
for a

On the completeness of a proof system
simple data-parallel programming language

(extended abstract)*

Luc Boug~ **, David Cachera

LIP, ENS Lyon, 46 All~e d'Italie, F-69364 Lyon C~dex 07, France

Abs t rac t . We prove the completeness of an assertional proof system for
a simple loop-free data-parallel language. This proof system is based on
two-part assertions, where the predicate on the current value of variables
is separated from the specification of the current extent of parallelism.
The proof is based on a Weakest Precondition (WP) calculus. In contrast
with the case of usual scalar languages, not all WP can be defined by
an assertion. Yet, partial definability suffices to prove the completeness
thanks to the introduction of hidden variables in assertions. The case of
data-parallel programs with loops is briefly discussed in the conclusion.

K e y w o r d s : Concurrent Programming; Specifying and Verifying and Rea-
soning about Programs; Semantics of Programming Languages; Data-Parallel
Languages; Proof System; Hoare Logic; Weakest Preconditions.

1 Introduct ion

The development of massively parallel computing in the last two decades has
called for the elaboration of a parallel programming model. The data-parallel
programming model has proven to be a good framework, since it allows the
easy development of applications portable across a wide variety of parallel ar-
chitectures. The increasing role of this model requires appropriate theoretical
foundations. These foundations are crucial to design safe and optimized com-
pilers, and programming environments including parallelizing, data-distributing
and debugging tools. They are also the way to safe programming techniques, so
as to avoid the common waste of time and money spent in debugging.

Existing data-parallel languages, such as H P F , C*, HYPERC or MPL, in-
clude a similar core of data-parallel control structures. In previous papers, we
have shown that it is possible to define a simple but representative data-parallel
kernel language (t he / : language), to give it a formal operational [5] and denota-
tional semantics [4], and to define a proof system for this language, in the style
of the usual Hoare's logic approach [10, 4]. The originality of our approach lies in
the t reatment of the extent of parallelism, that is, the subset of currently active

* The full version of this paper can be found in [2].
** Authors contact: Luc Boug6 (Luc.Bouge@lip.ens-lyon.fr). This work has been

partly supported by the French CNRS Research Program on Parallelism, Networks
and Systems(PRS).

144

indices at which a vector instruction is to be applied. Previous approaches led
to manipulate lists of indices explicitly [6, 11], or to consider context expressions
as assertions modifiers [8]. In contrast, our proof system for/~ describes the ac-
tivity context by a vector boolean expression distinct from the usual predicates
on program variables.

We have shown that our proof system for Z: is sound, that is, any provable
property of a program is actually valid. In this paper, we address the converse
completeness problem: Can any valid property of a program be proved in our
system ? In some sense, completeness guarantees that the rules of a proof system
actually catch all the semantic expressiveness of the language under study.

The completeness of proof systems for scalar Pascal-like languages has been
extensively studied [1]. In attacking such a problem, the main tool is the weakest
preconditions calculus. This notion has been introduced by Dijkstra [7]. It plays
a central role in the formal validation of scalar programs, as shown in [9] for
instance. The case of data-parallel programs is much more complex than the
case of scalar programs, as one has to cope both with the variable values and
with the manipulations of the activity context. Yet, we have shown in [3] that it
is possible to define a weakest preconditions calculus fo r / : , at least for loop-free
(so-called straight-line or linear) programs.

The contribution of this paper is to apply these results to prove the com-
pleteness of our proof system for all linear programs. We proceed as follows. We
first present the/~ language, and give its denotational semantics. We describe a
sound assertional proof system for this language, as defined in [4], and its weak-
est preconditions calculus as described in [3]. Then, we prove the completeness
of the proof system in a restricted case: plain specifications formulae and regular
programs. To handle non-regular programs, we extend the proof system with an
additional rule. It enables to introduce and eliminate auxiliary hidden variables
in assertions. We prove that this extended proof system is complete for linear
programs without any restriction.

2 The t: Language

An extensive presentation of the s language can be found in [5]. For the sake of
completeness (if we dare say so!), we briefly recall its denotational semantics as
described in [3].

2.1 I n f o r m a l D e s c r i p t i o n

In the data-parallel programming model, the basic objects are arrays with paral-
lel access. Two kinds of actions can be applied to these objects: component-wise
operations, or global rearrangements. A program is a sequential composition of
such actions. Each action is associated with the set of array indices at which it
is applied. An index at which an action is applied is said to be active. Other
indices are said to be idle. The set of active indices is called the activity context.
It can be seen as a boolean array where true denotes activity and false idleness.

The /~ language is designed as a common kernel of data-parallel languages
like C*, HYPERC or MPL. We do not consider the scalar part of these languages,
mainly imported from the C language. For the sake of simplicity, we consider a

145

unique geometry of arrays: arrays of dimension one, also called vectors. Then,
all the variables o f / : are parallel, and all the objects are vectors of scalars, with
one component at each index. As a convention, the parallel objects are denoted
with uppercase letters. The component of parallel object X located at index u
is denoted by Xlu. The legal expressions are usual pure expressions: the value
of a pure expression at index u only depends on the values of the variables
components at index u. The expressions are evaluated by applying operators
component -wise to parallel values. We do not specify the syntax and semantics
of such expressions any further. A particular vector expression is called T h i s .
The value of its component at each index u is the value u itself: Vu : This[~ = u.
Note that T h i s is a pure expression and that all constructs defined here are
determin is t ic . The set of/ :- instructions is the following.

A s s i g n m e n t : X : = E . At each active index u, component X[= is updated with
the local value of pure expression E.

C o m m u n i c a t i o n : get X from A into Y. At each active index u, pure expres-
sion A is evaluated to an index v, then component Y[~ is updated with the
value of component X[, . We always assume that v is a valid index.

S e q u e n c i n g : S;T . On the termination of the last action of S, the execution of
the actions of T starts.

I t e r a t i o n : loop B do S. The actions of S are repeatedly executed with the cur-
rent extent of parallelism, until pure boolean expression B evaluates to false
at each currently active index. The current activity context is not modified.

C o n d i t i o n i n g : where B do S. The active indices where pure boolean expression
B evaluates to false become idle during the execution of S. The other ones
remain active. The initial activity context is restored on the termination of
S.

2.2 D e n o t a t i o n a l S e m a n t i c s o f s

We recall the semantics of s defined in [3] in the style of denotational semantics,
by induction on the syntax of s

An env i ronment tr is a function from identifiers to vectbr values. The set of
environments is denoted by E n v . For convenience, we extend the environment
functions to the parallel expressions: or(E) denotes the value obtained by evalu-
ating parallel expression E in environment 6,. We do not detail the internals of
expressions any further. Note that ~(This)] u = u by definition.

D e f i n i t i o n l (P u r e e x p r e s s i o n) . A parallel expression E is pure if for any
index u, and any environments a and ~,1,

(VX: c~(X)f~ = ~'(X)J~) ~ (~(E)I ~ = ~'(E)J~).

Let tr be an environment, X a vector variable and V a vector value. We denote
by a[X *-- V] the new environment a ' where a ' (X) = Y and cr '(y) = tr(Y) for
all Y ~ X.

A context c is a boolean vector. It specifies the activity at each index. The set
of contexts is denoted by C t x . We distinguish a particular context denoted by
True where all components have value true. The context False is defined the same
way. For convenience, we define the activity predicate Activec: Ac t i vec (u) ==_ cir.

146

A state is a pair made of an environment and a context. The set of states is
denoted by State: State = (Env x Ctx) U { l } where .L denotes the undefined
state. The semantics [51 of a program S is a strict function from State to State.
[51(J_) = l , and [51 is extended to sets of states as usual.

Assignment: At each active index, the component of the parallel variable is
updated with the new value.

[X:=E](a, c) = (~', c),
with ~' = a[X ~-- V] where VI~ = a(E)l ~ if Active~(u), and V[~ = ~(Z)]~
otherwise. The activity context is preserved.

Communication: It acts very much as an assignment, except that the assigned
value is the value of another component.

[get X from A into Y](a, e) = (~', c)

with ~' = a[Y ~-- Y] where VI, , = a(X)l~(a)l, if Active~(u), and Yl~ =
o'(Y)l u otherwise.

Sequenc ing : Sequential composition is functional composition.

[S:T](a, c) = [T]([51(~, c)).
Iteration: Iteration is expressed by classical loop unfolding. It terminates when

the pure boolean expression B evaluates to false at each active index.

[loop B do 51([S~(~, c))
if 3u : (Activee(u) A ~(B)I~) [loop B do 51(a, c) = (a, c) otherwise

If the unfolding does not terminate, then we take the usual convention:
[loop B do 51(~r, c) = .L.

Conditioning: The denotation of a where construct is the denotation of its
body with a new context. The new context is the conjunction of the previous
one with the value of the pure conditioning expression B.

[where B do 51(o', c) = (o", c)
with [51(~, c A a(B)) = (or', c').
If [S~(a, eAa(B)) = J_, then we put [where B do S](a, c) = 1 . Observe that
the value of c ~ is ignored here.

3 A Sound Assertional Proof System for the Z: Language

3.1 A s s e r t i o n L a n g u a g e

We define an assertion language for the correctness o f / : programs in the lines
of [1]. Such a specification is denoted by a formula {P} S {Q} where S is the
program text, and P and Q are two logical assertions on the variables of S. This
formula means that, if precondition P is satisfied in the initial state of program
S, and if S terminates, then postcondition Q is satisfied in the final state. A
proof system gives a formal method to derive such specification formulae by
syntax-directed induction on programs.

We recall below the proof system described in [3]. As in thc usual sequential
case, the assertion language must be powerful enough to express properties on
variable values. Moreover, it has to handle the evolution of the activity context

147

along the execution. An assertion shall thus be broken up into two parts: {P, C},
where P is a predicate on program variables, and C a pure boolean vector
expression. The intuition is that the current activity context is exactly the value
of C in the current state, as expressed in the definition below.

Def in i t ion2 (Satisfiabil l ty). Let (~, c) be a state, and {P,C} an assertion.
We say that (~, c) satisfies the assertion {P, C}, denoted by (~r, c) ~ {P, C},
if r ~ P and ~(C) = e. By convention, I satisfies any assertion. The set of
states satisfying {P, C} is denoted by [{P, C}]. When no confusion may arise,
we identify {P, C} and [{P, C}].

Observe that there are many sets of states which cannot be described by any
assertion. This is in strong contrast with the case of scalar Pascal-like languages.

Z e m m a 3 (Re8tricted power o f asser t ions) . Let {P, C} an assertion. For
any environment ~, there exists at most one activity context c such that (~, c) E
l iP, CIl , namely e = a(C).

So, if a set of states contains two states (~, c) and (~, c I) with c • c', then it
cannot be described by any assertion.

Def in i t ion4 (Asser t ion impl ica t ion) . Let {P, C} and {Q, D} be two asser-
tions. We say that {P, C} implies {Q, D}, and write {P, C} =} {Q, D}, iff

(P =~ Q) and (P ~ Vu : (e l . = D[.))

Propos i t ion 5. Let {P, C} and {Q, D} be two assertions. Then
{P, C} ~ {Q, 19} iff [{P, C}] c [{Q, D}]

Our assertion language manipulates two kinds of variables, scalar variables
and vector variables. As a convention, scalar variables are denoted with a low-
ercase initial letter, and vector ones with an uppercase one. We have a similar
distinction on arithmetic and logical expressions. As usual, scalar (resp. vector)
expressions are recursively defined with usual arithmetic and logical connectives.
Basic scalar (resp. vector) expressions are scalar (resp.vector) variables and con-
stants. Vector expression can be subscripted. If the subscript expression is a
scalar expression, then we have a scalar expression. Otherwise, if the subscript
expression is a vector expression, then we have another vector expression. The
meaning of a vector expression is obtained by component-wise evaluation. We
introduce a scalar conditional expression with a C-like notation c?e : f . Its value
is the value of expression e if c is true, and f otherwise. Similarly, the value of a
conditional vector expression, denoted by C?E : F, is a vector whose component
at index u is E[~ if C[u is true, and Fin otherwise.

Predicates are usual first order formulae. They are recursively defined on
boolean scalar expressions with logical connectives and existential and universal
quantifiers on scalar variables. Note that we do not consider quantification on
vector variables.

We introduce a substitution mechanism for vector variables. Let P be a pred-
icate or any vector expression, X a vector variable, and E a vector expression.
P[E/X] denotes the predicate, or expression, obtained by substituting all the
occurrences of X in P with E. Note that all vector variables are free by defi-
nition of our assertion language. The usual Substitution Lemma [1] extends to
this new setting.

148

Zemma 6 (Substitution s For every predicate on vector variables P,
vector expression E and environment (r,

(r ~ P[E/X] iff (fiX +-- a(E)] ~ P

We can define the validity of a specification of a s program with respect to its
denotational semantics.

Def in i t ion7 (Specif icat ion val idi ty) . Let S be a 1: program, {P,C} and
{Q, D} two assertions. We say that specification {P, C} S {Q, D} is valid, de-
noted by ~ {P, C} S {Q, D}, if for all states (~,, c)

(((r, c) ~ {P, C}) :=> ([S](a, c) ~ {Q, D}).
Since / satisfies any assertion, validity is relative to partial correctness.

3.2 Proof System

We recall on Fig. 1 the proof system defined in [3]. This system is a restricted
proof system, in the sense that it only manipulates a certain kind of specification
formulae, precisely these formulae {P, C} S {Q, D} such that the boolean vector
expression D describing the final activity context may not be modified by the
program S. More formally, using the notations of [1], we define the following sets
of variables.

Def ini t ion8. Let E be an expression. Vat(E) is the set of all variables ap-
pearing in E. Expression E may only depend on the values of these variables.
We extend this definition to a/:-program S: Var(S) is the set of all variables
appearing in S.

Let S be a /:-program. Change(S) is the set of program variables which
appear on the left-hand side of an assignment statement or as the target of a
communication statement. Only these variables may be modified by executing
S.

A sufficient condition to guarantee the absence of interference between S and D
is thus Change(S) N Var(D) = 0. If a specification formula {P, C} S {Q, D} is
derivable in the proof system, then we write l- {P, C} S {Q, D}.

Theorem 9 (Soundness of l- [41). The f- proof system is sound: If b {P, C}
s {Q, 0}, then {P, C} S D}.

The contribution of this paper is to address the converse problem:

Is any valid specification provable? Does ~ {P,C} S {Q,D} imply b
{P, C} S {Q, D} ?

In the case of scalar programs, the completeness of the proof systems for loop-
free (so-called linear) programs is a not-so-difficult consequence of the existence
of a weakest preconditions calculus. In contrast, studying the completeness with
respect to programs including loops requires sophisticated methods. Indeed, this
is tightly connected to the expressivity of the underlying logic.

In the case of data-parallel programs, even the simplest case of loop-free
programs is already non-trivial. In this paper, we therefore restrict ourselves to
this case. The case of loops is discussed in the conclusion.

De f in i t i on l0 (L i n e a r / : - p r o g r a m s) . A data-parallel s S is linear
if it is made of assignments, communications, sequencing and conditioning only.

149

Assignment Rulc

Communication Rule

Sequencing Rule

Conditioning Rule

Consequence Rule

Iteration Rule

X ~ Vat(D)
{Q[(D?E : X)/X], D} X:=E {Q, D}

Y ~ Vat(D)
{Q[(D?X[A: Y)/Y], D} get X from A into Y {Q, D}

{e,c} S {R,E}, {R,E} 7' {Q,D}
{P, C} S;T {Q, D}

{P,C A B} S {Q, D}, Change(S) n Var(C) =
{P, C} where B do S {Q, C}

{P, C} ~ {P', C'}, {P', C'} S {Q', D'}, {Q', D'} =~ {Q, D}
{P, C} S {Q, D}

{I ^ 3u: (cl~ ^ BI~), c} s {I, c}
{I, C} loop B do S {I A Vu: (el. ~ -~BI~), C}

Fig. 1. The F proof system for s

4 C o m p l e t e n e s s of the P r o o f S y s t e m for Pla in
Spec i f icat ions and Regulars Linear Programs

4.1 W e a k e s t P r e c o n d i t i o n s C a l c u l u s

Our main tool to prove the completeness of our system is a weakest preconditions
calculus. This calculus has been presented in [3], and we briefly recall the main
results below. Let us first motivate its use. We want to demonstrate that

{P ,C) S {Q,D} => F {P, C} S {Q, D}.
Let {P, C} S {Q, D} be a valid specification formula. Assume for a while that we
can find an assertion {P', C'} such that ~- {P', C'} S {Q, D} holds, and moreover
{P, C} ~ {P', C'}. Then, using the Consequence Rule, we have demonstrated

}- {P, C} S {Q, D}.

D e f i n i t i o n l l (Weakes t p recondi t ions) . Let S be a linear/:-program and
{Q, D} an assertion. We define the weakest preconditions as

wp(S, {Q, D}) = {s E State I [S~(s) ~ {Q, D}}
Observe that

{P, C} S {Q, D) r |{P, C}] C wp(S, {Q, D)).

As we have restricted ourselves to linear programs, observe that we do not need
to take into account problems of divergence.

We have shown in a previous paper [3] that the set of states wp(S, {Q, D})
cannot generally be described by some assertion {P, C} and thus be manipulated
in the proof system. It is only the case when certain syntactic non-interference
conditions on S and D are satisfied. These conditions are summed up in the
following definitions.

150

Defini t ion 12 (P la in specif icat ion). A specification formula {P, C} S {Q, D}
is said to be plain if we have Var(D) n Change(S) = 0.

Def in i t i on l3 (Regu la r p rogram) . A program P is regular if, for any sub-
program of P of the form where B do S, we have Vat(B) n Change(S) = 0.

Observe that any subprogram of a regular program is regular, too. The detailed
definability results are listed up on Fig. 2. In spite of the restrictions, they are
sufficient to guarantee the following property.

Proposition 14 (Restricted definability o f wp for regular programs [3]).
Let S be a regular, linear Z-program, and let {. . .} S {Q, D} be a plain spec-
ification for S. Then there exists an assertion {P,D} such that [{P,D}] =
wp(S, {Q, D}) In particular, ~ {P, D} S {Q, D}.

Construct Conditions Weakest Precondition

wp(X := E, {Q, O})
Assignment X ~ Vat(D)

= {Q[(D?E : X)/X], D}

wp(get X from A into Y, {Q, D})
Communication Y ~ Var(D)

= {Q[(D?X[A: Y)/Y], D}

Sequencing wp(S1 ;$2, { Q, D})
= wp(Sa, wp(S2, {Q, D}))

(Vat(D) U Var(B)) n Change(S)
wp(where S do S end, {Q, D})

Conditioning = 0
= {p, D}

wp(S, {Q, D A B}) = {P, C}

Fig. 2. Definability properties of weakest preconditions for regular, linear /:-programs

4.2 Proving the Restricted Completeness

We now want to establish the completeness for the proof system described on
Fig. 1. As it concerns plain specifications and regular programs, we call it re-
stricted completeness. More formally, we aim at proving the following theorem.

Theorem 15 (Restr. compl., plain specif., regular, linear progr.). Let
{P, C} S {Q, D} be a plain specification, with S a regular, linear program.

If ~ {P, C} S {Q, D}, then k {P, C} S {Q, D}.

Proof. The proof of this theorem follows the lines of [1]. It uses the weak-
est preconditions calculus. For any regular, linear program S and any plain
specification {P, C} S {Q, D}, there exists some assertion {P', C'} such that

151

[{P', C'}] = wp(S, {Q, D}). Using the Consequence Rule, it suffices to demon-
strate that

k wp(S, {Q, D}) S {Q, D}.

The proof is by induction on the structure of the regular, linear program S,
using the definability properties of Fig. 2.

The cases of the assignment, communication, and sequencing constructs are
straightforward. Let us consider the case of the conditioning construct, with S ---
where B do T. As S is regular by hypothesis, we have Change(T) n Var(B) = O.
As the specification is plain, we have Change(S)n Var(n) = O. As Change(T) =
Change(S), we also have Change(T)n Var(D) = 0. The Definability Property 14
yields an assertion {P, D A B} such that {P, n A B} = wp(T, {Q, n A B}).

Program T is regular and linear as S is so. Specification {P, DAB} T {Q, DA
B} is plain.

Thus, the induction hypothesis yields k {P, D A B} T {Q, D A B}. As
(Var(B)U Var(D))N Change(T) = ~, the where Rule of the proof system applies,
and we get k {P, D} where B do T {Q, D}.

Furthermore, the Definability Property gives wp(where B do T, {Q, D}) =
{P, D}. Hence the desired result:

}- wp(where B do T, {Q, D}) where B do T {Q, D}.
[]

5 Extending the Proof of Completeness to Non-regular,
Linear Programs

We have demonstrated the completeness of the proof system for plain specifi-
cations and regular, linear programs. In the presence of non-regular programs,
we are no longer able to find any assertion that expresses the weakest precon-
ditions. Thus, we first have to transform a non-regular program into a regular
one. This can be done by introducing an auxiliary variable, which stores the
value of the vector boolean expression: program where B do S is transformed
into Tmp:= B; where Trap do S

Using such a variable can be interpreted as keeping track of the nested ac-
tivity context in a stack. Each new variable Tmp is a cell of the stack.

But, instead of transforming programs in order to be able to prove them, we
claim that it is possible to encapsulate this transformation into the proof system
itself. The notion corresponding to syntactic auxiliary variables in programs is
that of semantic hidden variables in assertions.

Ru le 1 (El imina t ion of h idden variables) Let E be any vector expression.
{P, C} S {Q, n}, Trap ~ Vat(S) U Vat(Q) U Var(n)

{P[E/Tmp], C[E/Tmp]} S {Q,D}

We denote by k* {P, C} S {Q, D} that a specification formula is derivable in
the k proof system augmented with this new rule.

Theorem16 (Soundness of F*). The 1-* proof system is sound:
/ f P * { P } S { Q } , then ~ {P} S {Q}

152

Proof. Easy, using the Substitution L e m m a - see [2]. []

Theorem 17 (Restr. completeness, plain specif., linear program). Let
{P, C} S {Q, D) be a plain specification, with S a linear program.

If ~ {P,C} S {Q,D}, then k * { P , C } S { Q , D }

We first state that, thanks to the introduction of hidden variables, we re-
tain the properties of definability of the weakest preconditions. The following
proposition guarantees the existence of some assertion describing the weakest
preconditions of any conditioning construct.

Proposition 18 (Non-regular conditioning [3]). Let Tmp ~ Vat(S) U
Vat(Q) o Vat(D). If

wp(S, {Q, n A Trap}) ---- {P, C),

then
wp(where S do S, {Q,D})= {P[B/Tmp], D}

Theorem 19 (Restricted definability of WP). Let S be a linear program.
Let {...} S {Q, D} be a plain specification for S. Then there exists an assertion
{P, D} such that [{P, D}] = wp(S, {Q, D}). In particular, ~ {P, D) S {Q, D}.

We can now prove Completeness Theorem 17 for non-regular programs.

Proof. The proof is similar to that of the Completeness Theorem 15 for regular
programs. It uses a structural induction on S. The only new case to consider is
S _-- where B do T, with Vat(B) N Change(T) r ~. Pick up a "new" variable
Trap such that Tmp ~ Var(S)U Var(Q)u Vat(D). Such a variable exists becausc
the expressions from the program and from the assertion language are finite
terms. By Theorem 19, we know there exists some assertion {P, D A Trap} =
wp(T, {Q, D A Trap}).

By the induction hypothesis, we have k* {P, D A Trap} T {Q, D A Trap}. We
also have {P A B = Tmp, D A B} =V {P, D A Tmp}.

We can thus apply the Consequence Rule. This yields k* {PAP = Tmp, DA
B} T {Q, D A Trap}. Then, we apply the where Rule, and we get k* {P A B =
Tmp, D} where B do T {Q, D}. Thanks to the Consequence Rule, this rewrites
into k* {P[B/Tmp] A B = Trap, D} where B do T {Q, D}.

Finally, applying the Elimination Rule with E - B yields b* {P[B/Tmp], D}
where B do T {Q, D}. According to Proposition 18, wp(S, {Q, D}) =
{P[B/Tmp], D}. Thus k* wp(S, {Q, D}) S {Q, D}. As before, we conclude the
proof with the Consequence Rule and the Definability Property 19. D

6 E x t e n d i n g t h e P r o o f o f C o m p l e t e n e s s t o N o n - p l a i n
S p e c i f i c a t i o n s

We now focus on general specifications, where Var(D) N Change(S) may be
not empty. Surprisingly enough, the Elimination Rule is sufficient to prove the
completeness in this case, and there is no need of any other additional rule.

153

Theorem 20 (Completeness, linear programs). Let S be a linear program.

If ~ {e, C} S {Q, D}, then F-* {P, C} S {Q, D}.

Proof. Assume ~ {P, C} S {Q, D}. As the expressions of the assertion language
are finite terms, there exists a "new" hidden variable Tmp such that Trap
Vat(S) t3 Vat(Q) t3 Vat(D). Let us show that

{PA T m p = C , C } S {QA Tmp= D, Tmp}

Let (~r, c) be in [{P A Trap = C, C}l. We have in particular (or, C) ~ {P, C}. By
hypothesis, we get [S~(tr, c) = (or', c) ~ {Q, D}.

Furthermore, we have or(Trap) = o'(C) = c. As Trap ~ Vat(S), we have
cr'(Tmp) = or(Trap) = c, and (or', C) ~ {Q, D} gives cr'(D) = c. We conclude
that (~r', c) ~ {Q A Trap = D, Trap}.

As Trap ~ Vat(S), we are in the case of a plain specification, so the Com-
pleteness Theorem 17 applies and yields F-* {P A Trap = C, C} S {Q A Trap =
D, Trap}.

As {Q A Trap = D, Trap} ::~ {Q, D}, we can apply the Consequence Rule.
It yields F* {P A Tmp = C, C} S {Q, D}. Applying then the Elimination Rule
with E = C yields F-* {P A C = C, C} S {Q, D}.

Finally, as {P, C} ~ {P A C = C, C}, we deduce by another application of
the Consequence Rule that

F-* {P, C} S {Q, D}
[]

7 C o n c l u s i o n

We have proved the completeness of a proof system associated with a simple
data-parallel programming language. This proof system is based on a two-part
assertion language, which enables a convenient treatment of activity context
specifications.

We restricted ourselves to loop-free (so-called linear) programs. The proof of
completeness given here relies on a weakest preconditions calculus, as in similar
proofs for usual scalar (sequential) languages. The main technical difficulty is
to cope with context manipulations. We first established restricted results of
completeness, assuming syntactic restrictions on the conditioning constructs and
on postconditions in the specification formulae. In a second step, we introduced a
notion of hidden variables, together with an additional proof rule to manipulate
them. We could then establish that this augmented proof system is complete for
unrestricted programs and specifications formulae.

This completeness result can be extended to programs with loops using tech-
niques similar to the usual scalar cases. Observe that handling loops in t he / :
language is a subtle task, as the loop construct of the /: language introduces
a global logical OR on infinite boolean vectors. To illustrate the expressive
power of this construct, consider the following example. Let I be an integer
vector variable, and let Halt be a boolean vector expression defined as follows:
~(Halt)]~ = false if Turing Machine number cr(I)]~ stops within [u[steps. Let n
be a positive integer. Consider the following program

154

I :=n ; B:=Halt; Div:=true;
loop ~B do (Div:=false; B:=true)

This program always terminates, and Div Io is true iff Turing Machine number n
diverges. Observe that this somewhat surprising fact does not prohibit the ex-
istence of some complete proof system, as the Consequence Rule considers all
valid formula of the underlying logic as axioms, even though no complete proof
system may exist for it.

More conceptually, programs of E encapsulate two kinds of divergences. The
first kind comes from the virlualisation loops implicitely specified by each data-
parallel assignment to infinite vectors. It m a y be called spatial divergence, and
it is not visible at the level of semantics of / : . The second kind is due to explicit
iterations loops. It may be called temporal divergence. I t is denoted by _l_ in
the semantics. Studying the semantics of s and the completeness of the associ-
ated proof systems leads thus to stratify the diverging behaviors of usual scalar
programs into these two classes. As such, it definitely deserves further studies.

References

1. K.R. Apt and E.-R. Olderog. Verification of Sequential and Concurrent Programs.
Text and Monographs in Computer Science. Springer Verlag, 1990.

2. L. Bougd and D. Cachera. On the completeness of a proof system for a simple data-
parallel programming language. Research Report 94-42, LIP ENS Lyon, France,
December 1994. Available at URL f t p : / / f t p . l i p . ena-lyon. ~r/pub/Rapports /
RIi/RR94/RR94-42. ps. Z.

3. L. Bough, Y. Le Guyadec, G. Utard, and B. Virot. On the expressivity of a weak-
est preconditions calculus for a simple data-parallel programming language. In
ConPar'9g-VAPP V1, Linz, Austria, September 1994.

4. L. Bougg, Y. Le Guyadec, G. Utard, and B. Virot. A proof system for a sim-
ple data-parallel programming language. In C. Girault, editor, Proc. of Applica-
tions in Parallel and Distributed Computing, Caracas, Venezuela, April 1994. IFIP
WG 10.3, North-Holland.

5. L. Boug~ and J.-L. Lev~ire. Control structures for data-parallel SIMD languages :
semantics and implementation. Future Generation Computer Systems, 8:363-378,
1992.

6. M. Clint and K.T. Narayana. On the completeness of a proof system for a syn-
chronous parallel programming langage. In Third Con/. Found. So]tw. Techn. and
Theor. Comp. Science, Bangalore, India, December 1983.

7. E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
8. 3. Gabarr6 and R. Gavald~. An approach to correctness of data parallel algo-

rithms. Journal of Parallel and Distributed Computing, 22(2):185-201, August
1994.

9. M.LC. Gordon. Programming Language Theory and its Implementation. Prentice
Hall International, 1988.

10. C.A.R. Hoare. An axiomatic basis for computer programming. Comm o] the ACM,
12:576-580, 1969.

11. A. Stewart. An axiomatic treatment of SIMD assignment. BIT, 30:70-82, 1990.

