
Deciding Reachability for Planar

Multi-polynomial Systems ?

K�arlis �Cer�ans and Juris V��ksna

Institute of Mathematics and Computer Science

The University of Latvia
Rainis boulevard 29, R��ga, LV { 1459, Latvia

email: jviksna@cclu.lv

Abstract. In this paper we investigate the decidability of the reach-

ability problem for planar non-linear hybrid systems. A planar hybrid

system has the property that its state space corresponds to the standard
Euclidean plane, which is partitioned into a �nite number of (polyhedral)

regions. To each of these regions is assigned some vector �eld which gov-

erns the dynamical behaviour of the system within this region. We prove
the decidability of point to point and region to region reachability prob-

lems for planar hybrid systems for the case when trajectories within the

regions can be described by polynomials of arbitrary degree.

1 Introduction

During recent years intensive research has been devoted to the problem of auto-

mated analysis of various classes of hybrid systems (HS). The di�culty of this

problem is due to the presence of a continuos projection of the system state

space (every system state of a HS typically consists of control location, which

is chosen from some �nite domain, and the value vector for some continuous

variables), this usually makes the system state space (wildly) in�nite. However,

there has already been much progress in the area, starting from the region graph

based methods for Timed Automata [2, 3, 6], and leading to recent more general

results and systematic investigations on what is decidable about hybrid systems

(see, for instance, [1, 9, 8]).

Still, most of these results are concerned with the analysis automation for

linear hybrid systems, where the continuous variables are allowed to change the

value during the course of time at some �xed rate (or the value change can be

non-deterministic, with any rate from a certain �xed interval).

It can be noted, however, that for the full class of linear HS even the sim-

pliest veri�cation problems are undecidable (see, for instance [6, 5, 1]), so any

decidability result in this area is bound to indentify a certain subclass of systems

to which it does apply.
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On the other hand, the behaviour of practical hybrid systems is most often

governed by some non-linear laws. Therefore it is natural to ask, whether there

are natural classes of non-linear HS, which do admit automated veri�cation. An

important study of this problem is already [7], where the possibility of veri�cation

on nonlinear hybrid systems via the reduction to linear clock and rate hybrid

automata is discussed, and corresponding at least sound veri�cation methods

are presented.

In this paper we investigate the decidability of the reachability problem for

planar non-linear hybrid systems. A planar hybrid system has the property that

its state space corresponds to the standard Euclid plane, which is partitioned

into a �nite number of (polyhedral) regions. To each of these regions is assigned

some vector �eld which governs the dynamic behaviour of the system within

this region. We prove the decidability of point to point, edge to edge and region

to region reachability problems for planar hybrid systems for the case when

trajectories within the regions can be described by polynomials of arbitrary

degree.

Our results are a generalization of those of [10], where the subcase of our

problem with the vector �elds within the regions being constant (the so-called

multi-linear model) was considered. We are able to reuse also a part of the proof

from [10] to show that every in�nite trajectory of the system either intersects

only with a �nite number of the region boundaries, or starting from some point

will repeatingly intersect certain �xed sequence of region boundaries (in fact

this result holds even for much wider classes of systems, its demonstration relies

essentially on the fact that trajectories within the regions do not intersect).

The main problem to be dealt with in our \multi-polynomial" case essentially

consists in showing the decidability of the \abandonment" of an edge (region

boundary, or some its part): given some repeating sequence of edges intersected

by a trajectory, decide, whether this repetition will last forever, or after some

�nite number of edge-to-edge steps some other edge intersection sequence will

appear.

This problem is solved, in essence, by explicating the polynomial dependen-

cies of future region border intersection points from the previous ones on the

trajectories, and characterizing the \limit points" of the intersection point se-

quences in the terms of �xed points and roots of appropriate polynomials.

Our results can be viewed as showing the non-essentiality of the linearity
requirement for the decidability results in the setting of [10]. However, as it

has been shown in [4], the 2-dimensionality requirement is essential for the de-

cidability of the reachability even for the case of multi-linear systems (in [4] a

construction modeling Turing machines by 3-dimensional multi-linear systems is

presented, thus proving the undecidability of any nontrivial veri�cation problem

for that class of systems).

The organization of the rest of the paper is, as follows. In the next section

we give main de�nitions and notation used throughout the paper. Section 3

reminds already known results about general planar hybrid systems. Section

4 contains our results about decidability results for multi-polynomial systems.



Finally, Section 5 contains some conclusions and indicates possible directions for

future work.

2 Main de�nitions

De�nitions and notations in this paper are more or less standard and similar to

[10].

Symbols R and R+ will stand for the sets of real and real positive numbers,

Q and Q+ for the sets of rational and rational positive numbers. With N we

denote the set of natural numbers, withN+ { the set of positive natural numbers.

By A we denote the set of algebraic numbers - i.e. the set of numbers which

are roots of polynomials p(x) with rational coe�cients. We represent each such

number a as a pair hp(x); ii, where p(x) is some polynomial with coe�cients

from Q, such that p(a) = 0, and i 2 N+ is the index of a in the increasingly

ordered sequence of p roots, i.e., i = card(fx 2 R j p(x) = 0 & x < ag) + 1.

(Of course, such representation is not unique.) We say that an algebraic number

a is computable (from some subset A of natural numbers), if there exists an

algorithm that on input A computes coe�cients of some p(x) and number i,

such that a = hp(x); ii.
We consider the Euclid plane R2 with standard metric d, i.e. such that for

any two points a = (x1; y1); b = (x2; y2) 2 R2 the distance d(a; b) between a and

b is de�ned by the equality d(a; b) =
p
((x1 � x2)2 + (y1 � y2)2).

A closed half-plane is de�ned as a set H in the form H = f(x; y) 2 R2 j
Ax+By +C � 0g for some constants A;B;C 2 R.

For an arbitrary set S � R2 we de�ne the set of interior points of S as

int(S) = fa 2 S j 9" 2 R+ : U (a; ") � Sg, where U (a; ") = fb 2 R j d(a; b) <
"g. We de�ne the closure of S as cl(S) = fa 2 R2 j 8� 2 R+ 9b 2 S : d(a; b) <

�g, and the boundary of S as bd(S) = cl(S) � int(S).

A (closed) polyhedral set P is an intersection of �nitely many closed half-

planes, such that int(P ) 6= ;.

De�nition1. A �nite polyhedral partition of R2 is a family of polyhedral sets

P = fP1; : : : ; Png with disjoint sets of interior points, such that
S
n

i=1Pi = R2.3

By bd(P) we denote the set of all points which belong to bd(Pi) for some

Pi 2 P.
Let P be some polyhedral set. We say that a vector �eld is de�ned in the set

P , if a system of following di�erential equations is assigned to the set P

�
_x = f1(x; y);

_y = f2(x; y);
(1)

where f1(x; y) and f2(x; y) are continuous functions jointly in x and y.

Such equation allows to split the region P into set of disjoint trajectories, i.e.

into set of curves with equations

�
x(t) = gx(t);

y(t) = gy(t);
(2)



which satisfy the given system (1) and are de�ned for values of t 2 R, such that

(x(t); y(t)) 2 P . We assume that these curves are oriented in the direction in

which the value of t is increasing.

In this paper we restrict our attention to the case when all trajectories in

P are polynomial and without singularities, i.e. such that for some polynomial

p(x; y) all trajectories satisfy equation p(x; y) = C for some C 2 R, and such

that all trajectories that enter the region P also leave it and vice versa. It is

known that this case corresponds to the situation given in the next de�nition.

De�nition2. We say that in a polyhedral region P a vector �eld is de�ned by

polynomial p(x; y), if it is de�ned by system

�
_x = p

0

y
(x; y);

_y = �p0
x
(x; y);

(3)

and p(x; y) is a polynomial, such that for all points a = (x; y) 2 int(P ) either

p
0

y
(x; y) 6= 0, or p0

x
(x; y) 6= 0.3

All trajectories in P in this case will satisfy equation p(x; y) = C for some

C 2 R. We shall assume that in parametrical form these trajectories can be

described by equation

�
x(t) = gp;x(t; C);

y(t) = gp;y(t; C):
(4)

It is known that functions gp;x and gp;y can be e�ectively approximated from

p(x; y) (i.e. it is possible to compute gp;x(t; C) and gp;y(t; C) up to an arbitrary

degree of approximation). However, in general case they are neither polynomial,

nor can be e�ectively found.

If P is a polyhedral set in which a polynomial vector �eld satisfying the

system (3) is de�ned, then any point A 2 bd(P ) belongs to one of three di�erent

types with respect to the region P (see Fig. 1).
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Fig. 1.Three di�erent types of boundary points for a region with polynomial
trajectories. In case 1 point A is an exit from P , in case 2 point A is an entry

to P and in case 3 point A is neutral with respect to P .

Each point on border of P can belong either to one of the types 1{3, or

simultaneously to types 1 and 2.

These three types can be described more formally in the following way.



If the vector �eld in P is given by the system (3), then point A = (x0; y0)

belongs to some trajectory T which satis�es equation (4) for some functions gp;x
and gp;y. We assume that gp;x(t0; C) = x0 and gp;y(t0; C) = y0 for some t0 2 R.

We say that point A 2 bd(P ) is an entry to P , if there exists t0 > t0, such that

(x(t); y(t)) 2 P for all t 2 [t0; t
0], where x(t) = gp;x(t; C) and y(t) = gp;y(t; C).

We say that point A 2 bd(P ) is an exit from P , if there exists t
0
< t0,

such that (x(t); y(t)) 2 P for all t0 2 [t0; t0], where x(t) = gp;x(t; C) and y(t) =

gp;y(t; C).

Otherwise we say that point A is neutral with respect to P . In this case the

trajectory T consists of a single point A.

The set of all entry points to P we shall denote by In(P ), the set of all exit

points from P { by Out(P ) and the set of all neutral points { by Neut(P ).

De�nition3. A multi-polynomial hybrid system on R2 is H = (P; '), where P
is a polyhedral partition of R2 and ' is a function which assigns to each region

of P a vector �eld de�ned by some polynomial p(x; y).3

Thus, a multi-polynomial hybrid system gives a partition of the Euclid plane

into polyhedral sets in each of which some polynomial vector �eld without sin-

gularities is de�ned.

Since we are interested in the decidability of reachability problems in such

systems, we have to ensure that multi-polynomial hybrid system is represented

in some e�ective way. Therefore, throughout this paper we shall further assume

(if not explicitly stated otherwise) that for a given hybrid system H = (P; ')
all regions in P are de�ned as intersections of half-planes Ax + By + C � 0

with algebraic coe�cients A;B and C (i.e. such that A;B;C 2 A). Similarly,

we shall further assume that function ' to each P 2 P will assign a polynomial

with algebraic coe�cients.

De�nition4. A step of a multi-polynomial hybrid system H = (P; ') is a pair

(a; a0) of boundary points a = (ax; ay); a
0 = (a0

x
; a
0

y
) 2 bd(P ), for some P 2 P,

such that for the polynomial p(x; y) = '(P ) the equalities ax = gp;x(t0; C),

ay = gp;y(t0; C), a
0

x
= gp;y(t

0
; C) and a0

y
= gp;y(t

0
; C) hold for some t0; t

0
; C 2 R,

with t0 > t0, and for all t 2 [t0; t
0] we have inclusion (gp;x(t; C); gp;y(t; C)) 2 P .3

In such case we shall also say that the step (a; a0) de�nes trajectory p(x; y) =

C.

De�nition5. A path of a hybrid system H = (P; ') is a sequence (�nite or

in�nite) s = a1; a2; : : : of points a1; a2; : : : 2 bd(P), such that either s = a1, or

for every i > 0, and ai+1 from s:

1. the pair (ai; ai+1) is a step, and

2. there does not exist a0
i+1 2 bd(P), such that ai+1 6= a

0

i+1, and (ai; a
0

i+1) is a

step.3

The second condition in the de�nition of the path allows to eliminate non

determinism in hybrid system { i.e. if in some situation we can proceed by two

di�erent trajectories we are not allowed to choose either of them.



A �nite path s = a1; : : : ; ak is extendable, if there exists a path s
0 =

a1; : : : ; ak; ak+1.

For a polyhedral set of a given hybrid system H = (P; ') we partition the

boundary of P into edges in such a way that each edge (if we do not consider

its end points)

{ intersects with boundaries of exactly two polyhedral sets P;Q 2 P, and
{ contains only entry, or only exit, or only neutral points with respect to both

regions P and Q.

A line segment S in R2 is a set in the one of the forms S = f(x; y) 2 R2 j
Ax +By +C = 0; u1 � x � u2g or S = f(x; y) 2 R2 j Ax+ By + C = 0; w1 �
y � w2g for some constants A;B;C 2 R, u1; u2; w1; w2 2 R[f1g, with u1 < u2

and w1 < w2. Point A(x0; y0) 2 S is an end point of S, if x0 2 fu1; u2g \R or

y0 2 fw1; w2g \R. The set of all (i.e. of one or two) end points of S we denote

by B(S). By I(S) we denote the set S �B(S).

De�nition6. The line segment e is an edge of P 2 P, if

1. e � P \Q for some Q 2 P,
2. each point of I(e) belongs to only one type with respect to region P and to

only one type with respect to region Q, and

3. if A 2 B(e), then either A 2 R for some R 2 P, R 6= P , R 6= Q, or A is

of di�erent type than points in I(e) with respect to one of the regions P or

Q.3

Set of all edges of P 2 P we shall denote by E(P ). By E(P) we shall denoteS
P2P

E(P ).

De�nition7. Let s = a1; a2; : : : be a path in H. We say that X(s) = S1; S2; : : :

is a signature of s, if for each i � 1 we have Si = fe 2 E(P) j ai 2 eg.3
Finally, we de�ne the notion of the reachability from point a to point b. We

begin with a more technical notion of 1-reachability which covers the case when

b is reachable from a by a trajectory within one region.

De�nition8. Let H = (P; ') be a (non singular) hybrid system. Let a =

(ax; ay); b = (bx; by) 2 R2. We say that b is 1-reachable from a, if a; b 2 P for

some P 2 P and, if there exist a1; a2 2 bd(P ), such that (a1; a2) is a step and

both a and b lie on the trajectory p(x; y) = C de�ned by the step (a1; a2), and,

besides that, there exist t1; t2 2 R, such that gp;x(t1; C) = ax, gp;y(t1; C) = ay,

gp;x(t2; C) = bx, gp;y(t2; C) = by and t1 � t2.3

De�nition9. Let H = (P; ') be a (non-singular) hybrid system. Let a; b 2 R2.

We say that b is reachable from a, if there exists a �nite path s = a1; : : : ; an,

such that a1 is 1-reachable from a and b is 1-reachable from an.3

We say that an edge e2 is reachable from an edge e1, if there exist a1 2 e1

and a2 2 e2, such that point a2 is reachable from point a1. Similarly, we say that

a region P2 is reachable from a region P1, if there exist a1 2 P1 and a2 2 P2,

such that point a2 is reachable from point a1.



3 Some properties of planar deterministic systems

In this section we are going to remind some general properties of planar hybrid

systems, which are proved (or can be proved similarly as) in [10] and which in

particular hold also for multi-polynomial systems.

Let H = (P; ') be some hybrid system. We shall assume that with an arbi-

trary edge e 2 E(P) there is associated an ordering of the points of e, namely,

that to some point a0 = (a0;x; a0;y) 2 e, such that a0;x; a0;y 2 A, there is

assigned coordinate 0, and to any other point a 2 e there is assigned some

coordinate c(a; e) 2 R, such that for any two points a1; a2 2 e the equality

(c(a1; e) � c(a2; e))
2 = d(a1; a2)

2 holds. By a � b, where a; b 2 E, we shall de-

note the fact that c(a; e) � c(b; e). (It is not important, exactly which systems of

coordinates for edges we chose, we only assume that such systems of coordinates

are �xed for a given hybrid system H and that the coordinates are e�ectively

computable from H.)

The following result can be proved similarly as in [10].

Theorem10 (Maler, Pnueli). Let s = a1; a2; : : : be a path that intersects e 2
E(P) in three points b1 = ai; b2 = aj ; b3 = ak, such that i < j < k. Then, b1 � b2

implies b2 � b3 and b1 � b2 implies b2 � b3.3

Let e1; : : : ; en 2 E(P). We say that the sequence e1; : : : ; en forms a cycle, if

e1 = en and the edges e2; : : : ; en�1 are mutually distinct.

An edge e is said to be abandoned by a path s = a1; a2; : : : with signature

X(s) = S1; S2; : : : after position i, if e 2 Si and either s is �nite and e 62 Sj

for j > i, or s is in�nite and for some j; k, with i < j < k, there is a cycle

ej 2 Sj ; : : : ; ek 2 Sk.

Theorem11 (Maler, Pnueli). If and edge e is abandoned by a path s =

a1; a2; : : : with signature X(s) = S1; S2; : : : after position i, then e 62 Sj for
an arbitrary j > i.3

As a corollary it is possible to obtain the following result.

Corollary12 (Maler, Pnueli). Every in�nite path s = a1; a2; : : : has a sig-
nature in the form X(s) = S1; S2; : : : ; Si; (Si+1; : : : ; Si+j)

? for some i; j 2 N+.
Besides, the number j does not exceed the number of regions in hybrid system
H = (P; ').3

Thus, for a path s = a1; a2; : : :with X(s) = S1; S2; : : : and for an edge e 2 Si

for some i 2N+ we have e 2 Sj for some j > i if and only if edge e will not be

abandoned.

4 Reachability results

In this section we shall show that for a given multi-polynomial hybrid system

H the reachability problems between points, edges or regions are decidable. Our

results to a large extent are based on the following three theorems about algebraic

numbers. For the sake of brevity we are giving them here without proofs. We

also do not expect the novelty of these results.



Theorem13. Let p(x) = pnx
n+pn�1x

n�1+ � � �+p1x+p0 be a polynomial with
algebraic coe�cients pn; : : : ; p0 2 A. Then all real roots of p(x) are algebraic
and computable from pn; : : : ; p0.3

Theorem14. It is decidable, whether two algebraic numbers a; b 2 A are equal
or not.3

For an arbitrary function f : R! R we iteratively de�ne functions f (1)(x) =

f(x); f (2)(x) = f(f (1)(x)); : : : ; f (n)(x) = f(f (n�1)(x)); : : :.

Theorem15. Let p(x) : R ! R be a polynomial that is monotonous in some
interval [a; b] � R (i.e. either, for all x; y 2 [a; b], with x > y, we have inequality
p(x) � p(y), or, for all x; y 2 [a; b] with x > y, we have inequality p(x) � p(y)).
Let x0 2 [a; b] be such that l(x0) = limn!1 p

(n)(x0) 2 [a; b]. Then l(x0) is the
�rst root of the polynomial p(x) � x, larger than x0, if p(x0) > x0. Similarly,
l(x0) is the �rst root of the polynomial p(x)�x, smaller than x0, if p(x0) < x0.3

We shall also use the following relatively simple propositions. For the sake of

brevity their proofs are omitted.

Proposition16. Let H = (P; ') be a hybrid system (with algebraic coe�cients)
and let a 2 A2, P 2 P. Then it is decidable, whether or not a 2 P .3

Proposition17. Let H = (P; ') be a multi-polynomial hybrid system (with
algebraic coe�cients). Then the set of edges E(P) is �nite and for each e 2 E(P)
the elements of B(e) are algebraic and computable from H.3

Proposition18. Let H = (P; ') be a multi-polynomial hybrid system and let
a = (ax; ay) 2 e\A2 for some e 2 E(P). Then the maximal (i.e. non-extendable)
path s = (a1 = a); a2; : : : containing a is computable (i.e. all numbers ai are
algebraic and computable from a and i, and if s is �nite of length n, then there
is an algorithm which for i > n produces the answer that ai is unde�ned).3

Proposition19. Let H = (P; ') be a multi-polynomial hybrid system. Let s =
a1; a2; : : : be a path, such that a1 2 A2. Then signature X(s) is computable, i.e.
for each i 2N+ we can compute points in B(e) for all edges e 2 Si.3

Proposition20. Let H = (P; ') be a multi-polynomial hybrid system. Let a =
(ax; ay) 2 int(P )\A2 for some P 2 P and let p(x; y) = '(P ). Then there exists
a step (a1 = (a1;x; a1;y); a2 = (a2;x; a2;y)), such that p(ax; ay) = p(a1;x; a1;y) =

p(a2;x; a2;y), and the numbers a1; a2 are computable from a (i.e. there exists a

trajectory through a, end points of which can be computed).3

FromProposition 17 it easy follows that for a given hybrid systemH = (P; ')
and for any edge e 2 E(P) it is decidable whether signature X(s) for some path

s = a1; a2; : : : will contain an edge e in the i-th position. The following principal

lemma shows that it is also decidable whether the edge e will be eventually

abandoned.



Lemma21. Let H = (P; ') be a multi-polynomial hybrid system. Let s =

a1; a2; : : : be a path in H with signature X(s) = S1; S2; : : : and with a1 2 A
2. Let

e 2 Si for some i 2 N+. Then it is decidable, whether or not the edge e will be
abandoned.3

Proof. From the de�nition of abandonment and Theorem 12 it follows that e

will not be abandoned if and only if X(s) = S1; S2; : : : ; Si; (Si+1; : : : ; Si+j)
? for

some i; j 2 N+ and e 2 Si+k for some k 2N+, with 1 � k � j.

Thus, the abandonment of e is decidable, if for arbitrary edges

e1 2 Sm+1; : : : ; en = e1 2 Sm+n it is decidable whether in the cycle e1; : : : ; en
some edge will be eventually abandoned. It is not hard to see that it is su�cient

to show that it is decidable whether edge ek, with 1 � k � n, will be abandoned,

if either ek is the �rst edge from the cycle e1; : : : ; en, which actually will be

abandoned, or there are no edges in e1; : : : ; en, which will be abandoned.

Without loss of generality we can assume that e1 is an edge with such a

property. We have to show that it is decidable, whether e1 will be abandoned

or not. Let am+1 be the point in the path s that corresponds to the set Sm+1

from the signature X(s). We denote b1 = am+1, b2 = am+n, b3 = am+2n�1,: : : .

Clearly the edge e1 will not be abandoned if and only if for all i 2N+ we have

bi 2 e1.

Let P be the region containing edges e1 and e2. Let p(x; y) = '(P ). Let

p(x; y) = C1 be the trajectory going through points am+1 and am+2. Since e1 is a

line segment, we have that C1 is algebraic and can be computed from am+1. Also

am+2 is algebraic and can be computed from C1, and thus, by Theorem 13, also

from b1 = am+1. Similarly, we can show that am+3 is algebraic and computable

from am+2, and, thus, by Theorem 13, also from b1, etc., up to b2 = am+n.

Thus, b2 is algebraic and computable from b1. Let b2 = hp1(x; b1); i1i. Simi-

larly, we can show that b3 = hp2(x; y); i1i, etc., while bi 2 e1 holds. Since the poly-

nomials pi depend only on regions de�ned by the pairs of edges

(e1; e2); (e2; e3); : : : ; (en1 ; en), then p1 = p2 = � � �. We denote p1(x; y) by g(x; y).

However, we can not guarantee that g(x; y) as polynomial on x has the same

number of roots for all y 2 A. Thus, we shall not necessarily have i1 = i2 = � � �.
Still, it is not hard to see that the number of roots for g(x; y) can change only

on values of y, such that g0
x
(x; y) = 0 and g(x; y) = 0 for some x 2 A. The

number of such values of y is �nite, they are algebraic and computable from

g(x; y). Thus, we can split the edge e1 into �nite number of (open or closed)

subintervals I1; : : : ; Ir, such that for an arbitrary q, with 1 � q � r, for all y 2 Iq

the polynomial g(x; y) has the same number of roots. Since in each region P 2 P
trajectories p(x; y) = C change continuously with respect to C, for all bu 2 Iq ,

the values of iu must be equal.

By Theorem 10 the sequence b1; b2; : : : is monotonous, thus, by one or more

applications of Theorem 15, b = limi!1 bi is computable from b1. Clearly, we

shall have bi 2 e1 if and only if b 2 e1. Therefore, it is decidable whether the

edge e1 will be abandoned, and, thus, also for an arbitrary e 2 Si it is decidable

whether or not the edge e will be abandoned.3



Theorem22 Main result. Let H = (P; ') be a multi-polynomial hybrid sys-
tem. Let a; b 2 A2. Then it is algorithmically decidable whether point b is reach-
able from point a.3

Proof. Case 1. Let a = (ax; ay) 62 e for all e 2 E(P). Then a 2 int(P ) for some

P 2 P (and such P is uniquely de�ned), and due to Proposition 16 region P can

be found algorithmically. From Proposition 20 it follows that we can compute

algebraic numbers a1; a2, such that (a1; a2) is a step and the point a lies on a

trajectory from a1 to a2. Similarly, we can compute region Q and points b1; b2,

such that b = (bx; by) lies on a trajectory de�ned by step (b1; b2).

If a1 = b1 (and thus also a2 = b2), then points a and b lie on the same

trajectory given by equations �
x(t) = gp;x(t; C);

y(t) = gp;y(t; C);

and p(x; y) = C, for p(x; y) = '(P ). Since C = p(a1;x; a1;y), the number C is

algebraic and computable from a. Up to an arbitrary degree of approximation

we can compute t1 and t2, such that ax = gp;x(t1; C), ay = gp;y(t1; C) and

bx = gp;x(t2; C), by = gp;y(t2; C). By de�nition b is reachable from a if and only

if either t1 < t2, or a = b. Decidability whether a = b follows from Theorem 14.

If a 6= b, we can eventually decide whether t1 < t2 or t1 > t2. Therefore, in this

subcase, it is decidable, whether b is reachable from a.

If a1 6= b1, then by de�nition b is reachable from a if and only if b1 is reach-

able from a1. This subcase is covered by Case 2.

Case 2. Let a = (ax; ay) 2 e for some e 2 E(P). Let (b1; b2) be the step

containing trajectory through b, and let S = fe 2 E(P) j b1 2 eg.
If a 6= b (case a = b is trivial), then by de�nition b is reachable from a if and

only if b1 is reachable from a. By Proposition 18 all elements in maximal path

s = (a1 = a); a2; : : : are computable. We continue computation of ai for i 2N+

until one of the following holds.

1. There exists i 2N+ with ai = b1. Then, by de�nition, b is reachable from a.

2. For some i element ai becomes unde�ned (i.e. s turns out to be �nite) and

for all j < i we have aj 6= b1. Then, by de�nition, b is not reachable from a.

3. We have computed the path s = (a1 = a); a2; : : : ; ai; : : : ; ai+j, such that

in the signature X(s) = S1; S2; : : : ; Si; (Si+1; : : : ; Si+j)
?, none of the sets

Si+1; : : : ; Si+j contains an edge that will be abandoned (by Lemma 21 this

problem is decidable).

If there is no k, with 1 � k � j, such that S = Si+k, then due to Corollary 12

b is not reachable from a.

Otherwise, let S = Si+k0 . If card(S) > 1, then clearly ai+k0 = b1, thus b is

reachable from a.

If card(S) = 1 (we assume in this case that S = feg), then by cm, where

m 2 N+, we shall denote the coordinate c(ai+mk0 ; e). Let c = c(b1; e).

Numbers c; c1; c2; : : : ; cm; : : : are algebraic and computable from a; b and



m. Similarly as in proof of Lemma 21 we can show that there exists a

polynomial with rational coe�cients p(x; y) and number u 2 N+, such

that cm+1 = hp(x; cm); ui. Due to Theorem 10 the sequence c1; c2; : : : is

monotonous, and due to Theorem 15 it converges to some computable c0.

Therefore, by de�nition b is unreachable from a, if c > c1 and c > c
0, or

c < c1 and c < c
0. Otherwise we can eventually �nd w 2 N+, such that

either cw � c � cw+1, or cw+1 � c � cw. In both cases b is reachable from a,

if c = cw or c = cw+1, and b is unreachable from a otherwise.

Thus, we have shown that also in Case 2 reachability from a to b is decidable.3

Similarly, as it is done in [10], we can modify the proof of Theorem 22 to

show that the reachability problem from edge to edge is also decidable.

Theorem23. Let H = (P; ') be a multi-polynomial hybrid system. Let e1; e2 2
E(P). Then it is algorithmically decidable whether edge e2 is reachable from edge
e1.3

As an easy corollary we obtain decidability result for regions of P.

Corollary24. LetH = (P; ') be a multi-polynomial hybrid system. Let P1; P2 2
P. Then it is algorithmically decidable whether region P2 is reachable from region
P1.3

5 Some conclusions and open problems

In this paper we have demonstrated that the reachability problem is decidable for

planar multi-polynomial hybrid systems. This shows that the fact that HS state

space �ts on the topology of the plane and has continuous execution trajectories

is quite a strong requirement which makes the algorithmic analysis of HS possible

even in the case of rather complicated non-linear behaviour rules.

The model of multi-polynomial systems in our paper contains a technical

restriction that the vector �elds within the regions do not have singularities,

however, it is clear that this is not essential, and the decidability results can be

proved also for the case when the singularities are allowed. We conjecture that

the same results hold also for systems which allow nondeterministic behaviour

on the borders between the regions.

It seems that our results can be generalized also for the case, when the borders

of the regions of the partition of the plane are polynomial curves, instead of just

being straight line segments.

It also would be interesting to study further the classes of HS for which the

decidability of the reachability can be proved by exploiting mainly the planar

topological properties of the state space (for instance, this method would apply

to most of systems where the vector �elds inside the regions are de�ned by some

linear autonomous systems, what would amount to having the trajectories of the

form p(x; y; C) = 0 instead of just p(x; y) = C).



We conjecture that it should be possible to generalize our decidability results

also for 2-dimensional systems with continuous trajectories (no reset operations),

where more general kinds of non-linearity can be admitted. An interesting future

study could be looking also at the systems with 2-dimensional state space which

is topologically more complicated than the Euclid plane (this is what could be

obtained by relaxing the requirement that the values of continuous variables

should uniquely determine the control state).

At some point it would be interesting to compare the classes of non-linear HS

for which the decidability of the reachability can be shown using primarily the

topological arguments with the classes which can be shown decidable by some

other means. This largely remains to be a subject of a future work.
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