in the creation and joining of 
tasks. We will essentially devote the rest of the paper to this issue, because of the special 
interest of this subject, and given that, as pointed out before, the other intervening issues 
have already been addressed to some extent in the literature.2 

2Improving the performance of and-parallel systems in the presence of fine-grained computations can also 
be addressed by performing "granularity control", where goals that could have been run in parallel but are too 
small-grained are executing them sequentially. This is usually done by determining (statically or dynamically) 
the cost of goals and sequentializing them or grouping them when such cost falls below a given threshold. This 
very interesting issue can be treated orthogonally to the techniques that we discuss in this paper. Relevant 
work can be found in [DLH90, KS90, LGHD94, ZTD+92] and their references. 



2 The Task Startup and Synchronization Time Problems 

The problem in hand can be illustrated with the following simple program: 

vproc([] , [ ] ) . 
vproc([H|T],[HR|TR]) : -

process_element(H,HR), 
vproc(T,TR). 

which relates all the elements of two lists. Throughout the discussion we will assume that the 
vproc/2 predícate is going to be used in the "forwards" way, i.e. a ground list of valúes and 
a free variable will be supplied as arguments (in that order), expecting as a result a ground 
list. 

2.1 The Naive Approach 

This program can be naively parallelized as follows using "control-parallelism" (we will use 
throughout the paper &-Prolog [HG91] syntax, where the "&" operator instead of the "," 
operator represents a potentially parallel conjunction): 

vproc ([] , [ ] ) . 
vproc([H|T],[HR|TR]) : -

process_element(H,HR) & vproc(T,TR). 

This will allow the parallel execution of all iterations. Note that the parallelization is safe, 
since all iterations are independent. The program can be parallelized using "data-parallelism" 
in a similar way. 

However, it is interesting to study the differences in how the tasks are started in both 
approaches, due to the textual ordering of the goals. In a system like &-Prolog, using one of 
the standard schedulers (we will assume this scheduler throughout the examples), the initial 
agent, running the cali to vproc/2, would créate a task3 corresponding to the recursion, 
i.e. vproc(T,TR), make it available on its goal stack, and then take on the execution of 
process_element (H,HR). Another agent might pick the created task, creating in turn another 
task for the recursion and taking on a new iteration of process_element(H,HR), and so on. 
In the end, parallel tasks are created for each iteration. Note that all task creation has been 
a simple consequence of the application of the parallel conjunction operator semantics. This 
is very attractive in that the same operator which allows parallelism among two goals in 
any general case, also yields in this particular case the desired result of parallelizing all the 
iterations of a "loop". However, the approach or, at least, the naive program presented above, 
also has some drawbacks. 

In order to illustrate this, we perform the experiment of running the previously par­
allelized program in the following context. We assume a query "?- makevector(10,V) , 
main(V,VR) .", where makevector(N,L) simply instantiates L to a list of integers from 1 
to N. Thus, we have a list of 10 elements. We use as process_element/2 a small-grained 
numerical operation, which serves to illustrate the issue: 

3 The notion of task does not correspond with that of the underlying operating system here. &-Prolog tasks 
are internal executions of goals. Each &-Prolog agent can pick up goals made available for parallel execution 
and execute them. When the goal is finished, the agent is free to search for more work. Other implementations 
might choose to actually use a dedicated (perhaps lightweight) O.S. process for each goal. 



process_element(H,HR) : -
HR i s ((((H * 2) / 5)"2)+(((H * 6) / 2 ) " 3 ) ) / 2 . 

Finally, in order to observe the phenomenon, we run the program in &-Prolog on 8 
processors on a Sequent Symmetry and genérate a trace file for this execution. This trace file 
contains a description of the execution, including the starting and ending time of every task, 
as well as the dependencies among tasks. 

F ^ 

Figure 1: Vector operation (10 el./I proc.) 

— 
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_Lb 

Figure 2: Vector operation, giving away recursion (10 el./8 proc.) 

The trace is then visualized with VisAndOr [CGH93]. In VisAndOr graphs, time goes 
from top to bottom. Vertical solid lines denote actual execution, whereas vertical dashed 



lines represent waits due to scheduling or dependencies, and horizontal dashed lines represent 
forks and joins. Figure 1 represents the execution of the benchmark in one processor, and 
serves as scale reference. Each solid vertical segment represents a task corresponding to one 
invocation of the process_element/2 sequential goal. These are executed consecutively in 
time, after having been made available for parallel execution. 

The result of running the benchmark in 8 processors is depicted in Figure 2. As can 
be seen, the initial task forks into two. One is performed locally whereas the other one, 
corresponding to the recursion, is taken by another agent and split again into two. In the 
end, the process is inverted to perform the joins. A certain amount of speedup is obtained; 
this can be observed by comparing to Figure 1 — the total amount of time is less. However, 
the speedup obtained is in fact quite small for a program such as this with obvious parallelism. 
This low speedup is in part due to the small granularity of the parallel tasks, and also to the 
slow generation of the tasks which results from giving out the recursion [CGH93]. 

2.2 Keeping the Recursion Local 

One simple transformation can greatly alleviate the problem mentioned above — reversing 
the order of the goals in the parallel conjunction, so that the recursive goal is kept local, and 
not even pushed on to the goal stack: 

vproc([] , [ ] ) . 
vproc([H|T],[HR|TR]) : -

vproc(T,TR) & process_element(H,HR). 

i i 

Figure 3: Vector operation, keeping recursion (10 el./8 proc.) 

The result of running this program is depicted in Figure 3, which uses the same scale as 
Figures 1 and 2. The first process can now be observed to keep the recursion local and thus 
créate the tasks much faster, resulting in substantially more speedup. It should be noted that 
this transformation is in fact in most cases done automatically by the &-Prolog parallelizing 



compiler. However, the compiler leaves hand-parallelized code as is and this has allowed us 
before to write and run the program that hands out the goals in the "wrong" way. 

Keeping recursions local can speed up the process of task creation, and in most applica-
tions, which in general show much larger granularity than this example, task creation speed 
is not a problem. On the other hand, in numerical applications such as those targeted in 
data-parallelism, task creation using linear recursion will still be a problem: the speed of the 
process creating the tasks will become a bottleneck. 

2.3 The "Data-Parallel" Approach 

At this point it is interesting to return to the data-parallel approach and, in particular, to 
Reform Prolog. The way this system tackles the problem (we assume that it has already been 
identified that the recursion is suitable for this technique) is by first converting the list into 
a vector (and noting the length on the way) and then creating in a tight, low level loop the 
corresponding tasks, which are simply represented by a pointer to the element of the vector 
which the task should opérate on. The following program allows us to both illustrate this 
process without resorting to low level instructions and measure inside &-Prolog the benefit 
that this type of task creation can bring (once the parallel conjunction is set up, each task 
creation in and-prolog in fact corresponds to pushing two pointers on to a goal stack — the 
overhead in the previous cases was coming from the recursion and the setup time for each 
parallel conjunction): 

vproc([Hl ,H2,H3,H4,H5,H6,H7,H8,H9,H10] , 
[HR1,HR2,HR3,HR4,HR5,HR6,HR7,HR8,HR9,HR10]) : -

process. 

process. 

process. 

process. 

process. 

process. 

process. 

process. 

process. 

process. 

.element(H1,HR1) 

.element(H2,HR2) 

.element(H3,HR3) 

.element(H4,HR4) 

.element(H5,HR5) 

.element(H6,HR6) 

.element(H7,HR7) 

.element(H8,HR8) 

.element(H9,HR9) 

& 
& 
& 
& 
& 
& 
& 
& 
& 

.element(H10,HR10). 

Figure 4 represents the same execution as Figure 3, but at a slightly enlarged scale; this 
scale will be retained throughout the rest of the paper, to allow easy comparisons of the 
pictures. 

The result of the execution of this "data-parallel" program is depicted in Figure 5, which 
uses the same scale as Figure 4. The improvement is clear and due to the much faster task 
creation and joining (and also to having only one synchronization structure for all tasks). 
Note, however, that the creation of the first task is slightly delayed due to the need for 
unifying the whole list before creating any tasks and for setting up the tasks themselves. This 
small delay is compensated by the faster task creation, but can eventually be a bottleneck for 
very large vectors: In a big computation with a large enough number of processors, the head 
unification will tend to dominate the whole computation (c.f. Amdahl's law). In this case, 
unification parallelism can be worthwhile [Bar90]. 



Figure 4: Vector operation, keeping recursion Figure 5: Vector operation, flattened for 10 
(10 el./8 proc.) elements (10 el./8 proc.) 

In our quest for merging the techniques of the data-parallel and and-parallel approaches, 
one obvious solution would be to incorpórate the techniques of the Reform Prolog engine into 
the PWAM abstract machine for the cases when it is applicable. In fact, we believe that 
very little modification to the PWAM would be necessary, and we will address this issue in 
Section 4. On the other hand, it is also interesting to study how far one can go with no 
modifications (or minimal modifications) to the machinery. 

The last program studied is in fact a straightforward unfolding of the original recursion. 
Note that such unfoldings can always be performed at compile-time, provided that the depth 
of the recursion is known. In fact, knowing recursion bounds may actually be frequent in 
traditional data-parallel applications, and is often the case when parallelizing bounded quan-
tifications [ABB93]. On the other hand it is not really the case in general and thus some 
other solution must be explored. 

2.4 A More Dynamic Unfolding 

If the depth of the recursion is not known at compile time the previous scheme cannot be 
used. But instead of resorting directly to the naive approach, we can try to perform a more 
flexible task startup. The following program is an attempt at making the unfolding more 
dynamic, while still staying within the source-to-source program transformation approach: 

vproc([Hl,H2,H3,H4|T], [HR1,HR2,HR3,HR4|TR]) : -
i 

vproc(T,TR) & 
process_element(Hl,HR1) & 
process_element(H2,HR2) & 
process_element(H3,HR3) & 
process_element(H4,HR4). 



v p r o c ( [Hl ,H2,H3] , [HR1,HR2,HR3] ) : -
i 

process_element(Hl,HR1) & 
process_element(H2,HR2) & 
process_element(H3,HR3). 

vproc( [Hl,H2],[HR1.HR2]) : -
i 

process_element(Hl,HR1) & 
process_element(H2,HR2) . 

vproc([H],[HR]) :-
i 

process_element(H,HR). 
vproc ([] , [ ] ) . 

In this program the lists are traversed in steps of four elements, and clauses for the cases 
of lists with 3, 2, 1, and 0 elements are provided. Another alternative would be to restrict the 
number of special cases (for example, taking into account only the partial lists whose length 
is a power of two, and making a recursive cali in each of these cases) to avoid the number of 
clauses to grow linearly with the skipping factor. 

Figure 6: Vector operation with fixed list flattening (10 el./8 proc.) 

The results are shown in Figure 6, which has the same scale as Figures 4 and 5. A group 
of four tasks is created; one of these tasks creates, in turn, another group of four. The two 
remaining tasks are created inside the latter group. The speed is not quite as good as when 
the 10 tasks are created at the same time, but the results are cióse. 

This "flattening" approach has been studied formally by Millroth4 [Mil90], which has 
given sufficient conditions for performing these transformations for particular cases such as 
linear recursion. 

4 And has been used in &-Prolog compilation informally (see e.g. [WH87] and some of the standard &-Prolog 
benchmarks). 



Figure 7: Vector operation with flexible list flattening (10 el./8 proc.) 

There are still two problems with this approach, however. The first one is how to chose 
the "reformant level", i.e. the máximum degree of unfolding used, which with this technique 
is fixed at compile-time. In the previous example the unfolding was stopped at level 4, but 
could have gone on to a higher level. The ideal unfolding level depends both on the number 
of processors and the size of lists. For large lists a large unfolding may be desirable. However, 
the program size also grows, as well as the chain of unifications made by the last iterations. 
The other problem, which was pointed out before, is the fact that the initial matching of the 
list (or the conversión to a vector) is a sequential step which can become a bottleneck for 
large data sets. A solution is to increase the speed of creation of tasks, but that has a limit. 
In fact, it will also eventually become a bottleneck, even if low level instructions are used. 
Another solution is to use from the start, and instead of lists, more parallel data structures, 
such as vectors (we will return to this in Section 3). 

2.5 Dynamic Unfolding In Parallel 

We now propose a different solution which tries to address at the same time the two problems 
above. We give the solution for lists. The transformation has two objectives: speeding up 
the creation of tasks by performing it in parallel, and allowing a form of "flexible flattening". 
The basic idea is depicted in Figure 8. Instead of simply performing a unification of a fixed 
length as encoded at compile-time, a builtin, skip/4, is used which will allow performing 
unifications of different lengths. 

The predicate skip(L,N,LS,NS) relates a list L and an "unfolding increment" N with a 
sublist LS of L which is placed at most at N positions from the starting of L. NS contains the 
actual number of elements in LS, in case that N is less than the length of L (in which case LS 
= [])• The utility of skip(L,N,LS,NS) is that several calis to it using the output list LS as 
input list L in each cali will return pointers to equally-spaced sublists of L, until no sufficient 
elements remain. Figure 8 depicts the pointers returned by skip(L,N,LS,NS) to a 10 element 
list, with an "unfolding level" N = 4. This builtin can be defined in Prolog as follows (but 



=» =» =» => => 5* =» 5» => ^ / \ 

Figure 8: "Skip" operation, 10 elements in 4 

can, of course, be implemented more efficiently at a low level): 

skip(L,N,LS,NS) : - sk ip(L,N,LS,NS,0) . 

skip(LS,0,LS,NS,NS) : - !. 
s k i p ( [ ] , _ , [ ] , N S , N S ) . 
skip([_ |Ls] ,N,LRs,NsO,Ns) : -

NI i s N - l , 
Nsl i s Ns+1, 
sk ip(Ls ,Nl ,LRs ,NsO,Ns l ) . 

We now return to our original program and make use of the proposed builtin (note that 
the "flattening parameter" N can be now chosen dynamically): 

vproc_opt ( [ ] , [] ,0) . 
vproc_opt(L,LR,N) : -

N > 0, 
skip(L,N,LS,NS), 
skip(LR,NS,LRS,NS), 
vproc_opt(LS,LRS,NS) & vproc_opt_n(NS,L,LR). 

v p r o c _ o p t _ n ( 0 , _ , _ ) . 
vproc_opt_n(N,[L|Ls] , [LR|LRs]) 

N > 0, 
NI i s N - l , 
vproc_opt_n(Nl,Ls,LRs) process_element(L ,LR) 

We have included the s k i p / 4 predicate as a C builtin in the &-Prolog system and run 
the above program. The result is shown in Figure 7. The large delays are due to the traversal 
of the list made by s k i p / 4 . Note, however, how the tasks are created in groups of four 
corresponding to the dynamically selected increment, which can now be made arbitrarily 
large. We believe that this idea would also be useful when implemented at an even lower level 
(Section 4). 

It is worth noting that , in this case, the predicate s k i p / 4 not only returns pointers to 
sublists of a given list, but is also able to construct a new list composed of free variables. 



This allows spawning independent parallel processes, each one of them working in sepárate 
segments of a list. This, in some sense, mimics the so-called poslist and neglist identified in the 
Reform Compilation at run-time. Though this solution gives, obviously, poorer performance 
than a compile-time approach. 

Note also that other builtins similar to skip could be proposed for other types of data 
structures and for each type of traversal allowed by each of those data structures. 

As an example, we may want the splitting of the list to be used afterwards (for example, 
because it is needed in some further similar processing). We can use the skip/4 predicate to 
build a s k i p l i s t / 3 predicate as follows: 

s k i p l i s t ( [ ] , _N, [ ] ) : - !. 
sk ip l i s t (L , N, [L|LSs]) :-

skip(L, N, LS, _M), 
skipl ist (LS, N, LSs). 

Figure 9: Vector operation, list prebuilt (10 el./8 proc.) 

A typical cali to s k i p l i s t / 3 would be done with the two first arguments instantiated; 
the third argument would return pointers to sublists of the first argument or, under a more 
logical point of view, the third argument describes a set of sublists of the first argument by 
means of difference lists. Figure 10 depicts this situation, and Figure 9 shows the result of an 
execution where the input and output data has been preprocessed using this predicate. This 
list preprocessing does not appear in Figure 9, as an example of the reuse of a previously 
traversed list. 

2.6 Performance Evaluation 

In order to assess the relative performance of the various techniques discussed, we have run 
the examples on a larger (240 elements) list. The results presented in Table 1 show the cor-
responding execution times. The column Relative Speedup refers to the speedup with respect 



Figure 10: "Skiplist" operatkm, 10 elements in 4 

to the parallel execution in one processor, and the column Absolute Speedup measures the 
execution speed with respect to the sequential execution. The numbers between parentheses 
to the right of some benchmark ñames represent the skipping factor chosen. 

Overheads associated with scheduling, preparing tasks for parallel execution, etc. make 
the parallel execution in one processor be slower than the sequential execution. This difference 
is more acute in very small grained benchmarks, as the one we are dealing with. 

The speedups suggested by Figures 4 to 9 may not correspond with those in the table 
— the length of benchmark run and the skip/unfolding increment chosen in the two cases 
is different, and so is the distribution of the tasks. In fact, some figures suggest a slowdown 
where the table shows a speedup. On the other hand, this indicates that processing larger 
lists can take more advantage from the proposed techniques, because the relative overhead 
from traversing the list is comparatively less. 

Method 
Sequential 
Parallel, 1 processor 
Giving away recursion 
Keeping recursion 
Skipping (8) 
Skipping (30) 
Pre-built skipping list (8) 
Pre-built skipping list (30) 
Reform Compilation (8) 
Data Parallel 

Time (ms) 
127 
153 
134 
41 
30 

28.5 
28 

26.5 
27 
26 

Relative Speedup 
— 
1 

1.14 
3.73 
5.1 

5.36 
5.4 
5.77 
5.6 
5.88 

Absolute Speedup 
1 

0.83 
0.94 
3.09 
4.23 
4.45 
4.53 
4.79 
4.7 

4.88 

Table 1: Times and speedups for different list access, 8 processors. 

It can also be noted how a pre-built skipping list with a properly chosen increment beats 
the reformed program. Of course a reformed program with the same unfolding level would, in 
principie, at least equal the program with the pre-built list. But the point is that the reformed 
program was statically transformed, whereas the skiplist versión can change dynamically, and 
be useful in cases where the same data is used several times in the same program. 



3 Constant Time Access Arrays in Prolog? 

One obvious disadvantage of the techniques previously proposed is that a traversal of the 
input data needs to be performed at some point (in the best case, only once at the beginning 
of the execution, and several times in worse cases). This adds a sequential component to 
some programs which can limit the attainable speedups. Arrays, on the other hand, have the 
desirable property of allowing constant-time access to any element through an arithmetically 
manipulable index. This, in our case, means that the cost of skipping elements to split the 
computation does not depend on the number of elements skipped, or on the total length of the 
array. We will apply the techniques proposed in the previous sections to the case of arrays, 
and we will compare the results in this case with those obtained for lists. 

3.1 Traversing and Splitt ing Arrays 

For the sake of argument, we propose a simple-minded approach to the original problem using 
the real "arrays" in standard Prolog, i.e., compound terms. Of course the use of this technique 
is limited by the fact that term arity is limited in many Prolog implementations, but this 
could be very easily cured. In the query we créate a vector of length N using functor/3, 
initialize it, and then pass it on to a "vector" versión of vproc (we could, of course, also start 
with a list, as in previous examples, and convert it into a vector before calling the parallelized 
"vector" versión of vproc): 

vproc (0 ,_ ,_) . 
vproc(_,V,VR) : -

I>0 , 
I I is 1 -1 , 
vproc(Il,V,VR) & process_element(I,V,VR). 

Element access is done in constant time using arg/3: 

process_element(I,V,VR) :-
arg(I,V,H), 
HR i s ((((H * 2) / 5)~2)+(((H * 6) / 2 )~3) ) /2 , 
arg(I,VR,HR). 

The results are presented in Figure 11. In this example we are using a simple minded 
loop which creates tasks recursively, but the same techniques illustrated in previous examples 
could be applied to this "real array" versión: it is easy now to modify the above program as 
in the previous examples in order to créate the tasks in groups of N, but now without having 
to previously traverse the data structure, as was the case when using the skip builtin. 

The result appears in Figure 12. From this figure it may seem that there is no performance 
improvement derived from using this strategy. This is due to the fact that the execution 
depicted is very small, and the added overhead of calculating the "splitting point" becomes 
a sizeable part of the whole execution. As in Table 1, in Table 2 larger lists and skipping 
factors were chosen, achieving better speedups than the simple parallel scheme. Since no real 
traversal is needed using this representation, the amount of items traversed can be dynamically 
adjusted with no extra cost. 



Figure 11: Vector operation, constant access arrays (10 el./8 proc.) 

Method 
Sequential 
Parallel, 1 processor 
Keeping recursion 
Binary startup 
Skipping (8) 
Skipping (30) 

Time (ms) 
149 
174 
45 
38 

31.2 
29.5 

Relative Speedup 
— 
1 

3.8 
4.5 
5.57 
5.89 

Absolute Speedup 
1 

0.85 
3.31 
3.92 
4.77 
5.05 

Table 2: Times and speedups for vector accesses 

A more even load distribution than that obtained with the simple recursion scheme can be 
achieved by using a binary split. This is equivalent to dynamically choosing the splitting step 
to be half the length of the sub-vector assigned to the task. Figure 13 depicts this scheme. 
As in Figure 12, the comparatively large overhead associated with the determination of the 
splitting point makes this execution appear larger than that corresponding to the simple 
recursive case. But again, Table 2 reflects that for large enough executions, its performance 
can be placed between the simple recursion scheme and a carefully chosen skipping scheme. 

It is clearly also trivial to convert from a list representation to a "vector representation" 
— e.g. for the one dimensión case: 

vectorize(L,V) : - vectorize(L,0,V) . 

vectorize([] ,N,V) : -
functor(V,storage,N) . 

vectorize([H|T],N,V) : -
NI i s N+l, 
vectorize(T,Nl,V) , 



Figure 12: Vector operation, constant time access arrays, skipping, 10 el./8 proc. 

arg(Nl ,V,H) . 

Comparing Tables 1 and 2 some conclusions can be drawn. First, the structure-based 
programs are slightly slower than their list-based counterparts. This is understandable in 
that using structures as arrays involves an index handling that is less efficient (or, rather, that 
has been less optimized) than in the case of lists. But the fact that accessing any element 
in a structure is, in principie, a constant-time operation, allows a comparatively efficient 
implementation of the dynamic skip strategy. This is apparent in that the speedups attained 
with the arrays versión of the skipping technique are better than those corresponding to the 
list-based programs. The absolute speed is less; this can be attributed to the fact that the 
&-Prolog versión with which these times were taken has the arg /3 builtin written in C, with 
the associated overhead of calling and returning from a C function. This could be improved 
making arg /3 (or a similar primitive) a faster, WAM-level instruction. Again, if we want (or 
have to) use lists, a low-level vec tor ize /2 builtin could be fast enough to transíate a list 
into a structure and still save time with respect to a list-based implementation processing 
the resulting structure in a divide-and-conquer fashion. 

3.2 Bui lding Arrays in Prolog 

Finally, following on on the idea of this section, we would like to point out that it is possible 
to build a quite general purpose "FORTRAN-like" constant access array library without 
ever departing from standard Prolog or, eliminating the use of "setarg", even from "clean" 
Prolog. It is not that we are supporting the use of these data structures, but rather we are 
simply trying to make the point that if one really wants them, then the arrays are there. 
The solution we propose is related to the standard "logarithmic access time" extensible array 
library written by D.H.D.Warren. In this case, we obtain constant (rather than logarithmic) 
access time, with the drawback that arrays are, at least in principie, fixed size. 

The "type" array can be defined as a term of arity two which contains as its first argument 
a list of integers which correspond to the dimensions of the array (thus we can have arrays 



Figure 13: Vector operation, constant time access arrays, binary startup, 10 el./8 proc. 

of arbitrary dimensions) and as its second argument a term whose arity is the total number 
of cells in the array (and thus represents the total amount of storage needed by the array). 
From that idea, Prolog code to check the array object, to créate arrays, and to consult and 
update (even destructively) them is easy to derive. More realistically, all these operations 
should be builtins (or, even better, native instructions) for performance reasons. Note that 
these primitives could in any case often be very efficiently compiled in-line to specialized calis 
to functor, arg, etc. 

Finally, following on on this idea, we illustrate how one could even build a quite general 
purpose "FORTRAN-like" constant access array library without ever departing from standard 
Prolog or, eliminating the use of "setarg", even from "clean" Prolog. It is not that we are 
supporting the use of these data structures, but rather we are simply trying to make the 
point that if one really, really, wants them, then the arrays are there. The solution we 
propose is related to the standard "logarithmic access time" extensible array library written 
by D.H.D.Warren. In this case, we obtain constant (rather than logarithmic) access time, 
with the drawback that arrays are, at least in principie, fixed size. 

We begin by defining the "type" array. Essentially, an array is a term of arity two which 
contains as its first argument a list of integers which correspond to the dimensions of the 
array (thus we can have arrays of arbitrary dimensions) and as its second argument a term 
whose arity is the total number of cells in the array (and thus represents the total amount of 
storage needed by the array): 

is_array(matrix(D,S)) :-

functor(S,storage,L), 

multiply_list(D,L). 

multiply_list([],1). 
multiply_list([I|Is],N) :-

multiply_list(Is,Nl), 



N i s NI * I . 

Arrays can be created, in full FORTRAN tradition, by performing a cali to d imens ion /2 , 
where the first argument is a list with the dimensions of the array and the second argument 
returns the array: 

dimensión(D,matrix(D,S)) : -
m u l t i p l y _ l i s t ( D , N e l e m e n t s ) , 
f u n c t o r ( S , s t o r a g e , N e l e m e n t s ) . 

Note, however, tha t with judicious use of delays (or in a CLP language) one can also 
créate arrays through a simple cali to the type definition predicate. 

All elements of the "storage" part are accessible as arguments of a structure in time pro-
portional to the number of dimensions of the matrix (and thus fixed for each array, regardless 
of the actual number of elements in it): 

acces s (matr ix (D ,S ) , 1 ,X) : -
c o m p u t e _ o f f s e t ( I , D , O f f s e t ) , 
a r g ( O f f s e t , S , X ) . 

c o m p u t e _ o f f s e t ( [ I ] , [D],1) : -
I>0, I=<D, !. 

c o m p u t e _ o f f s e t ( [ I | I s ] , [D |Ds] ,Offse t ) : -
I>0, I=<D, !, 
c o m p u t e _ o f f s e t ( I s , D s , 0 f f s e t l ) , 
II i s 1 -1 , 
Offset i s D * II + O f f s e t l . 

compute_of f se t (_ ,_ ,_ ) : -
format("Warning: acces s out of bounds i n a r r a y . " , [ ] ) . 

Finally, if one really, really wants to have everything one has in FORTRAN, then even 
destructive assignment is available: 

s e t e l ( m a t r i x ( D , S ) , I , X ) : -
c o m p u t e _ o f f s e t ( I , D , O f f s e t ) , 
s e t a r g ( O f f s e t , S , X ) . 

However, one would hope that compilation technology would make the need for resorting 
to these extremes unnecessary. 

The definitions above are meant as a description of the logical meaning of the operations on 
arrays (except for the destructive assignment, of course). From a practical point of view, these 
definitions should at least be changed to compute with an accumulating parameter. Also, use 
of delay (or CLP) can make them fully reversible. More realistically, all these operations 
should be builtins (or, even better, native instructions) for performance reasons. Note that 
calis to dimensión, access, set, etc. could in any case often be very efficiently compiled in-line 
to a specialized cali to functor, arg, etc. 



4 Adding Lower Level Support 

We hope to have convincingly argued that much "data-parallel" computation can be done 
in an efficient way in the context of more general and-parallel systems, with the obvious 
advantage of not having to trade generality for efficiency in a special case. However, it 
would be incorrect to conclude that the techniques proposed achieve the same task startup 
efficiency as a native data-parallel system, specially for fine-grained computation. Clearly, 
there is merit for certain cases in supporting fast task creation at a lower level. However, 
we argüe that this can be easily done, again with the advantage of avoiding losing generality 
(i.e., the ability to support general and-parallelism in other parts of the program), by adding 
either a special purpose builtin or a few special instructions to the instruction set of a typical 
general-purpose and-parallel engine. 

As an example, we propose two simple extensions to the PWAM abstract machine in order 
to natively support a very simple, bounded quantification-like construct: p_f oral l /2 , which 
checks that a certain property holds for all elements of a list, in the spirit of some of the 
constructs proposed in [ABB93]. We illustrate this extensión through an example. Consider 
the following source construct: 

. . . , p_forall(X in L, q(X,Y,a)), . . . 

which checks that a property q/3 holds for Y, a, and each of the elements of the list L. If we 
suppose that the different q/3 calis for each element in list L are independent (according to 
the notion of independen ce followed throughout this paper), then those calis can be safely 
executed in independent "and" parallelism. 

A first implementation would be through a builtin directly corresponding to this construct, 
which would créate standard PWAM tasks in the goal stack but in a tight low-level loop, 
rather than in a Prolog recursion (a "pmap" builtin, somewhat in this spirit, was present in 
early versions of the &-Prolog system [WH87]). Assuming knowledge of the determinacy of 
the iterations, these tasks could be of the "det_pcall" type [Her86a], which substantially 
reduce marker overhead. 

Alternatively, a special class of entries in the goal stack can be defined where a single 
such entry identifies a collection of goals. The skeleton of the object code corresponding to 
the example above, in a slightly extended PWAM instruction set, follows. We assume that 
permanent variable Yl points to the list L and that Y is given by Y2: 

vectorize Y1,Y3,X4 
det_pcall l , foral l (X4,q:) 
pop_wait 

q: put_constant a,X3 
put_valué Y2,X2 
put_indexed Y3,X1 
ca l i q/2 
return_par 



All instructions used are essentially the same as in the PWAM, except for the vectorize 
instruction, taken directly from the Reform Prolog abstract machine, the put_indexed in-
struction, and the new "forall" type of argument to the det_pcall instruction. The vectorize 
instruction is essentially a low-level implementation of the vec tor ize /2 builtin described in 
the previous section, returning the vector versión of Yl in Y3 and the length of the vector in 
X4. The det_pcall instruction is the same as in the PWAM, creating a goal stack entry for 
other processors to steal. However, the goal is marked specially (through the foral l label) so 
that, in additional to the usual pointer to the current environment and to the goal code (q:), 
also an index field is added, which is initialized to the contents of X4. The goal is also marked 
specially ("*") to signal that it actually represents several goals (see Figure 14). Any pro-
cessor stealing the goal now placed in this goal stack will see that it is a special "forall" goal 
and will save the valué of the index in a special register before executing starting execution 
at address q:. Also, the valué of the index in the goal stack will be decremented. Finally, if 
when decrementing this index the last goal is reached, the goal stack entry is deleted from the 
goal stack, as in the case of standard entries. Of course, the usual bookkeeping operations on 
the parcall frame [Her86a] such as setting up task return counters (i.e., the simplified versions 
implied by a det_pcall instruction) are also performed. 

* q: 

E 

[X4] 

Figure 14: Multigoal Goal Stack Entry 

The advantage that the approach outlined inherits from its data-parallelism / Reform 
Prolog lineage is that all tasks are created in only one, constant time operation, and that the 
operation of traversing the input list is done once ahead of time and in a tight, low-level loop. 
However, the full PWAM machinery remains available for supporting general and-parallelism 
in other parts of the computation. Through these instructions or slight variations of them, it 
is also possible to implement several optimizations, such as splitting a large computation into 
several computations, each of them represented by one such goal stack entry, as well as in 
general all the techniques mentioned in the previous sections. The point again is not so much 
to describe a precise instruction set, but rather to illustrate how data-parallel techniques can 
be incorporated at a low level in an and-parallel abstract machine without losing the support 
for general purpose and-parallelism. 

5 Conclusions 

We have argued that data-parallelism and and-parallelism are not fundamentally different 
and that by relating them the advantages of both can in fact be obtained within the same 
system. We have argued that the difference lies in two main issues: memory management and 



fast task startup and management. Having pointed to recent progress in memory management 
techniques in and-parallelism we have concentrated on the issue of fast task startup, discussed 
the relevant issues and proposed a number of solutions. We illustrated the point made through 
visualizations of actual parallel executions implementing the ideas proposed. In summary, we 
argüe that both approaches can be easily reconciled, resulting in more powerful systems which 
can bring the performance benefits of data-parallelism with the generality of traditional and-
parallel systems. 

Our work has concentrated on speeding up task creation and distribution in a type of 
symbolic or numerical computations that are traditionally characterized by iteration over 
data structures that are lists or arrays. We have shown some transformation techniques 
relying on a dynamic load distribution that can improve the speedups obtained in a parallel 
execution. However, the overhead associated with this dynamic distribution is large in the 
case of lists; better speedups results can be obtained using data structures with constant 
access time, in which arbitrarily splitting the data does not impose any additional overhead. 

There are other kinds of computations where the iteration is performed over a numerical 
parameter. While not directly characterizable as "data-parallelism" this type of iteration can 
also benefit from fast task startup techniques. This very interesting issue has been recently 
and independently discussed by Debray [DJ94], and shown to also achieve significant speedups 
for that class of problems. 
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