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Abstract. This paper addresses the role of abstraction in case-based reasoning. We
develop a general framework for reusing cases at several levels of abstraction, which is
particularly suited for describing and analyzing existing and designing new approaches
of this kind. We show that in synthetic tasks (e.g. configuration, design, and planning),
abstraction can be successfully used to improve the efficiency of similarity assessment,
retrieval, and adaptation. Furthermore, a case-based planning system, called PARI1s,
is described and analyzed in detail using this framework. An empirical study done
with PARIS demonstrates significant advantages concerning retrieval and adaptation
efficiency as well as flexibility of adaptation. Finally, we show how other approaches
from the literature can be classified according to the developed framework.

1 Introduction

Traditionally, case-based reasoning (CBR) approaches retrieve, reuse, and retain cases in
a representation at a single level of abstraction. In this predefined representation, cases,
new problems, as well as general knowledge must be represented. Recently, some researchers
have started to investigate the use of abstraction in CBR (e.g., [29; 16; 4; 6; 5; T; 30;
3], cf. also [18], p. 576). However, a clear picture of how CBR can benefit from abstraction
has not be drawn till now.

In AT, the use of abstraction was originally inspired by human problem solving (cf. [26;
20]) and has already been successfully used in different fields such as theorem proving (e.g.
[25]), model-based diagnosis (e.g. [23]) or planning (e.g. [28; 33; 17]).} The basic idea that
emerges from different approaches to using abstraction in CBR is to supply a CBR system
with cases at different (higher) levels of abstraction. Thereby, the CBR process can be
supported in the following ways:

— Abstraction can reduce the complexity of a case, 1.e., it can simplify its representation,
e.g. by reducing the number of features, relations, constraints, operators, etc. This sim-
plification usually reduces the effort required for similarity assessment and/or solution
adaptation.

— Cases at higher levels of abstraction can be used as a kind of prototypes (cf. also [27]),
which can be used as indexes to a larger set of related, more detailed cases . Such indexes
can help to improve the efficiency of the retrieval.

— Cases at higher levels of abstraction can even be used as a substitute for a set of concrete
cases. Thereby, the size of the case base may be reduced significantly, which improves
the efficiency of retrieval.

— Abstraction can also be used as a mean of defining the semantics of similarity. Similarity
can be defined as equality on a certain level of abstraction. The lower the level of
abstraction on which two cases are identical, the higher the similarity.

! For an overview on abstraction in Al look at [13].



— Abstraction can increase the flexibility of reuse. Adapting abstract solutions contained
in cases at higher levels of abstraction can lead to abstract solutions suitable for a large
spectrum of concrete problems.

— Abstraction and refinement, on their own, can be used as a method for solution adapta-
tion. Like in hierarchical problem solving, an abstract solution (or parts of a solution)
contained in a case can be refined towards a solution to the new problems that may be
radically different from the original concrete solution contained in the cases.

These advantages seem to be particularly valuable in situations in which a large num-
ber of cases is available, the similarity assessment is very expensive, or flexible adaptation is
required. However, abstraction is inevitably connected with a loss of information. When rea-
soning primarily with abstract cases, this loss of information must be compensated by other
kinds of (general) knowledge which can lead to an increased effort in knowledge engineering.

In the remainder of this paper, we analyze the use of abstraction for CBR in detail.
Section 2 presents a general framework for reusing cases at several levels of abstraction.
This framework is particularly suited for analyzing existing and designing new approaches
that bring abstraction into CBR. Section 3 describes a case-based planning system, called
PARriIs, with respect to this framework and section 4 reports on an empirical study done
with this system to validate whether the above mentioned advantages of abstraction can be
recognized. Finally, section 5 discusses related work with respect to our general framework.

2 Reusing Cases at Several Levels of Abstraction

We now present a general framework for reusing cases at higher levels of abstraction cov-
ering the CBR phases [1] retrieve, reuse, and retain. This framework is particularly suited
for synthetic problem solving tasks such as case-based configuration, design, or planning.
Typically, these tasks are characterized through a vast space of potentially relevant solutions
and a relatively low coverage of this solution space by the available cases.

2.1 What are Abstract Cases?

While cases are usually represented and reused on a single level, abstraction techniques can
enable a CBR system to reason with cases at several levels of abstractions. Firstly, this
requires the introduction of several distinct levels of abstraction.

Levels of abstraction Each level of abstraction allows the representation of problems,
solutions, and cases as well as the representation of general knowledge that might be required
in addition to the cases. Usually, levels of abstraction are ordered (totally or partially)
through an abstraction-relation, i.e., one level is called more abstract than another level.

A more abstract level is characterized through a reduced level of detail in the representa-
tion, i.e., it usually consists of less features, relations, constraints, operators, etc. Moreover,
abstract levels model the world in a less precise way, but still capture certain, important
properties.

In traditional hierarchical problem solving (e.g., ABSTRIPS [28]), abstraction levels are
constructed by simply dropping certain features of the more concrete representation levels.
However, it has been shown that this view of abstraction is too restrictive and representation
dependent [5; 15] to make full use of the abstraction idea. In general, different levels of
abstraction require different representation languages, one for each level. Abstract properties
can then be expressed in completely different terms than concrete properties.



Different Kinds of Cases Based on the level of abstraction, we can distinguish between
two kinds of cases: concrete cases and abstract cases. A concrete case is a case located at
the lowest available level of abstraction. An abstract case is a case represented at a higher
level of abstraction.
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Fig. 1. Different kinds of cases

If several abstraction levels are given (e.g., a hierarchy of abstraction spaces), one concrete
case can be abstracted to several abstract cases, one at each higher level of abstraction. Such
an abstract case contains less detailed information than a concrete case. On the other hand
several concrete cases usually correspond to a single abstract case (see Fig. 1). These concrete
cases share the same abstract description; they only differ in the details.

Instead of having cases, located at a single level of abstraction, one case (called hier-
archical case) can also contain information at several or all levels of abstractions that are
available.

2.2 Acquisition of abstract cases

We can distinguish different ways in which abstract or hierarchical cases are built in order
to be stored in the case base.

Abstract cases available The first, and simplest scenario is a one, in which case data
is naturally available at several appropriate levels of abstraction. This can be the situation
if, for example, data is modeled in an object-oriented language and stored in an object-
oriented database. The abstraction present in the class hierarchy (inheritance) can then
lead to different levels of abstraction and data base instances provide data for abstract or
hierarchical cases.

Automatic generation of abstract cases In most situations, cases are only available in
a single representation which can be considered the concrete level. Consequently abstract
or hierarchical cases must be abstracted out of these concrete cases. In certain situations,
such a case abstraction can be done automatically. This usually requires general knowledge
about ways of mapping cases onto higher levels of abstraction.



Manual generation of abstract cases If abstract cases are neither available not auto-
matically generateable, they must be abstracted manually from concrete cases. This option
requires a very high effort, that — we think — cannot be justified in most applications.

2.3 Abstract Cases in Retrieval

Abstract cases located at different levels of abstraction can be used as hierarchical indexes to
those concrete (or abstract) cases that contain the same kind of information but at a lower
level of abstraction. An abstraction hierarchy can be constructed in which abstract cases at
higher levels of abstraction are located above abstract cases at lower levels. The leaf nodes
of this hierarchy contain concrete cases (see Fig. 2). During retrieval, this hierarchy can be
traversed top-down, following only those branches in which abstract cases are sufficiently
similar to the current problem.
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Fig. 2. Abstraction hierarchy for indexing cases

This approach to indexing, however, makes an assumption concerning the similarity
assessment. It requires that a problem cannot be similar to a concrete case unless it is at
least similar to this case at a higher level of abstraction. This assumption holds particularly,
if similarity is defined based on the level of abstraction, which can be done as follows:

A problem p is more similar to the concrete case Cy than to the concrete case Cy if the
lowest level of abstraction on which p matches Cs is higher (more abstract) than the lowest
level of abstraction on which p matches Cf.

2.4 Reuse of Abstract Cases
There are different ways of using the information provided in abstract cases for solving the

current problem.

No reuse of abstract solutions Abstract cases are only used as indexes to concrete cases.
For problem solving, concrete cases are used exclusively.



Abstract solutions as result The CBR system retrieves and reuses abstract cases. The
abstract solutions contained in the abstract cases are not refined to more concrete levels but
are directly returned as output. The interpretation of abstract solutions is up to the user.

Refinement of abstract cases The CBR system retrieves and reuses abstract cases and
refines abstract solutions to the concrete level. The refined solution is then presented to the
user. For her/him it is transparent, whether the solution presented by the system stems
directly from a matching concrete cases or whether the solution is obtained through the
refinement of an abstract case.
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Fig. 3. Adaptation by abstraction and refinement

Please note that abstraction and refinement is already a technique for solution adaptation
(see Figure 3). If available concrete cases are abstracted (e.g., automatically) to abstract
cases and then getting retrieved and refined, a new solution to a new problem will be
constructed. The higher the level of abstraction of the reused abstract case, the more may
the newly refined solution differ from the solution contained in the original case.

We can distinguish different methods for realizing such a refinement:

Generative refinement of abstract cases This refinement is done by generative prob-
lem solving methods, e.g. hierarchical problem solving. For automatically performing this
refinement task, additional general domain knowledge is usually required.

Case-based refinement of abstract cases This refinement itself is done in a case-based
way, avoiding partially the need for additional general knowledge. However, case-based re-
finement requires cases that describe how the individual elements, the abstract solutions are
built of, can be refined at a more concrete level.

2.5 Adaptation of Abstract Cases

Besides the possibility to realize adaptation by refining abstract cases, adaptation can also
be done on a single level of abstraction (see Fig. 4). The spectrum of known methods for
solution adaptation in CBR, (for an overview see e.g., [8; 14; 34]) can also be applied to
abstract cases prior the refinement. Thereby, the flexibility of reuse can be increased, i.e., a
concrete case covers a larger area in the solution space.



adaptation

o
NS

Level of Abstraction ,

5 abstract
cases
Level of Abstraction , : /

Level of Abstractiony:  —@%
(concrete level) available concrete new
case solution 1 solution 2

Level ofAbstractionlz // / \
/ adaptation
case abstraction refinement
)
new

Fig. 4. Adaptation of abstract cases

2.6 Forgetting cases

The reuse of cases at several levels of abstraction also provides a frame for realizing case
deletion policies [31]. Cases deletion is particularly important to avoid the utility or swamp-
ing problem [32; 21; 12] that occurs when case bases grow very large. When reusing abstract
cases for indexing and reuse, case deletion can efficiently be realized through a pruning of the
abstraction hierarchy. If certain concrete cases are removed from the case base, the abstract
cases that remain accessible, can still cover the set of target problems previously covered by
the deleted concrete case. However, this requires effective ways of refinement such as gener-
ative or case-based refinement. For selecting cases to forget, the savings due to the reduced
retrieval effort must outweigh the additional effort for refining more abstract cases.

2.7 Summary of the Framework

The following Table 1 summarizes the various facets of the framework for reusing abstract
cases. Existing approaches can be described and analyzed and new approaches can be de-
signed using this framework.

kind of stored cases: abstract abstract & concrete hierarchical
acquisition of abstract cases: cases available manual generation automatic generation
abstract cases for indexing: no yes

reuse of abstract solutions: no abstract result generative refine. | case based refine.
adaptation of abstract solutions: no yes

case deletion policy: no yes

Table 1. Framework for reusing abstract cases



3 PARIS: Using abstraction in case-based planning

Now, we describe a concrete case-based reasoning system, called PaRris? [4; 5; 3] that uses
abstraction for case-based planning. PARIS can be characterized according to this framework
as follows:

— abstract and concrete cases are stored in the case base

— abstract cases are generated automatically from concrete cases
— abstract cases are used for indexing

— generative refinement of abstract solutions is realized

— adaptation of abstract solutions is possible

— case deletion policy is realized.

We now explain the approach in more detail.

3.1 Requirements

PARIs was designed as a generic (i.e., domain independent) case-based planning system but
with a particular area of application domains in mind: process planning in mechanical engi-
neering. From this application area, a set of CBR specific requirements have been identified:

ability to cope with vast space of solution plans

— construction of correct solutions

flexible reuse due to large spectrum of target problems

— processing of highly complex cases

— only concrete planning cases available (e.g. in archives of a company)

3.2 Abstract Planning Cases

We now summarize the formal definition of concrete and abstract planning cases already
presented in detail in [5].

Representation of domains Following a STRIPS-oriented representation [11], a planning
domain D defines a (possibly infinite) set of states S and a set of operators O which describe
transitions from one state to a successor state. A state s € § is described by a finite set
of prepositions. A problem (sr,s¢g) in a domain is given by an initial state sy and a goal
state s¢ and a plan (a solution to the problem) is a totally ordered sequence of operators
(01, ... ,0p) that transform the initial state into the goal state. A case is a problem together
with a solution to this problem.

Different levels of abstraction In PaARIs, different levels of abstraction are realized by
different planning domains. In the following we assume two planning domains: a concrete
domain D, and an abstract domain D,. Concrete and abstract planning domains may rep-
resent different languages with completely different states and operators. A concrete case
Ce = {(s§,55), (09,...,05)) is a case given in the concrete planning domain, and an abstract
case Cq = ((s§,5%,), (0%,...,0%)) is a case in the abstract planning domain.

However, not every abstract case is an abstraction of a concrete case. Additional require-
ments must be met to call an abstract case abstraction of a concrete case. These requirements
can be expressed by the existence of two independent mappings: a state abstraction mapping
a, and a sequence abstraction mapping 3 [2] (see Fig. 5).

2 PaARIs stands for plan abstraction and refinement in an integrated system.
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Fig. 5. Formalization of case abstraction in planning

State Abstraction A state abstraction mapping a : S — S, translates states of the
concrete domain into the abstract domain. For this translation, we require additional gen-
eral domain knowledge about how an abstract state description relates to a concrete state
description. We assume that this kind of knowledge can be provided in terms of a domain
specific generic abstraction theory A. Such a generic abstraction theory (expressed by horn
clauses) defines each proposition, abstract states can be composed of, in terms of propositions
that can occur in the concrete states.

Sequence abstraction The solution to a problem consists of a sequence of operators and
a corresponding sequence of states. To relate an abstract solution to a concrete solution, the
relationship between the abstract states (or operators) and the concrete states (or opera-
tors) must be captured. Each abstract state must have a corresponding concrete state but
not every concrete state must have an associated abstract state. The sequence abstraction
mapping B : N — N selects those states of the concrete problem solution that have a related
abstract state. It maps the indices j € {1,...,m} of the abstract states s? into the indices
i € {1,...,n} of the concrete states s¢, such that 3(0) = 0, (m) = n, and f(u) < B(v)
if and only if u < v. This guarantees that abstract and concrete initial and goal states
correspond and that the order of states is maintained.

Case abstraction Based on the two introduced abstraction functions, our intuition of case
abstraction is captured in the following definition. A case C, is an abstraction of a case
C. if there exists a state abstraction mapping a and a sequence abstraction mapping 3,
such that: s§ = a(sg(j)) holds for all j € {0,...,m} (see Fig. 5). In [5] we have discussed
the generality of the presented case abstraction methodology. We have formally shown that
hierarchies of abstraction spaces as well as abstractions with respect to different aspects can
be represented using the presented methodology. Based on the defined levels of abstraction
and the generic abstraction theory, several abstract cases are called abstractions of a single
concrete case.

3.3 Acquisition of Abstract Cases

Because cases are only available at the concrete domain in the applications domains we have
in mind and manual abstraction seems to be a tremendous effort, abstract cases are generated
automatically from a given concrete case. For this purpose, a particular case abstraction
algorithm has been developed [5; 3] which could be proven to be correct (computes only
correct abstract cases) and complete (computes all abstract cases) with respect to the above
introduced model of case abstraction.



3.4 Refinement of abstract cases

In PaRrIs an abstract solution contained in an abstract case is refined automatically to a
concrete level solution. If a new target problem is given (at the concrete level), this refinement
starts with the concrete initial state from the problem statement (see Fig. 6). A search is
performed to find a sequence of concrete operations which lead to a concrete state that
can be abstracted with a state abstraction mapping to match the second abstract state
contained in the abstract case. If the first abstract operator can be refined a new concrete
state is found. This state can then be taken as a starting state to refine the next abstract
operator in the same manner. If this refinement fails we can backtrack to the refinement
of the previous operator and try to find an alternative refinement. If the whole refinement
process reaches the final abstract operator, it must directly search for an operator sequence
that leads to the concrete goal state of the new problem. If this concrete goal state has been
reached, the concatenation of concrete partial solutions leads to a complete solution to the
original problem.
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Fig. 6. Refinement of abstract cases

Abstract solutions decompose the original problem into a set of much smaller subprob-
lems. These subproblems are solved by a search-based problem solver. The problem decom-
position leads to a significant reduction of the overall search that must be performed to
solve the problem [19]. With pure search the worst-case time complexity for finding the re-
quired solution is O(b"), where n is the length of the solution and b is the average branching
factor3. If the problem is decomposed by an abstract solution into m subproblems, each of
which require a solution of length nq, ..., n,,, respectively, with n1 + ny 4+ -+ + n, = n,
the worst-case time complexity for finding the complete solution is O(6”" 4 b2 4 - - - 4 b"m)
which is O(bm‘”(”l’”%“' ’”m)). Please note that the refinement effort increases with the level
of abstraction the abstract case is located on, because more abstract solutions contain a
smaller number of abstract operators than the detailed solutions do.

3.5 Adaptation of Abstract Cases

PaRris performs solution adaptation also at a single level of abstraction. For that purpose,
an abstract or concrete case is generalized into a generalized case (similar to a schema
or script). Such a generalized case does not only describe a single problem and a sin-
gle solution but a class of problems (s;(z1),sa(zq)) together with a class of solutions

% The branching factor is the average number of successor states that can be reached through the
application of available operators.



(01(z1),...,0n(xn)). Such classes are realized by introducing the variables z; into the ini-
tial and goal state as well as into the plan. Additionally, a generalized case contains a set of
constraints C'(z1,2q, ®1, ..., 2,) that restricts the instantiation of these variables.

PaRris includes an algorithm for automatically generalizing concrete or abstract cases
into schemas (see [3]) by applying explanation-based generalization [22; 9]. This algorithm
guarantees the correctness of the computed generalized case, i.e., every instantiation o of
the occuring variables such that all constraints C(zr,zq, 21, ..., 2,)o are fulfilled leads to
a correct case, i.e., the plan (01(21),...,0n(zn))o solves the problem (s;(z1), s¢(za))o

Adaptation with generalized cases is done by finding an instantiation o of the variables
such that (s;(zr), sq(zg))o matches the target problem to be solved and such that the
constraints are fulfilled. The solution to the target problem results from applying o to the
solution class of the generalized case.

In PARIS, matching (similarity assessment) and adaptation is done by a constraint satis-
faction problem solver (see [3] for details). The effort for solving this constraint satisfaction
task can be very high: in the worst case it is exponential in the number of constraints and
the size of the problem class. Typically, the representations at a higher level of abstraction
are less complex than representations at lower levels. Consequently, generalized cases at
higher levels of abstraction contain less constraints and the problem class is composed of
a small number of prepositions. Therefore, adaptation of abstract cases requires less effort
than adaptation of concrete cases.

3.6 Retrieval with Abstract Cases

In PARIs abstract and concrete cases are stored in the case base which is organized by an
abstraction hierarchy. The idea for constructing this hierarchy is based on the following
condition: a case Cy is located above Cy (cf. Fig. 2) if for every problem p holds that
if Cy is adaptable for p (at some level of abstraction) then Ci is adaptable for p as well.
If this condition can be fulfilled, retrieval will be improved, because if C; is not adaptable
for solving p, then none of the cases in the sub-tree below C7 can be adaptable and must
consequently not be accessed.

Unfortunately, this condition is undecidable in general [3]. However, an abstraction hi-
erarchy can be constructed such that the above condition holds at least for the problems
already known (the case base) instead of holding for all possible problems. This approxi-
mation approaches the original condition as more and more cases arise. In PARIS such an
abstraction hierarchy is built and updated incrementally.

3.7 Case Deletion Policy

In PARIS a utility problem can occur, if the representation (e.g., the concrete domain) is
very complex such that matching and adaptation of generalized cases through the constraint
propagation becomes very costly. In this case, refining an abstract case at a higher level of
abstraction can involve less effort than adapting a case at a lower level. To cope with this
problem, a case deletion policy is realized which works by pruning sub-trees of the abstraction
hierarchy [35]. A sub-tree is pruned if matching and adapting abstract or concrete cases
contained in this sub-tree requires more effort than refining a more abstract available case.
These efforts are estimated through measuring the run-time for matching and adaptation
and the run-time for solution refinement based on the problems already contained in the
case base.



4 Experimental Evaluation

We now present the results of an experimental study on the benefits of using abstraction
in CBR. This study was done using the fully implemented PARIS system in the domain of
manufacturing planning for rotary symmetric workpieces on a lathe (see [5] for details of
the domain). For the experiments, 100 concrete cases were generated randomly. From these
concrete cases 28 abstract cases at four levels of abstraction could be generated.

4.1 Improving Efficiency of Similarity Assessment and Adaptation

The purpose of the first experiment was to evaluate how the effort for similarity assessment
and adaptation decreases with higher levels of abstraction. For this purpose, we measured
the run-time for matching and adapting concrete and abstract generalized cases with the
constraint propagation mechanism. A time limit of 200 seconds was imposed for the con-
straint propagation procedure. If this limit was exceeded, the procedure was terminated and
the matching failed.

Table 2. Comparison of matching and adapting concrete and abstract cases

| kind of cases || number of constraints | run-time in sec. | percentage of failures |

concrete cases 76.3 95.97 42 %
abstract cases 21.5 1.11 0%

Table 2 shows for abstract and concrete cases, the average number of constraints to be
considered during constraint propagation, the average run-time for matching and adapting,
and the percentage of failures due to exceeding of the time limit. As expected, these results
show a strong decrease in the run-time for abstract cases which is due to the reduced
complexity of abstract cases compared to concrete cases.

4.2 Improving Retrieval by Abstract Cases

The purpose of the second experiment is to evaluate the speedup in retrieval time when using
abstract cases (organized in an abstraction hierarchy) for indexing. We built up a case-base
with 100 concrete and 28 abstract cases. The abstract cases were used as indexes only. We
measured the time for retrieving (including matching and adapting) a concrete case with
the abstraction hierarchy and compared it to the time for a sequential retrieval of concrete
cases. Again, a time limit of 200 seconds was imposed for retrieval.

Table 3. Retrieval with abstract cases

retrieval method || average retrieval time | percentage of failures |
sequential retrieval 185 76 %
retrieval with abstract cases 127 58 %

Table 3 shows the average results for retrieving 100 different cases. We can see a good
improvement in the retrieval time as well as a reduction in the number of failures due to
exceeding of the time limit.



4.3 Problem Solving Performance

The purpose of this experiment is to evaluate the overall problem solving performance and
competence for reusing abstract cases vs. reusing concrete cases. From the 100 available
cases, we have randomly chosen 10 training sets of 5 cases and 10 training sets of 10 cases.
These training sets are selected independently from each other. For each training set, a
related testing set is determined by choosing those of the 100 cases which are not used for
training. We trained PARIS with each of the training sets separately and measured the time
for problem solving on the related testing sets. Again, a time-bound of 200 CPU seconds
was used for each problem. If the problem could not be solved within this time limit, the
problem solver was aborted and the problem remained unsolved. The number of unsolved
problems was also evaluated.

Table 4. Reuse of abstract cases vs. reuse of concrete cases

Reuse method size of average problem percentage of
training set solving time unsolved problems
reuse abstract cases 5 o6 16%
10 49 13 %
reuse concrete cases > 157 L%
10 154 68 %

Table 4 shows the average problem solving time and the average percentage of solved
problems for the training sets of the two different sizes and the different kinds of reuse.
These average numbers are computed from the 10 training and testing sets for each size.
We can see a strong improvement through reusing abstract case. Additionally, these results
were analyzed with the maximally conservative sign test as proposed in [10]. It turned out
that in all 20 (10410) experiments, the improvement was significant (p < 0.05).

4.4 Flexibility of Reuse

The purpose of this experiment was to evaluate the flexibility of the reuse. For each of the
100 cases, we evaluated how many of the problems in the remaining 99 cases could be solved
through reuse of this case within the time limit of 200 seconds. We compared the flexibility
of reusing concrete and abstract cases separately.

Figure 7 shows the results plotted for each case. On the abscissa, the 100 cases are
ordered according the complexity. Case No. 1 is the simplest case with a plan composed of 4
operators and Case No. 100 is the most complex case containing 18 operators. The ordinate
shows the number of problems (of the remaining 99 cases) for which this case can be reused.
We can see a strong advantage when reusing abstract cases. The conservative sign test shows
the significance of this result (p < 0.001).

4.5 Case Deletion Policy

Finally we evaluated the impact of the case deletion policy. For that purpose, we trained the
system with all available cases and used the same cases for testing it again. In one run, the
case deletion policy was active, in the other run it was disabled. Table 5 shows the average
problem solving time as well as the number of problems solved within the 200 second time
limit. We can identify a significant improvement (rank test, p < 0.05) caused by the case
deletion policy.



70
6() - .
50 - |
2z 40
5
3
@ 30 |
reusing abstract cases ——
20 | reusing concrete cases -——-— b
10 — g
0 Il N A - Il N Il
50 60 70 80 2 100
Case number
Fig. 7. Flexibility of reuse
Table 5. Case deletion policy
Case deletion policy || average problem percentage of
solving time unsolved problems
disabled 69 28 %
enabled 36 6 %

4.6 Conclusion from experiments

These experiments clearly demonstrate the benefits we hoped to gain from introducing ab-
straction into case-based reasoning (cf. section 1). However, these experiments are performed
in a very specific scenario (planning task, domain: process planning for rotary symmetric
workpieces, particular representation). Whether these results can be generalized for different
tasks and domains still has to be proven. However, the results obtained by Branting and
Aha [7] - also for a planning task — strongly support our results.

5 Related Work

We now discuss related work with respect to the general framework introduced in section 2.
We consider the following approaches that reuse cases at several levels of abstraction:

Déja Vu [29; 30]: design of control software,

— PRIAR [16]: domain-independent action planning,

— MoCas [24; 4]: model-based case adaptation for diagnosis of technical systems,
COVER and CLOSEST [7]: algorithms for hierarchical A* search.

Table 6 shows the result of classifying these approaches according to the framework.



abstract abstract & concrete hierarchical
kind of stored cases: PARIS COVER

DEJA-VU CLOSEST

PRIAR MOCAS

cases available manual generation automatic generation
acquisition of abstract cases PRIAR COVER
PARIS MOCAS
DEJA-VU CLOSEST
no yes
abstract cases for indexing: PARIS COVER CLOSEST
MOCAS PRIAR DEJA-VU
no abstract result generative refine. case based refine.
reuse of abstract solutions: MOCAS PARIS PRIAR DEJA-VU
COVER CLOSEST
no yes
adaptation of abstract solutions: VER PARIS CLOSEST PRIAR
co MOCAS DEJA-VU
no yes
case deletion policy: COVER CLOSEST PRIAR PARIS
MOCAS DEJA-VU

Table 6. Comparison of other approaches using the framework

Kind of stored cases We can see that there is no approach that is limited to the reuse of
abstract cases. All approaches that reuse cases at several levels of abstraction always include
the concrete level. The reason for this is that the methods of reusing abstract cases can also
be directly applied to concrete cases. However, the experiments with PARIs have shown that
it is often not useful to reason with concrete cases, if abstract cases are available. It turned
out that the case deletion policy, which has been shown to improve performance, tends to
delete almost all concrete cases, if the case-base is growing.

Acquisition of abstract cases Almost all current approaches assume that cases are avail-
able at several levels of abstraction. PR1AR, COVER, and CLOSEST are based on a hier-
archical problem solver. Consequently, cases at all levels of abstraction are available when
problems become solved. PARIS and MoCAs are the only system which supports the auto-
matic generation of abstract cases out of concrete ones.

Abstract cases for indexing Not all approaches make use of abstract cases as a means
for indexing. Some approaches does not address the retrieval problem in deep (e.g. MoCas
and PRIAR).

Reuse of abstract cases MoCAS seems to be the only system that directly returns
abstract solutions to the user. The reason for this is that in the diagnostic domain, abstract
solutions correspond to a complex component. Knowing that a complex component is defect
may be as useful as knowing that a particular part of this component (concrete solution)
causes the failure. All approaches that refine cases by a generic method are built on the
integration of a from-scratch problem solver. PARIS uses a depth-first iterative-deepening
search, CLOSEST uses A* search, and PRIAR uses a hierarchical task network planner.



Adaptation of abstract solutions Almost all systems make use of the advantage that
adapting an abstract case is simpler than adapting a concrete case. COVER, explicitly re-
nounces adaptation for experimental purposes.

Case deletion policy Till now, PARIS is the only system that makes use of a case deletion
policy. This policy has shown to significantly improve the performance of the system (cf.
section 4.5). However, Branting and Aha [7] describe a variant of the CLOSEST algorithm
(called CLOSEST-THRESHOLD) that stops the CBR process if reuse is more expensive
than from-scratch problem solving. This algorithm does not delete any cases.

6 Conclusion

The presented framework for reusing cases at several levels of abstraction shows in its facets
different possibilities of how abstraction can be incorporated into CBR.. Unfortunately, there
are only a few systems available that make full use of the abstraction idea. Most of them
are in the area of planning. Future research should try to use this framework for developing
similar approaches for different tasks and domains (e.g. configuration) to validate the positive
results gained so far.
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