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Abs t rac t .  We prove the completeness of an assertional proof system for 
a simple loop-free data-parallel language. This proof system is based on 
two-part assertions, where the predicate on the current value of variables 
is separated from the specification of the current extent of parallelism. 
The proof is based on a Weakest Precondition (WP) calculus. In contrast 
with the case of usual scalar languages, not all WP can be defined by 
an assertion. Yet, partial definability suffices to prove the completeness 
thanks to the introduction of hidden variables in assertions. The case of 
data-parallel programs with loops is briefly discussed in the conclusion. 

K e y w o r d s :  Concurrent Programming; Specifying and Verifying and Rea- 
soning about  Programs; Semantics of Programming Languages; Data-Parallel 
Languages; Proof  System; Hoare Logic; Weakest Preconditions. 

1 Introduct ion 

The development of massively parallel computing in the last two decades has 
called for the elaboration of a parallel programming model. The data-parallel 
programming model has proven to be a good framework, since it allows the 
easy development of applications portable across a wide variety of parallel ar- 
chitectures. The increasing role of this model requires appropriate theoretical 
foundations. These foundations are crucial to design safe and optimized com- 
pilers, and programming environments including parallelizing, data-distributing 
and debugging tools. They  are also the way to safe programming techniques, so 
as to avoid the common waste of time and money spent in debugging. 

Existing data-parallel languages, such as H P F ,  C*, HYPERC or MPL,  in- 
clude a similar core of data-parallel control structures. In previous papers, we 
have shown that  it is possible to define a simple but representative data-parallel 
kernel language ( t he / :  language), to give it a formal operational [5] and denota- 
tional semantics [4], and to define a proof system for this language, in the style 
of the usual Hoare's logic approach [10, 4]. The originality of our approach lies in 
the t reatment  of the extent of parallelism, that  is, the subset of currently active 
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** Authors contact: Luc Boug6 (Luc.Bouge@lip.ens-lyon.fr). This work has been 

partly supported by the French CNRS Research Program on Parallelism, Networks 
and Systems(PRS). 



144 

indices at which a vector instruction is to be applied. Previous approaches led 
to manipulate lists of indices explicitly [6, 11], or to consider context expressions 
as assertions modifiers [8]. In contrast, our proof system for/~ describes the ac- 
tivity context by a vector boolean expression distinct from the usual predicates 
on program variables. 

We have shown that our proof system for Z: is sound, that  is, any provable 
property of a program is actually valid. In this paper, we address the converse 
completeness problem: Can any valid property of a program be proved in our 
system ? In some sense, completeness guarantees that  the rules of a proof system 
actually catch all the semantic expressiveness of the language under study. 

The completeness of proof systems for scalar Pascal-like languages has been 
extensively studied [1]. In attacking such a problem, the main tool is the weakest 
preconditions calculus. This notion has been introduced by Dijkstra [7]. It plays 
a central role in the formal validation of scalar programs, as shown in [9] for 
instance. The case of data-parallel programs is much more complex than the 
case of scalar programs, as one has to cope both with the variable values and 
with the manipulations of the activity context. Yet, we have shown in [3] that it 
is possible to define a weakest preconditions calculus fo r / : ,  at least for loop-free 
(so-called straight-line or linear) programs. 

The contribution of this paper is to apply these results to prove the com- 
pleteness of our proof system for all linear programs. We proceed as follows. We 
first present the/~ language, and give its denotational semantics. We describe a 
sound assertional proof system for this language, as defined in [4], and its weak- 
est preconditions calculus as described in [3]. Then, we prove the completeness 
of the proof system in a restricted case: plain specifications formulae and regular 
programs. To handle non-regular programs, we extend the proof system with an 
additional rule. It enables to introduce and eliminate auxiliary hidden variables 
in assertions. We prove that  this extended proof system is complete for linear 
programs without any restriction. 

2 The t: Language 

An extensive presentation of the s language can be found in [5]. For the sake of 
completeness (if we dare say so!), we briefly recall its denotational semantics as 
described in [3]. 

2.1 I n f o r m a l  D e s c r i p t i o n  

In the data-parallel programming model, the basic objects are arrays with paral- 
lel access. Two kinds of actions can be applied to these objects: component-wise 
operations, or global rearrangements. A program is a sequential composition of 
such actions. Each action is associated with the set of array indices at which it 
is applied. An index at which an action is applied is said to be active. Other 
indices are said to be idle. The set of active indices is called the activity context. 
It can be seen as a boolean array where true denotes activity and false idleness. 

The /~  language is designed as a common kernel of data-parallel languages 
like C*, HYPERC or MPL.  We do not consider the scalar part  of these languages, 
mainly imported from the C language. For the sake of simplicity, we consider a 
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unique geometry of arrays: arrays of dimension one, also called vectors.  Then, 
all the variables o f / :  are parallel, and all the objects are vectors of scalars, with 
one component at each index. As a convention, the parallel objects are denoted 
with uppercase letters. The component of parallel object X located at index u 
is denoted by Xlu. The legal expressions are usual pure expressions: the value 
of a pure expression at index u only depends on the values of the variables 
components at index u. The expressions are evaluated by applying operators 
component -wise  to parallel values. We do not specify the syntax and semantics 
of such expressions any further. A particular vector expression is called T h i s .  
The value of its component at each index u is the value u itself: Vu : This[~ = u. 
Note that  T h i s  is a pure expression and that  all constructs defined here are 
determin is t ic .  The set of/ :- instructions is the following. 

A s s i g n m e n t :  X : = E .  At each active index u, component X[= is updated with 
the local value of pure expression E. 

C o m m u n i c a t i o n :  get X from A into Y. At each active index u, pure expres- 
sion A is evaluated to an index v, then component Y[~ is updated with the 
value of component X[ , .  We always assume that  v is a valid index. 

S e q u e n c i n g :  S;T .  On the termination of the last action of S, the execution of 
the actions of T starts. 

I t e r a t i o n :  loop B do S. The actions of S are repeatedly executed with the cur- 
rent extent of parallelism, until pure boolean expression B evaluates to false 
at each currently active index. The current activity context is not modified. 

C o n d i t i o n i n g :  where B do S. The active indices where pure boolean expression 
B evaluates to false become idle during the execution of S. The other ones 
remain active. The initial activity context is restored on the termination of 
S. 

2.2 D e n o t a t i o n a l  S e m a n t i c s  o f  s 

We recall the semantics of s defined in [3] in the style of denotational semantics, 
by induction on the syntax of s  

An env i ronment  tr is a function from identifiers to vectbr values. The set of 
environments is denoted by E n v .  For convenience, we extend the environment 
functions to the parallel expressions: or(E) denotes the value obtained by evalu- 
ating parallel expression E in environment 6,. We do not detail the internals of 
expressions any further. Note that  ~(This)]  u = u by definition. 

D e f i n i t i o n  l ( P u r e  e x p r e s s i o n ) .  A parallel expression E is pure if for any 
index u, and any environments a and ~,1, 

(VX: c~(X)f~ = ~'(X)J~) ~ (~(E)I ~ = ~'(E)J~). 

Let tr be an environment, X a vector variable and V a vector value. We denote 
by a[X *-- V] the new environment a '  where a ' ( X )  = Y and cr '(y) = tr(Y) for 
all Y ~ X.  

A context  c is a boolean vector. It specifies the activity at each index. The set 
of contexts is denoted by C t x .  We distinguish a particular context denoted by 
True where all components have value true.  The context False is defined the same 
way. For convenience, we define the activity predicate Activec: Ac t i vec (u)  ==_ cir. 
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A state is a pair made of an environment and a context. The set of states is 
denoted by State: State = (Env x Ctx) U { l }  where .L denotes the undefined 
state. The semantics [51 of a program S is a strict function from State to State. 
[51(J_) = l ,  and [51 is extended to sets of states as usual. 

Assignment: At each active index, the component of the parallel variable is 
updated with the new value. 

[X:=E](a,  c) = (~', c), 
with ~' = a[X ~-- V] where VI~ = a(E)l ~ if Active~(u), and V[~ = ~(Z)]~ 
otherwise. The activity context is preserved. 

Communication: It acts very much as an assignment, except that  the assigned 
value is the value of another component. 

[get X from A into Y](a, e) = (~', c) 

with ~' = a[Y ~-- Y] where VI, , = a(X)l~(a)l, if Active~(u), and Yl~ = 
o'(Y)l u otherwise. 

Sequenc ing :  Sequential composition is functional composition. 

[S:T](a, c) = [T]([51(~, c)). 
Iteration: Iteration is expressed by classical loop unfolding. It terminates when 

the pure boolean expression B evaluates to false at each active index. 

[loop B do 51([S~(~, c)) 
if 3u :  (Activee(u) A ~(B)I~) [loop B do 51(a, c ) =  (a, c) otherwise 

If the unfolding does not terminate, then we take the usual convention: 
[loop B do 51(~r, c) = .L. 

Conditioning: The denotation of a where construct is the denotation of its 
body with a new context. The new context is the conjunction of the previous 
one with the value of the pure conditioning expression B. 

[where B do 51(o', c) = (o", c) 
with [51(~, c A a(B)) = (or', c'). 
If [S~(a, eAa(B))  = J_, then we put [where B do S](a, c) = 1 .  Observe that  
the value of c ~ is ignored here. 

3 A Sound Assertional Proof  System for the Z: Language 

3.1 A s s e r t i o n  L a n g u a g e  

We define an assertion language for the correctness o f / :  programs in the lines 
of [1]. Such a specification is denoted by a formula {P} S {Q} where S is the 
program text, and P and Q are two logical assertions on the variables of S. This 
formula means that,  if precondition P is satisfied in the initial state of program 
S, and if S terminates, then postcondition Q is satisfied in the final state. A 
proof system gives a formal method to derive such specification formulae by 
syntax-directed induction on programs. 

We recall below the proof system described in [3]. As in thc usual sequential 
case, the assertion language must be powerful enough to express properties on 
variable values. Moreover, it has to handle the evolution of the activity context 
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along the execution. An assertion shall thus be broken up into two parts: {P, C}, 
where P is a predicate on program variables, and C a pure boolean vector 
expression. The intuition is that the current activity context is exactly the value 
of C in the current state, as expressed in the definition below. 

Def in i t ion2  (Satisfiabil l ty).  Let (~, c) be a state, and {P,C} an assertion. 
We say that (~, c) satisfies the assertion {P, C}, denoted by (~r, c) ~ {P, C}, 
if r ~ P and ~(C) = e. By convention, I satisfies any assertion. The set of 
states satisfying {P, C} is denoted by [{P, C}]. When no confusion may arise, 
we identify {P, C} and [{P, C}]. 

Observe that there are many sets of states which cannot be described by any 
assertion. This is in strong contrast with the case of scalar Pascal-like languages. 

Z e m m a  3 (Re8tricted power  o f  asser t ions) .  Let {P, C} an assertion. For 
any environment ~, there exists at most one activity context c such that (~, c) E 
l iP,  CIl  , namely e = a(C). 

So, if a set of states contains two states (~, c) and (~, c I) with c • c', then it 
cannot be described by any assertion. 

Def in i t ion4  (Asser t ion  impl ica t ion) .  Let {P, C} and {Q, D} be two asser- 
tions. We say that {P, C} implies {Q, D}, and write {P, C} =} {Q, D}, iff 

(P =~ Q) and (P ~ Vu : ( e l .  = D[.)) 

Propos i t ion  5. Let {P, C} and {Q, D} be two assertions. Then 
{P, C} ~ {Q, 19} iff [{P, C}] c [{Q, D}] 

Our assertion language manipulates two kinds of variables, scalar variables 
and vector variables. As a convention, scalar variables are denoted with a low- 
ercase initial letter, and vector ones with an uppercase one. We have a similar 
distinction on arithmetic and logical expressions. As usual, scalar (resp. vector) 
expressions are recursively defined with usual arithmetic and logical connectives. 
Basic scalar (resp. vector) expressions are scalar (resp.vector) variables and con- 
stants. Vector expression can be subscripted. If the subscript expression is a 
scalar expression, then we have a scalar expression. Otherwise, if the subscript 
expression is a vector expression, then we have another vector expression. The 
meaning of a vector expression is obtained by component-wise evaluation. We 
introduce a scalar conditional expression with a C-like notation c?e : f .  Its value 
is the value of expression e if c is true, and f otherwise. Similarly, the value of a 
conditional vector expression, denoted by C?E : F, is a vector whose component 
at index u is E[~ if C[u is true, and Fin otherwise. 

Predicates are usual first order formulae. They are recursively defined on 
boolean scalar expressions with logical connectives and existential and universal 
quantifiers on scalar variables. Note that we do not consider quantification on 
vector variables. 

We introduce a substitution mechanism for vector variables. Let P be a pred- 
icate or any vector expression, X a vector variable, and E a vector expression. 
P[E/X]  denotes the predicate, or expression, obtained by substituting all the 
occurrences of X in P with E. Note that all vector variables are free by defi- 
nition of our assertion language. The usual Substitution Lemma [1] extends to 
this new setting. 



148 

Zemma 6 (Substitution s  For every predicate on vector variables P, 
vector expression E and environment (r, 

(r ~ P[E/X] iff (fiX +-- a(E)] ~ P 

We can define the validity of a specification of a s program with respect to its 
denotational semantics. 

Def in i t ion7 (Specif icat ion val idi ty) .  Let S be a 1: program, {P,C} and 
{Q, D} two assertions. We say that specification {P, C} S {Q, D} is valid, de- 
noted by ~ {P, C} S {Q, D}, if for all states (~,, c) 

(((r, c) ~ {P, C}) :=> ([S](a, c) ~ {Q, D}). 
Since / satisfies any assertion, validity is relative to partial correctness. 

3.2 Proof  System 

We recall on Fig. 1 the proof system defined in [3]. This system is a restricted 
proof system, in the sense that it only manipulates a certain kind of specification 
formulae, precisely these formulae {P, C} S {Q, D} such that the boolean vector 
expression D describing the final activity context may not be modified by the 
program S. More formally, using the notations of [1], we define the following sets 
of variables. 

Def ini t ion8.  Let E be an expression. Vat(E) is the set of all variables ap- 
pearing in E. Expression E may only depend on the values of these variables. 
We extend this definition to a/:-program S: Var(S) is the set of all variables 
appearing in S. 

Let S be a /:-program. Change(S) is the set of program variables which 
appear on the left-hand side of an assignment statement or as the target of a 
communication statement. Only these variables may be modified by executing 
S. 

A sufficient condition to guarantee the absence of interference between S and D 
is thus Change(S) N Var(D) = 0. If a specification formula {P, C} S {Q, D} is 
derivable in the proof system, then we write l- {P, C} S {Q, D}. 

Theorem 9 (Soundness of l- [41). The f- proof system is sound: If b {P, C} 
s {Q, 0}, then {P, C} S D}. 

The contribution of this paper is to address the converse problem: 

Is any valid specification provable? Does ~ {P,C} S {Q,D} imply b 
{P, C} S {Q, D} ? 

In the case of scalar programs, the completeness of the proof systems for loop- 
free (so-called linear) programs is a not-so-difficult consequence of the existence 
of a weakest preconditions calculus. In contrast, studying the completeness with 
respect to programs including loops requires sophisticated methods. Indeed, this 
is tightly connected to the expressivity of the underlying logic. 

In the case of data-parallel programs, even the simplest case of loop-free 
programs is already non-trivial. In this paper, we therefore restrict ourselves to 
this case. The case of loops is discussed in the conclusion. 

De f in i t i on l0  ( L i n e a r / : - p r o g r a m s ) .  A data-parallel s S is linear 
if it is made of assignments, communications, sequencing and conditioning only. 
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Assignment Rulc 

Communication Rule 

Sequencing Rule 

Conditioning Rule 

Consequence Rule 

Iteration Rule 

X ~ Vat(D) 
{Q[(D?E : X)/X], D} X:=E {Q, D} 

Y ~ Vat(D) 
{Q[(D?X[A: Y)/Y], D} get X from A into Y {Q, D} 

{e,c} S {R,E}, {R,E} 7' {Q,D} 
{P, C} S;T {Q, D} 

{P,C A B} S {Q, D}, Change(S) n Var(C) = 
{P, C} where B do S {Q, C} 

{P, C} ~ {P', C'}, {P', C'} S {Q', D'}, {Q', D'} =~ {Q, D} 
{P, C} S {Q, D} 

{I ^ 3u: (cl~ ^ BI~), c} s {I, c} 
{I, C} loop B do S {I A Vu: (el. ~ -~BI~), C} 

Fig. 1. The F proof system for s 

4 C o m p l e t e n e s s  of  the  P r o o f  S y s t e m  for Pla in  
Spec i f icat ions  and Regulars Linear Programs  

4.1 W e a k e s t  P r e c o n d i t i o n s  C a l c u l u s  

Our main tool to prove the completeness of our system is a weakest preconditions 
calculus. This calculus has been presented in [3], and we briefly recall the main 
results below. Let us first motivate its use. We want to demonstrate that 

{P ,C)  S {Q,D} => F {P, C} S {Q, D}. 
Let {P, C} S {Q, D} be a valid specification formula. Assume for a while that we 
can find an assertion {P', C'} such that ~- {P', C'} S {Q, D} holds, and moreover 
{P, C} ~ {P', C'}. Then, using the Consequence Rule, we have demonstrated 

}- {P, C} S {Q, D}. 

D e f i n i t i o n l l  (Weakes t  p recondi t ions ) .  Let S be a linear/:-program and 
{Q, D} an assertion. We define the weakest preconditions as 

wp(S, {Q, D}) = {s E State I [S~(s) ~ {Q, D}} 
Observe that 

{P, C} S {Q, D) r |{P, C}] C wp(S, {Q, D)). 

As we have restricted ourselves to linear programs, observe that we do not need 
to take into account problems of divergence. 

We have shown in a previous paper [3] that the set of states wp(S, {Q, D}) 
cannot generally be described by some assertion {P, C} and thus be manipulated 
in the proof system. It is only the case when certain syntactic non-interference 
conditions on S and D are satisfied. These conditions are summed up in the 
following definitions. 
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Defini t ion 12 (P la in  specif icat ion).  A specification formula {P, C} S {Q, D} 
is said to be plain if we have Var(D) n Change(S) = 0. 

Def in i t i on l3  (Regu la r  p rogram) .  A program P is regular if, for any sub- 
program of P of the form where B do S, we have Vat(B) n Change(S) = 0. 

Observe that any subprogram of a regular program is regular, too. The detailed 
definability results are listed up on Fig. 2. In spite of the restrictions, they are 
sufficient to guarantee the following property. 

Proposition 14 (Restricted definability o f  wp for  regular programs [3]). 
Let S be a regular, linear Z-program, and let {. . .} S {Q, D} be a plain spec- 
ification for S. Then there exists an assertion {P,D} such that [{P,D}] = 
wp(S, {Q, D}) In particular, ~ {P, D} S {Q, D}. 

Construct Conditions Weakest Precondition 

wp(X := E, {Q, O}) 
Assignment X ~ Vat(D) 

= {Q[(D?E : X)/X], D} 

wp(get X from A into Y, {Q, D}) 
Communication Y ~ Var( D) 

= {Q[(D?X[A: Y)/Y], D} 

Sequencing wp( S1 ;$2, { Q, D}) 
= wp(Sa, wp(S2, {Q, D})) 

(Vat(D) U Var(B)) n Change(S) 
wp(where S do S end, {Q, D}) 

Conditioning = 0 
= {p, D}  

wp(S, {Q, D A B}) = {P, C} 

Fig. 2. Definability properties of weakest preconditions for regular, linear /:-programs 

4.2 Proving the Restricted Completeness 

We now want to establish the completeness for the proof system described on 
Fig. 1. As it concerns plain specifications and regular programs, we call it re- 
stricted completeness. More formally, we aim at proving the following theorem. 

Theorem 15 (Restr.  compl., plain specif., regular, linear progr.). Let 
{P, C} S {Q, D} be a plain specification, with S a regular, linear program. 

If  ~ {P, C} S {Q, D}, then k {P, C} S {Q, D}. 

Proof. The proof of this theorem follows the lines of [1]. It uses the weak- 
est preconditions calculus. For any regular, linear program S and any plain 
specification {P, C} S {Q, D}, there exists some assertion {P', C'} such that 
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[{P', C'}] = wp(S, {Q, D}). Using the Consequence Rule, it suffices to demon- 
strate that 

k wp(S, {Q, D}) S {Q, D}. 

The proof is by induction on the structure of the regular, linear program S, 
using the definability properties of Fig. 2. 

The cases of the assignment, communication, and sequencing constructs are 
straightforward. Let us consider the case of the conditioning construct, with S --- 
where B do T. As S is regular by hypothesis, we have Change(T) n Var(B) = O. 
As the specification is plain, we have Change(S)n Var(n) = O. As Change(T) = 
Change(S), we also have Change(T)n Var(D) = 0. The Definability Property 14 
yields an assertion {P, D A B} such that {P, n A B} = wp(T, {Q, n A B}). 

Program T is regular and linear as S is so. Specification {P, DAB} T {Q, DA 
B} is plain. 

Thus, the induction hypothesis yields k {P, D A B} T {Q, D A B}. As 
(Var(B)U Var(D))N Change(T) = ~, the where Rule of the proof system applies, 
and we get k {P, D} where B do T {Q, D}. 

Furthermore, the Definability Property gives wp(where B do T, {Q, D}) = 
{P, D}. Hence the desired result: 

}- wp(where B do T, {Q, D}) where B do T {Q, D}. 
[] 

5 Extending the Proof of Completeness to Non-regular, 
Linear Programs 

We have demonstrated the completeness of the proof system for plain specifi- 
cations and regular, linear programs. In the presence of non-regular programs, 
we are no longer able to find any assertion that expresses the weakest precon- 
ditions. Thus, we first have to transform a non-regular program into a regular 
one. This can be done by introducing an auxiliary variable, which stores the 
value of the vector boolean expression: program where B do S is transformed 
into Tmp:= B; where Trap do S 

Using such a variable can be interpreted as keeping track of the nested ac- 
tivity context in a stack. Each new variable Tmp is a cell of the stack. 

But, instead of transforming programs in order to be able to prove them, we 
claim that it is possible to encapsulate this transformation into the proof system 
itself. The notion corresponding to syntactic auxiliary variables in programs is 
that of semantic hidden variables in assertions. 

Ru le  1 (El imina t ion  of  h idden  variables)  Let E be any vector expression. 
{P, C} S {Q, n}, Trap ~ Vat(S) U Vat(Q) U Var(n) 

{P[E/Tmp], C[E/Tmp]} S {Q,D} 

We denote by k* {P, C} S {Q, D} that a specification formula is derivable in 
the k proof system augmented with this new rule. 

Theorem16 (Soundness of F* ). The 1-* proof system is sound: 
/ f  P * { P } S { Q } ,  then ~ {P} S {Q} 
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Proof. Easy, using the Substitution L e m m a -  see [2]. [] 

Theorem 17 (Restr. completeness, plain specif., linear program). Let 
{P, C} S {Q, D) be a plain specification, with S a linear program. 

If ~ {P,C} S {Q,D}, then k * { P , C } S { Q , D }  

We first state that, thanks to the introduction of hidden variables, we re- 
tain the properties of definability of the weakest preconditions. The following 
proposition guarantees the existence of some assertion describing the weakest 
preconditions of any conditioning construct. 

Proposition 18 (Non-regular conditioning [3]). Let Tmp ~ Vat(S) U 
Vat(Q) o Vat(D). If 

wp(S, {Q, n A Trap}) ---- {P, C), 

then 
wp(where S do S, {Q,D})= {P[B/Tmp], D} 

Theorem 19 (Restricted definability of WP). Let S be a linear program. 
Let {...} S {Q, D} be a plain specification for S. Then there exists an assertion 
{P, D} such that [{P, D}] = wp(S, {Q, D}). In particular, ~ {P, D) S {Q, D}. 

We can now prove Completeness Theorem 17 for non-regular programs. 

Proof. The proof is similar to that of the Completeness Theorem 15 for regular 
programs. It uses a structural induction on S. The only new case to consider is 
S _-- where B do T, with Vat(B) N Change(T) r ~. Pick up a "new" variable 
Trap such that Tmp ~ Var(S)U Var(Q)u Vat(D). Such a variable exists becausc 
the expressions from the program and from the assertion language are finite 
terms. By Theorem 19, we know there exists some assertion {P, D A Trap} = 
wp(T, {Q, D A Trap}). 

By the induction hypothesis, we have k* {P, D A Trap} T {Q, D A Trap}. We 
also have {P A B = Tmp, D A B} =V {P, D A Tmp}. 

We can thus apply the Consequence Rule. This yields k* {PAP = Tmp, DA 
B} T {Q, D A Trap}. Then, we apply the where Rule, and we get k* {P A B = 
Tmp, D} where B do T {Q, D}. Thanks to the Consequence Rule, this rewrites 
into k* {P[B/Tmp] A B = Trap, D} where B do T {Q, D}. 

Finally, applying the Elimination Rule with E - B yields b* {P[B/Tmp], D} 
where B do T {Q, D}. According to Proposition 18, wp(S, {Q, D}) = 
{P[B/Tmp], D}. Thus k* wp(S, {Q, D}) S {Q, D}. As before, we conclude the 
proof with the Consequence Rule and the Definability Property 19. D 

6 E x t e n d i n g  t h e  P r o o f  o f  C o m p l e t e n e s s  t o  N o n - p l a i n  
S p e c i f i c a t i o n s  

We now focus on general specifications, where Var(D) N Change(S) may be 
not empty. Surprisingly enough, the Elimination Rule is sufficient to prove the 
completeness in this case, and there is no need of any other additional rule. 
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Theorem 20 (Completeness, linear programs). Let S be a linear program. 

If ~ {e, C} S {Q, D}, then F-* {P, C} S {Q, D}. 

Proof. Assume ~ {P, C} S {Q, D}. As the expressions of the assertion language 
are finite terms, there exists a "new" hidden variable Tmp such that Trap 
Vat(S) t3 Vat(Q) t3 Vat(D). Let us show that 

{PA T m p = C , C }  S {QA Tmp= D, Tmp} 

Let (~r, c) be in [{P A Trap = C, C}l. We have in particular (or, C) ~ {P, C}. By 
hypothesis, we get [S~(tr, c) = (or', c) ~ {Q, D}. 

Furthermore, we have or(Trap) = o'(C) = c. As Trap ~ Vat(S), we have 
cr'(Tmp) = or(Trap) = c, and (or', C) ~ {Q, D} gives cr'(D) = c. We conclude 
that (~r', c) ~ {Q A Trap = D, Trap}. 

As Trap ~ Vat(S), we are in the case of a plain specification, so the Com- 
pleteness Theorem 17 applies and yields F-* {P A Trap = C, C} S {Q A Trap = 
D, Trap}. 

As {Q A Trap = D, Trap} ::~ {Q, D}, we can apply the Consequence Rule. 
It yields F* {P A Tmp = C, C} S {Q, D}. Applying then the Elimination Rule 
with E = C yields F-* {P A C = C, C} S {Q, D}. 

Finally, as {P, C} ~ {P A C = C, C}, we deduce by another application of 
the Consequence Rule that 

F-* {P, C} S {Q, D} 
[] 

7 C o n c l u s i o n  

We have proved the completeness of a proof system associated with a simple 
data-parallel programming language. This proof system is based on a two-part 
assertion language, which enables a convenient treatment of activity context 
specifications. 

We restricted ourselves to loop-free (so-called linear) programs. The proof of 
completeness given here relies on a weakest preconditions calculus, as in similar 
proofs for usual scalar (sequential) languages. The main technical difficulty is 
to cope with context manipulations. We first established restricted results of 
completeness, assuming syntactic restrictions on the conditioning constructs and 
on postconditions in the specification formulae. In a second step, we introduced a 
notion of hidden variables, together with an additional proof rule to manipulate 
them. We could then establish that this augmented proof system is complete for 
unrestricted programs and specifications formulae. 

This completeness result can be extended to programs with loops using tech- 
niques similar to the usual scalar cases. Observe that handling loops in t he / :  
language is a subtle task, as the loop construct of the /: language introduces 
a global logical OR on infinite boolean vectors. To illustrate the expressive 
power of this construct, consider the following example. Let I be an integer 
vector variable, and let Halt be a boolean vector expression defined as follows: 
~(Halt)]~ = false if Turing Machine number cr(I)]~ stops within [u[ steps. Let n 
be a positive integer. Consider the following program 
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I :=n ;  B:=Halt; Div:=true; 
loop ~B do (Div:=false; B:=true) 

This program always terminates,  and Div Io is true iff Turing Machine number  n 
diverges. Observe that  this somewhat  surprising fact does not prohibit  the ex- 
istence of some complete proof  system, as the Consequence Rule considers all 
valid formula of the underlying logic as axioms, even though no complete proof  
system may  exist for it. 

More conceptually, programs of E encapsulate two kinds of divergences. The 
first kind comes from the virlualisation loops implicitely specified by each data-  
parallel assignment to infinite vectors. It  m a y  be called spatial divergence, and 
it is not visible at the level of semantics of / : .  The second kind is due to explicit 
iterations loops. It  may  be called temporal divergence. I t  is denoted by _l_ in 
the semantics. Studying the semantics of s and the completeness of the associ- 
ated proof systems leads thus to stratify the diverging behaviors of usual scalar 
programs into these two classes. As such, it definitely deserves further studies. 
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