Considering Decision Cost During Learning of
Feature Weights

Wolfgang Wilke and Ralph Bergmann

University of Kaiserslautern
Centre for Learning Systems and Applications (LSA)
Department of Computer Science
P.O. Box 3049, D-67653 Kaiserslautern, Germany
e-Mail: {wilke,bergmann}@informatik.uni-kl.de

Abstract. This paper is to present a new algorithm, called K'N N o,
for learning feature weights for CBR systems used for classification. Un-
like algorithms known so far, K' N N.,s: considers the profits of a correct
and the cost of a wrong decision. The need for this algorithm is motivated
from two real-world applications, where cost and profits of decisions play
a major role.

We introduce a representation of accuracy, cost and profits of decisions
and define the decision cost of a classification system. To compare ac-
curacy optimization with cost optimization, we tested K N Ng.. against
K N N¢ost. The first one optimizes classification accuracy with a conju-
gate gradient algorithm. The second one optimizes the decision cost of
the CBR system, respecting cost and profits of the classifications. We
present experiments with these two algorithms in a real application to
demonstrate the usefulness of our approach.

1 Introduction

Developing a case-based reasoning system for a real-world application requires a
lot of effort. For example, features must be selected to represent cases, the types
of the features must be defined, and the similarity measure for all instances
of the attributes must be selected by an expert. One step of the last task of
this development process deals with the determination of feature weights. These
weights can be acquired from an expert or can be determined by a learning al-
gorithm that tries to extract the importance of the features for a given set of
cases. Learning algorithms are required, if no natural weighting can be given for
the domain or the weights given by an expert need an improvement. There are
several different learning algorithms for feature weights. We focus in this work
on algorithms using feedback for learning.

For example, Salzberg’s EACH (Salzberg, 1991) proceed as follows: if a cor-
rect classification occurs, the weights of the matching features are incremented,
while those of mismatching features are decremented of the new query by a
fixed amount. If an incorrect classification occurs, matching feature weights
are decremented and mismatching feature weights are incremented. Other ap-

proaches like VDM (Stanfill and Waltz, 1986), TB4 (Aha, 1991), RELIEF-F

(Kononenko, 1994), PADEX/INRECA (Wess, 1993; Wess, 1995), VSM (Lowe,
1995) or k — N Nygm (Wettschereck, 1994; Wettschereck and Aha, 1995) mostly
differ in the way feature weights are modified, but share the main criterion for
changing weights, namely: the correctness of the classification. As a consequence,
these algorithms optimize classification accuracy only. We argue that this is not
an appropriate learning goal for many real-world applications, because decision
cost play a major role in several domains.

Our view of the problem is motivated by experiences with the following two
applications:

Credit Scoring:

The goal of this task is to decide about a business bank customer’s credit-
worthiness. Available cases consist of the main balance items from the balance
sheet, financial index numbers, and other relevant enterprise data, together with
the credit-rating. The CBR system classifies new business customers to decide
whether the enterprise is creditworthy (class A), or not (class B). In this appli-
cation, the profits and cost of a right or wrong decision are asymmetric. If the
system classifies a creditworthy customer (class A) as not creditworthy (class
B) and the bank rejects the credit for the customer, the bank looses only the
interest income. On the other hand, if a class B customer is classified as a mem-
ber of class A, the bank looses the whole credit sum, which is a considerably
higher loss. Here, the decision cost of a wrong decision depends strongly on the
predicted and the correct class of the customer.

Diagnosing Cases of Poisoning by Psychotropes:

In the INRECA+ project (Althoff et al., 1996), we built a CBR system for di-
agnosing cases of poisoning by psychotropes. The cases' consist of 86 attributes
that have been identified as useful for this diagnosis task by experts. The decision
classes describe 8 different kinds of possible therapies for treating the poisoning.
Of course, the different therapies cause different effects on the patient’s consti-
tution. In the worst case a wrong therapy can be mortal for the patient. Thus, it
is important to come up with the right diagnosis as quick as possible. However,
for a number of diagnoses the respective therapy is identical or, at least, very
similar. Therefore making a wrong diagnosis leading to the same (or nearly the
same) therapy as the correct diagnosis is no problem. So, in this application
decision costs differ significantly.

These two examples show that decision cost may play a major role for the op-
timization of a CBR system. For that purpose, we developed a feature weight
learning algorithm K N N.,s¢, which optimizes the feature weights, with regard
to cost and profits of the decisions of a case-based classification system. To com-
pare KN Ncys¢ to an algorithm that optimizes classification accuracy only, we
first introduce K N Ny, a learning algorithm that uses the same mechanism

! The application data was provided by the Toxicology Information and Advisory
Centre of the Russian Federation Ministry of Health and Medical Industry

as K N N_,s¢, with respect to the accuracy only, yet with another optimization
criterion.

The paper is organized as follows: In the next section, we give a short intro-
duction into k—nearest neighbor classification and illustrate our definition of
accuracy and cost for a classification system. Section 3 introduces two algo-
rithms A N Nge. and KN Ng,s:. After that, we describe an empirical evaluation
of the algorithms in the credit scoring application in section 4. We then add a
discussion and, finally, give an outlook on future work.

2 Basics

2.1 Case-Based Classification with k—Nearest Neighbors

In a CBR system used for classification tasks, a case ¢ = (f1,..., fa,) consists
of n describing features f and of the desired class ¢.. The set T' = {¢1,... 4}
denotes all possible classes in the domain. The case base C'B is defined as a set
of known cases from the past. Given a new query ¢ = {¢1,...,¢,} and a case
base C'B, the k most similar cases are retrieved to predict the real class ¢, of a
query q. The similarity sim(q, ¢) between a query ¢ and a case ¢ from the case
base is defined as:

sim(q,c) = Zwa * 1M (qa; fa) (1)
a=1

where w, is the weight for feature f, and sim, is the local similarity measure for
attribute a. Further, we assume that Y."_, w, = 1 and simq(qqa, fa) € [0, 1], for
all features, yielding the similarity between a query and a case sim(q,¢) € [0, 1].
The CBR system predicts the class of the query by retrieving the ¢'s k—nearest
neighbors K = {ry,..., 7z} and applying a majority vote method on them, e.g.:
Let p, ¢+ denote the probability? that a query g is a member of the class t € T
defined as:

> 0pp % sim(g, r)?
rekK P
Pqt = £ (2)

> sim(q,r)?

re K

where J,; is defined as follows:

1 : t,. =t .
ér,t - {0 . tr #t (3)
and where ¢, € T denotes the class of case . Then, the prediction of the CBR
system 1s the class with the highest probability calculated from the set of the
k—nearest neighbors.
There are other voting algorithms for the k—nearest neighbor classification, for

2 If the numerator in the definition of p, . is 0, then p, is set to 0. For the later trans-
formation of the error function in an energie function the similarities are squared.

example the single majority vote (Michie et al., 1994)[p. 10 pp], (Weiss and
Kulikowski, 1991) [p. 70] that only considers the frequencies of the different
classes in the set of nearest neighbors. However, the weighted majority vote has
the main advantage that the distance of the neighbors is taken into account for
the prediction.

2.2 How to Present Accuracy and Decision Cost

A common representation for the classification accuracy of a system is a con-
fusion matrix (Weiss and Kulikowski, 1991)[p. 18]. For a given set of cases, the
entry of such a matrix counts the number of classifications of cases from a class
as a member of the predicted class by the system, for a given set of cases. For

P; ; predicted class
correct class|| A B
A 0.55 0.45
B 0.25 0.75

Table 1. A sample confusion matrix for the credit scoring application

our approach, we modify the entries of the confusion matrix with respect to the
probability p, ; from equation (2) to classify that a query ¢ is a member of the
class ¢t. So our matrix contains the probabilities for every possible decision of the
system for a given set of cases.

For measuring the accuracy of a CBR system during learning, one can use a
leave-one-out test (Weiss and Kulikowski, 1991)[p. 31] over a given training set
L. Every case from L is used as a query ¢ and classified with the CBR system
including all other cases from L except the query ¢. For every query ¢, the prob-
abilities pq ¢ from the retrieved k-nearest neighbors using equation (2) can be
calculated for every ¢ € T'. This is done for every case from L and the resulting
probabilities are combined for every entry of the confusion matrix. After that
we normalize every row of the confusion matrix with respect to the occurrences
of the correct classes in the given training set. The resulting confusion matrix
represents the probabilities for the different outcomes of a classification with the
training set L. This matrix is an approximated confusion matrix, because we use
probabilities for the decisions, instead of counting the occurrence of the different
decisions®. Table 1 shows an example of such a matrix for the credit scoring
application with the two different classes and predictions. The probability of the
correct predictions for each class can be found in the diagonal of the matrix,
here 55 and 75 percent. All other entries represent the probabilities of errors for
a particular type of misclassification, here 45 and 25 percent.

% For simplification, we further use the term confusion matrix

To represent cost, (Weiss and Kulikowski, 1991)[p. 21] and (Michie et al., 1994)[p.
224] use a similar matrix called cost matriz, in which non-diagonal entries rep-
resent cost of a specific misclassification and the fields in the diagonal represent
the benefits of a correct classification, explicitly set to 0. We extend this ap-
proach by allowing positive and negative entries for representing cost and profits
in a single matrix. As a result these decision value matriz represents the cost
and profits for every possible decision of the system. Table 2 shows an example
for such a decision value matrix in the credit scoring application. The values

Cipt predicted class
correct class|| A B
A -1 1
B 10 -10

Table 2. A sample decision value matrix for the credit scoring application

represent the relation between the two possible errors that might occur. Here
the cost of misclassifying a bad customer are 10-times higher than misclassifying
a good one*.

In the first case, the bank looses the credit volume, but in the second case only
the interest rate is lost. Consequently the profit of detecting a bad one is here
10-times higher than correctly classifying a good one®.

So, this decision value matrix represents the cost and profits of the different
decisions of the classification in the bank application.

With the representation of accuracy from the confusion matrix and the cost
from the decision value matrix we can define the decision cost of a classification

system as:
Costgecision = Z Z Pi,j * Ciyj (4)
i€T jET

where the P;; are the probability from the confusion matrix and the Cj; are
the corresponding entries from the decision value matrix. This definition is akin
to the utility of decisions used in the Bayesian decision theory (Berger, 1985).

3 Incremental Learning of Feature Weights

In this section, we first describe the general algorithm for learning feature weights
with a conjugate gradient algorithm. In the next two subsections we specialize
this algorithm to the algorithms KN N,.. and KN Negs¢.

1 See the relation between the entries Cp,a and Ca p in Table 2.
5 See the entries Cp,p and C4 4 in Table 2.

3.1 Learning Weights Guided by the Conjugate Gradient

The conjugate gradient method is a generate-and-test search algorithm with
feedback from the test procedure. The algorithm tries to optimize a system with
respect to an error function F by adjusting the weights w = {w1,...,w,}. This
optimization is realized by an iterative search for a local minimum of the error
function E. So E has to be chosen according to the learning goal. A learning
rate A is used to influence the step width for a learning step in the direction of
the conjugated gradient. The basic algorithm is follows:

1. initialize the weight-vector w and the learning rate A
2. compute the error E(w) of the initial system
3. while not(stop — criterion) do
learning step: V a 4, := w, — % * A
compute F(w)
if () < F(w) then w := w else X := %
4. output w

First, the weights w; are either initialized to random values, set to the constant
%, or given by an expert. After the calculation of the initial E, the algorithm does
a number of learning steps, depending on the stop-criterion. If a learning step is
successful (E(w) < F(w)), the weights are modified to guide F in the direction
of a local minimum. Otherwise, the learning rate is decreased. The algorithm
terminates and outputs a weight vector as the result of the learning. The use of
conjugated gradient methods for feature weight learning is also common in other
disciplines like backpropagation (Rummelhart et al., 1986) for Neural Networks.

The choice of the learning rate The choice of a good value for A is difficult,
because it depends on many unknown domain properties. If A is quite small,
many learning steps are needed to find the next local minimum in the neighbor-
hood of the starting point. However, it is guaranteed that the algorithm finds it,
respecting the initial starting point. If A is too large, misleading steps may hap-
pen and the algorithm very often decrements the value of A, before it improves
E. Tt is also possible that a learning step with a large A leads to an improvement
of E, but this improvement is based on a different minimum. So, the algorithm
finds a local minimum of | not respecting to the initial weights. This behavior
is illustrated in figure 1. The dotted line shows learning steps which lead to the
minimum w2, because the value of X is too large. The solid line shows a learning
step with a sufficiently small learning rate. This leads a step forward to a local
minimum wl that respects the expert initialization. Thus, if the learning rate
is too large, the behavior of the algorithm is not respecting the initialization,
because the founded minimum w2 is not related to weights given by an expert.

The choice of the stop-criterion The stop-criterion has to ensure the termi-
nation of the algorithm. Possible stop criteria for the algorithm are:

— a fixed number of learning steps

E(w)

lambda too large

"""" I

expert’s weight
initialization

i1

i lambda sufficient

w2 Wi w
Fig. 1. The effects of different values for the learning rate

— a minimal change of the error function: | E(w) —
— a minimal change of the feature weights: Y "
— a minimal learning rate: A < e

a=1 |
It is also possible to combine these criteria.

The choice of k A different value of k for the amount of the nearest neighbors
taken into account leads to different probabilities for the classifications. The
optimal value of k could be computed by a simple generate and test procedure.
Here, optimal means a minimal value for the decision cost from equation (4).
We used a fixed k from our experience with the domain for the whole learning
procedure, like VSM (Lowe, 1995). (Wettschereck and Aha, 1995) calculate an
optimal k prior to the first learning step and fix it for the rest of the learning
procedure. A computational expensive approach calculates a new optimal k after
each learning step. This is necessary, because in general the new weights after a
learning step could effect the optimality of the old value of k. The new calculation
of an optimal k after every step is costly, but should lead to the best results.

3.2 K N Ny for optimizing classification accuracy

Now we specialize the basic algorithm of the conjugated gradient to K N Ny,
which optimizes classification accuracy. This is done by defining a special error
functions E for this purpose, together with the required derivation 65”“ During
the learning we use the leave-one-out test, described in section 2.2 to calculate
the value for E(w).

K N Ny is similar to the VSM (Lowe, 1995) and k — N Ny s, (Wettschereck and
Aha, 1995) algorithms. They also determinate feature weights with a conjugate
gradient algorithm. Unlike other approaches, we use a similarity measure to
quantify the distance of cases. This measure is not fixed for different types of
features.

The error function E,.. for optimizing the classification accuracy Fg,.. can be
defined as:
Eace = E Z(‘Sq,t _pq,t)2 (5)
qeECB teT

For a learning step with the conjugate gradient method, we need the derivation
of Fgce with respect to the weights w, from equation (5):

OF acc 0
—a =—2% Z Z pq t api;l: (6)

qeECB teT

where the derivation of p,; for the weights w, is given by®:

2% 3" (85t — pgt) * stim(q,7) * simq(¢q, Ta)]
apq,t _ reK (7)

Ow, > sim(q,r)?

reK

The KN Ny algorithm is the conjugate gradient algorithm together with the
error function from (5) and the derivation given in (6). Minimizing the error
function means maximizing the overall probabilities for the prediction of the
correct classes and minimizing the overall probabilities of a misclassification for
the training set. In the confusion matrix (see Table 1) KN Ny, tries to maximize
the diagonal and to minimizes the non-diagonal entries.

3.3 KN N_gys for Optimizing Decision Cost

The idea of KN Ne,s¢ is to minimize the decision cost as defined in equation (4).
This is done by integrating the decision value matrix (Table 2) into the error
function. So every probability in the error function is judged by its respective
cost from the decision value matrix. The resulting error function FE.,s:, which
defines the error for the respective decision cost, is given by:

Eecost = Z Z Sgn(ctq,t) * ng,t * p(:;,t (8)

qeECB teT

where Cy, ¢ is an entry from the decision value matrix and sgn(C’tqyt) is the sign
of this entry. The derivation %
computed as follows:

aE'cos a
ot — 94 ZZSg”Ctt*Cff*pqt*aw (9)

qECB teT

used to calculate the new weights can be

where % is the formula from equation (7). Thus, our algorithm KN N¢os; is

the conjugaate gradient algorithm from the first part of this section together with
the error function FE.,;; and its derivation aE;}"” With this error function the

6 Please note that these equations are similar to those shown in (Wettschereck, 1994),
except for the replacement of distances by similarities

algorithm minimizes the decision cost of the CBR system. In our representation
of accuracy and cost this means that KN N, tries to minimize/maximize the
products of every entry of the confusion matrix with a corresponding entry of
the decision value matrix, depending on cost and profits”.

4 Empirical Evaluation of KN N,.. and KN N_,4

We now present the results of an empirical evaluation of K N Ng.. and KN N_ysz.
The algorithms were implemented as part of the INRECA® CBR - shell. The
goal of these tests is to verify or reject our hypothesis:

Classtfication based on weights learned by K N N.,s¢ leads to lower decision cost
than classification based on weights learned by KN Ngc..

4.1 Experimental Settings

For our experiments we used the the credit scoring domain with 685 cases. A case
consists of 136 different features and a class description. There are 20 numeric
attributes while the remaining have symbolic values. About 5 percent of the
attributes were unknown in each case description.

To test our learning algorithms, we made 5 independent runs. In every run, we
divided the case base in a training set with 70 percent randomly selected cases
and use the remaining 30 percent as a test set. In each run, we used the training
set as case base for the CBR system®. The weights were initialized randomly. In
each run we learned feature weights using the K N N,.. and K N N, algorithms.
The learning process was stopped when a change less than 5% 10™2 occured. The
initial learning rate A was set to 5% 107*. In our tests we took k = 11 nearest
neighbors into account.

4.2 Results

Now we compare the decision cost of the initial CBR systems to those of the
resulting systems after learning feature weights with both algorithms. First, we
exemplarily show how to calculate the decision cost. We classify the 206 cases
from the test set with the initial CBR systems. The left side of the Table 3
shows a confusion matrix with the classification accuracy averaged over the 5
initial systems. Contrary to the matrix introduced in Table 1, the entries denote
the average occurrence of classifications for the cases of the test set. We choose
this different representation for the classifications to make the entailed cost of

" This is equal to minimizing the decision cost, because they are computed as the sum
of the single products. The squares in equation (8) were only introduced to speed up
the learning process.

8 INRECA (ESPRIT contract P6322, the INRECA project) with the partners: Ac-
knoSoft (prime contractor, France), tecInno (Germany), Irish Medical Systems (Ire-
land) and the University of Kaiserslautern (Germany)

® In the following we name these systems initial CBR systems

predicted class
accuracy cost
correct class A B A B
A 48.6 36.4 -48.6 36.4
B 27.4 93.6 274 -936.0

decision cost: -674.2

Table 3. The average decision cost of the CBR systems before learning

the systems more explicit. These entries were multiplied with the respective cost
from the cost matrix (Table 2). The resulting cost for every possible decision are
shown on the right side of the Table 3. The bottom line of the table shows the
average decision cost for the 5 initial systems as a result of the sum of all entries
of the decision value matrix'? .

Comparing KN Ng.. and KN Ny In the following we compare our ini-
tial systems with the systems after learning feature weights using K N Ny and
K N N¢ost. After the learning phase, we test the resulting systems with the test
set. For both learning algorithms, we calculate the average decision cost of the
resulting systems. Table 4 summarizes the entire decision cost of the initial sys-
tems and the resulting systems after learning. Both learning algorithms lead to

Decision cost
Before Learning: -674.2

Learning with KN Ngcc: -756.2

Learning with KN N oe;:| -1040.6

Table 4. The decision cost of the CBR systems before and after learning feature
weights

an improvement of the decision cost. The average decision cost of the systems
with the weights obtained from KN Ng.. are 82 (= 756.2 — 674.2) lower than
the decision cost before learning. We associated profits with right and cost with
wrong decisions. So, this improvement represents the benefit of the better clas-
sification accuracy after learning. The weights extracted with KN N, lead to
an improvement of 366.4 (= 1040.6 — 674.2) for the decision cost. Especially,
the decrease of the decision cost of 284.4 (= 1040.6 — 756.2) obtained by using
K N N¢ost when compared to the results obtained by K N N, is remarkable.

10 Here, a negative value denotes the profit of the classification systems

The classification accuracy of the systems that use weights learned by KN Ny,
and of those using weights learned by K N N ,s; were nearly the same. The rea-
son for the improvement of the decision cost is that K N N.,s; prefers to classify
more costly cases correctly than K N N,... So, our hypothesis that classification
based on weights learned by KN N, leads to lower decision cost than classi-
fication based on weights learned by KN Ng.., has been empirically verified in
this domain.

5 Summary and Discussion

In this paper, we presented two feature weight learning algorithms, one optimiz-
ing classification accuracy only and one optimizing decision cost for a CBR sys-
tem. Both algorithms use the conjugate gradient to optimize the feature weights
for the different criteria. We empirically evaluated these two algorithms in the
domain of credit scoring with real bank-customer data. In this evaluation we
could verify our hypothesis that cost optimization could be more profitable than
classification accuracy optimization.

In (Pazzani et al., 1994) several algorithms are proposed to optimize cost for
decision lists, decision trees and rule based expert systems. In this discussion we
will focus on algorithms that integrate cost in a CBR system.

It should also be possible to integrate cost into other algorithms for learning fea-
ture weights. Especially, the extension of algorithms using feedback seems easy
in some cases. Here, the feedback denotes the amount of change for every weight
after a learning step to improve the system.

As already stated, EACH (Salzberg, 1991) changes the feature weights by a
fixed value depending on whether correct or incorrect classification occured and
whether a feature matches or mismatches. To introduce cost, this value could
vary according to the decision of the system. EACH has two disadvantages: it
is very sensitive to the order of the presentation of the examples and all weights
were simultaneously changed by a fixed amount in one learning step.

RELIEF (Kira and Rendell, 1992) selects a random training case ¢, the most
similar case p of the same class, and the most similar case n of a different class.
The new feature weights are calculated by:

W = wq — dif ference(cy,py) + dif ference(cy, ny) (10)

An approach to introduce decision cost in the feedback of RELIEF (in equation
10) could be to judge the differences with the desired cost of the training case
¢ classified as the class of a similar case, here the class of p or n. The original
version of RELIEF is limited to two-class problems only, yet this restriction has
been removed by (Kononenko, 1994) in RELIEF-F. He takes all different classes
in the feedback into account. The extension to decision cost would be quite sim-
ilar. As in EACH, the problem with these algorithms is the sensitivity to the
order of the presentation of the examples.

IB4 (Aha, 1989; Aha, 1991) takes the distribution of the different classes in the

case base into account for changing weights. The amount of change is judged

with a factor (1 — A) that represents the observed frequency among the different
classes. This is a promising approach to optimizing the classification accuracy.
To introduce decision cost in this approach could be difficult, because weights
are optimized according to two conflicting criteria. If a costly class has a low fre-
quency, the benefits of the two criteria could disappear. The cost criterion argues
for a massive change of the feature weights, but the frequency criterion argues
for a moderate modification. Otherwise, the factor to change a highly frequent
class with low cost is also contrary. So, the feedback of these two criteria would
compensate, because the criteria accuracy and cost, as already stated could be
contradictory.

Other learning algorithms for improving CBR-Systems could also be modified in
order to take decision cost into account. For example, an instance-based learning
algorithm (IBL) (Aha, 1989; Aha, 1990) could be extended. Roughly speaking in
IBL the cases are rated with their effects on arbitrary classifications and misclas-
sifications. If cases often cause wrong classifications and seldom ensure a right
classification, they are removed from the case base. The goal is to keep only
those cases in the case base, which ensure a correct classification. To integrate
cost, it is possible to rate the cases not only with the classification rating, but
with the respective entry from the cost matrix. This will be a topic of our further
research in this area.

The price of our approach is that the decision cost must be acquired additionally.
However, experts often know the cost and profits for the different outcomes of a
classification.

Acknowledgements

The authors would like to thank Prof. Michael M. Richter, Dr. Klaus-Dieter
Althoff, Harald Holz and Ivo Vollrath for the useful discussions and for their
implementation work. This work was partially funded by the Commision of the
European Communities (ESPRIT contract P22196, the INRECA TI Information
and Knowledge Reengineering for Reasoning from Cases project) with the part-
ners: AcknoSoft (prime contractor, France), Daimler Benz (Germany), tecInno
(Germany), Trish Medical Systems (Treland) and the University of Kaiserslautern
(Germany) and partially funded by the ”Stiftung Innovation fiir Rheinland-
Pfalz”.

References

Aha, D. W. (1989). TIncremental, instance-based learning of independend and
graded concepts. In Proceedings of the 6th international Workshop on Ma-
chine Learning, pages 387-391.

Aha, D. W. (1990). A Study of Instance-Based Algorithms for supervised Learn-
ing. PhD thesis, University of California at Irvine.

Aha, D. W. (1991). Case-Based Learning Algorithms. In Bareiss, R., editor,
Proceedings CBR Workshop 1991, pages 147-158. Morgan Kaufmann Pub-
lishers.

Althoff, K.-D., Bergmann, R., Wess, S., Manago, M., Auriol, E.| Larichev, O. L.,
Bolotov, A., and Gurov, S. 1. (1996). Integration of Induction and case-
Based Reasoning for Critical Decision Support Tasks in Medical Domains:
The INRECA Approach. Centre for Learning Systems and Applications
Technical Report, 96-03E.

Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis.
Springer Verlag.

Kira, K. and Rendell, L. A. (1992). A practical approach to feature selection.
In Proccedings of the Ninth International Conference on Machine Learning,
Aberdeen, Scotland. Morgan Kaufmann.

Kononenko, I. (1994). Estimating attributes: Analysis and extensions of relief. In
Proceedings of the 1994 Furopean Conference on Machine Learning, pages
171-182. Springer Verlag.

Lowe, D. (1995). Similarity metric learning for a variable-kernel classifier. Neural
Computation, 7:72-85.

Michie, D., Spiegelhalter, D., and Taylor, C. C. (1994). Machine Learning, Neu-
ral and Statistical Classification. Ellis Horwood.

Pazzani, M. J., Merzi C., Murphy P., Ali K., Hume T. and Brunk C. (1994).
Reducing Misclassification Costs. In Proccedings of the 11th International
Conference of Machine Learning, pages 217-225. Morgan Kaufmann.

Rummelhart, D. E.; Hinton, G. E.,; and Williams, R. J. (1986). Learning Inter-
nal Representations by Error Propagation, chapter 8, pages 318-364. MIT
Press.

Salzberg, S. (1991). A nearest hyperrectangle learning method. Machine Learn-
ing, 6:277-309.

Stanfill, C. and Waltz, D. (1986). Toward Memory-Based Reasoning. Commu-
nications of the ACM, 29(12):1213-1229.

Weiss, S. M. and Kulikowski, C. A. (1991). Computer Systems That Learn -
Classification and Prediction Methods from Statistics, Neural Nets, Machine
Learning, and Ezxpert Systems. Morgan Kaufmann.

Wess, S. (1993). PATDEX - Inkrementelle und wissensbasierte Verbesserung
von Ahnlichkeitsurteilen in der fallbasierten Diagnostik. In Tagungsband
2. deutsche Ezpertensystemtagung XPS-93, Hamburg. Springer Verlag.

Wess, S. (1995). Fallbasiertes Problemlésen in wissensbasierten Systemen zur
Entscheidungsunterstiutzung und Diagnostik. PhD thesis, University of
Kaiserslautern.

Wettschereck, D. (1994). A Study of Distance-Bases Machine Learning Algo-
rithms. PhD thesis, Oregon State University.

Wettschereck, D. and Aha, D. W. (1995). Weighting features. In Veloso, M.
and Aamodt, A., editors, Case-Based Reasoning Research and Development,
pages 347-358. Springer.

This article was processed using the I¥TEX macro package with LLNCS style

