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Abs t r ac t .  This paper studies 3-dimensional visibility representations of 
graphs in which objects in 3-d correspond to vertices and vertical visibil- 
ities between these objects correspond to edges. We ask which classes of 
simple objects are universal, i.e. powerful enough to represent all graphs. 
In particular, we show that there is no constant k for which the class of 
all polygons having k or fewer sides is universal. However, we show by 
construction that every graph on n vertices can be represented by poly- 
gons each having at most 2n sides. The construction can be carried out 
by an O(n 2) algorithm. We also study the universality of classes of simple 
objects (translates of a single, not necessarily polygonal object) relative 
to cliques Kn and similarly relative to complete bipartite graphs K,~,m. 

1 I n t r o d u c t i o n  

This paper  considers 3-dimensional visibility representations for graphs. Vertices 
are represented by 2-dimensional objects floating in 3-d parallel to the xy-plane 
(these objects can be swept in the z direction to form thick objects if desired). 
There is an edge in the graph if, and only if, the objects corresponding to its 
endpoints can see each other along a thick line of sight parallel to the z-axis. A 
thick line of sight is a tube of arbitrarily small by positive radius whose ends 
are contained in the objects. Throughout  this paper, we use the te rm "visibility 
representation" to refer to this particular model. 

The corresponding notion of 2-dimensional visibility has received wide atten- 
tion due to its applications to such areas as graph drawing, VLSI wire routing, 
algorithm animation, CASE tools and circuit board layout. See [DETT] for a 
survey on graph drawing in general; for 2-dimensional visibility representations, 
see for example [DH], [TT], [KKU], [W]. 

Explorati.on of 3-dimensional visibility is still in the early stages. From the 
point of view of geometric graph theory, it is natural  to consider visibility rep- 
resentations of graphs in dimensions higher than 2. From the point of view of 
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visualization of graphs, it is basic to ask whether 3-dimensional representations 
give useful visualizations. For a 3-dimensional representation to be useful for 
visualization, it should be powerful enough to represent all graphs, or at least 
basic kinds of graphs. This motivates us to ask which classes of objects are uni- 
versal, i.e., can give visibility representations for all graphs, or all graphs of a 
given kind? 

The visibility representation considered in this paper has also been studied 
in [BEE+] (an abstract was presented at GD'92), in [aom], and in [FHW]. In 
these papers, the objects representing vertices are axis-aligned rectangles, or 
disks, and the properties of graphs that can be represented by these objects are 
studied. By contrast, this paper begins with families of graphs (all graphs, or all 
graphs of a specific kind), and explores simple ways to represent all graphs in 
the family. 

Section 2 considers which translates of a given, fixed figure are universal 
for cliques K,~ and complete bipartite graphs Kin,  n. Section 3 uses counting 
arguments based on arrangements to show that  no class of polygons having at 
most some fixed number k of sides is strong enough to represent all graphs. 
Section 4 shows that  every graph on n vertices has a visibility representation 
by polygons each of which has at most 2n sides. These sections also contain 
additional results not listed here in the introduction. 

2 G r a p h s  r e a l i z a b l e  b y  t r a n s l a t e s  o f  a f i g u r e  

In this section we will investigate which complete and which complete bipartite 
graphs can be realized as visibility graphs of translates of one fixed figure. Here 
a figure is defined as an open bounded set whose boundary is a Jordan-curve. 
We say that  a graph G can be realized by a figure F iff G is the visibility graph 
of translates of F.  It will turn out, for example, that  with many figures arbi trary 
complete graphs can be realized whereas each figure can only realize a finite 
number of stars, i.e. complete bipartite graphs of the form Kl,n. 

2.1 C o m p l e t e  g r a p h s  

The realization of complete graphs I(n by translates of special figures like squares 
and disks has been investigated by Fekete, Houle, and Whitesides [FHW] and by 
Bose et al. [BEF+]. In [FHW] it was shown that  K7 can be realized by a square, 
whereas any Kn, n _> 8 cannot. On the other hand, any Kn can be realized by 
a disk. We will consider more general figures in the following theorem. 

First, we need the following definitions: 
A curve C is called strictly convex, iff for any two points p, q E C the interior 
of the line segment ~-~ does not intersect C. We say that  a figure F has a local 
roundness if there is some open set U such that  UMOF is a strictly convex curve. 

T h e o r e m  2.1 a) Any  Kn can be realized by any nonconvex polygon. 
b) For any convex polygon P there is an n E ~W such that no K m , m  >_ n can 

be realized by P.  
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c) To any Kn  there is a convex polygon realizing it. 
d) A n y  figure F with a local roundness can realize any K~.  

Proo]. a)We first observe that the figure in Fig.1 can realize any Kn. I f  P is a 
nonconvex polygon then it has at least one nonconvex vertex. Arranging copies 
of P in a neighborhood of this vertex as in Fig. 1 realizes any Kn. b)(Sketch) 

Let P 1 , . . . , P k  be a sequence of (projections of) translates of a convex n-gon 
ordered by increasing z-coordinates, e l , . . . ,  ek the corresponding translates of 
one edge, and Hi the halfplane bounded by the straight line through ei which 
contains Pi, i = 1 , . . . ,  k. We define a linear order on e l , . . . ,  ek (more precisely, 
on the set of lines passing through them) by: ei _< ej ~ Hi _~ Hi.  By geometric 
considerations it can be shown: 
C l a im :  If /)1,  P2, P3 are translates of a convex polygon realizing Ka, then not 
all sequences el, e2, e3 of translates of one edge can be monotone in the above 
order. 

For example in Fig. 2 el,  e2, e3 is monotone increasing, dl, d2, d3 monotone 
decreasing, but el, e2, c3 is not monotone. 

Fig. 1. Realization of an arbitrary K~ 
with a nonconvex polygon 

Fig. 2. Triangles realizing K3. 

Now let f ( k )  = (k - 1) 2 + 1 for k E ~W and let for n E EV N := fn(3)  (n- 
fold iteration of f ;  actually N = 2 2~ + 1). Using an argument from [BEF+] we 
will show that  K N  cannot be realized by any convex n-gon. Suppose otherwise 
and let e l , . . . ,  e ~ be the edges and P 1 , . . . ,  PN the translates of the n-gon. Since 
N = ( f n - l ( 3 )  - 1) 2 + 1 by the Theorem of ErdSs-Szekeres [ES] the sequence 
e~ , . . . ,  e~v of translates of edge e 1 has a monotone subsequence of length f ~ - I  (3). 
Considering the corresponding subsequence of polygons it must have a subse- 
quence of length fn -2  (3) where both the e 1- and e2-sequences are monotone. 
Iterating this process we would obtain a subsequence of length f~ := 3 where 
all edge-sequences are monotone in contradiction to the claim above, c) follows 

from the fact that  any K~ can be realized by disks and any disk can be approx- 
imated to arbi t rary precision by convex polygons, d) Consider a nondegenerate 
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segment of F's boundary that  is strictly convex. We can select a suitable subseg- 
ment a with the following property: If 1 is the straight line through a~s endpoints 
then no line perpendicular to 1 intersects a in more than one point. 
Assume also w.l.o.g, tha t  l is horizontal, so a looks as in Fig. 3. 

! 

Fig. 3. Curve segment (r 

Let S be the convex figure bounded by a and the line segment between its 
endpoints. We will show by an inductive construction: 

Claim: For any K~ there exists a realization by n translates $ 1 , . . . ,  Sn of S 
with the following properties: 

i) Let S ~ , . . . , S ~  be the projections of S 1 , . . . , S n  into the xy-plane. There 
exists a horizontal straight line g such that  all the horizontal segments of 
S~ , . . . ,  S~ lie strictly below g. 

ii) There is a visibility for any pair Si, Sj, i r j strictly above g. 
iii) Let sij be the intersection point of S~, S~. For i = 1 , . . . ,  n - 1 some non- 

degenerate part ci of Si's boundary and some part of its interior are visible 
from z = c~ in any neighborhood of si,n. 

iv) The z-coordinate of Si is i for i = 1 , . . .  ,n. 

The claim is obviously true for n = 1. 
Suppose now by inductive hypothesis that  we positioned $ 1 , . . . ,  Sn satisfying 
the claim. We choose some point p on the boundary of Sn to the right of all 
sl,~,. �9 sn-l ,n  as intersection point s,~+l,~ (see Fig. 4). Now we position Sn+l 
in the plane z = n + 1 as follows: 
First we put it exactly over S~. Then we move it upwards slightly so that  i) is 
still correct. Then it is moved to the left until it intersects Sn in p (see Fig. 4). 
The total motion can be made arbitrarily small, in fact, small enough so that  
iii) is still satisfied, ii) is satisfied by p a r t  iii) of the inductive hypothesis since 
8 n +  1 covers all points 8 1 , n  . . . 8 n - - l , n .  

2.2 Complete Bipartite Graphs 

[BEF+] considers the realization of complete bipartite graphs by unit disks and 
unit squares. It is shown that  K2,3 and K3,3 can be realized but  Kj,3, j _> 4 
cannot. Here we will consider translates of more general convex objects and in 
particular the realization of stars Kl,n. In fact, we will show: 
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~c4 
C5 ...... .....-- ~ . . ~ _  c~ . .oO--'~176 ~ 

Fig. 4. Construction of $7. 

T h e o r e m  2.2 a) K1,5 but no Kl,n,  n > 6 can be realized with parallelograms. 

b) I f  B is a strictly convex body K1,6 but no Kl,n,  n >_ 7 can be realized by B.  

c) To any figure F there exists an n E SV such that for all k E ~V, k > n Kl,k 
is not realizable by F. 

d) To any Kn,m there exists a quadrilateral realizing it. 

Proof. a) A realization of K1,5 by parallelograms is quite straightforward. Kl,n 
n > 6 is not possible since one parallelogram cannot intersect 5 or more disjoint 
parallelograms of the same size.b) (Sketch) Here we use some results from con- 

vexity theory obtained by Hadwiger [H] and Griinbaum [G]. In fact, they showed 
that  at most 8 translates of a convex body B in two dimensions can touch B 
without intersecting it or each other. The number 8 is only achieved by parallel- 
ograms, otherwise it is 6. For strictly convex bodies we observe that  the tangent 
rays from B separating two neighboring touching translates all point into dif- 
ferent directions and their slopes form a strictly monotone sequence (see Figure 
5). From this it is possible to conclude that if one of the translates is removed 
one can distribute the others so that  they still touch B but not each other any 
more. Then they can be pushed slightly inward B and we have a realization of 
Ki,5. Placing another copy on the other side exactly over B gives a realization 
of K1,6. 

The impossibility of/(1,7 is derived with similar arguments from the fact 
that  no 6 translates of B can intersect B without intersecting each other (see 
[G]).c) Consider a realization of KI , ,  and its projection onto the xy -p lane .  

Then no point of the plane can be covered by the projections of more than three 
of the figures. Furthermore the figure representing the center of the star must 
be intersected by all others, so all projections must lie within in a circle whose 
diameter is at most three times the diameter of F.  These two properties imply 
that  the number of figures is limited.d) The construction is shown in Fig. 6. 



Fig. 5. B touched by 6 of its translates. 
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Fig. 6. Realization of K4,5 by quadrilat- 
erals 

3 A n  u p p e r  b o u n d  o n  t h e  n u m b e r  o f  g r a p h s  r e p r e s e n t a b l e  

b y  k - g o n s  

In this section we will show that  not each graph has a visibility representat ion by 
k-gons for some fixed k C ~W. In fact, we will even see that  in order to represent 
all graphs with n vertices by polygons, some of those must have more than [ ~'~ ! l o g n J  
vertices for some constant a > 0. 

D e f i n i t i o n  1. A graph is said to be k - r e p r e s e n t a b l e  iff there is a visibility 
representation with (not necessarily convex) simple polygons each having at 
most k vertices. 

The interesting fact that  for every k there is a graph which is not k- 
representable follows from the following theorem. 

T h e o r e m  2. There is an a > 0 and there are graphs G2 ,G3 ,G4 ,  . . . ,Gn, ... such 
that Gn has n vertices and is not [ ~'~ J-representable. log n 

The theorem follows quite easily from the following lemma. 

L e m m a 3 .  There is a/3 such that for  all n , k  there can be at mos t  2 ~nkl~ 
many  graphs with a fixed vertex set V = {vl ,  ..., Vn} which are k-representable. 

Proof. We consider an arbi trary k-representable graph G = (V, E)  with V = 
{vl,. . . ,  Vn}. Obviously, if G is k-representable then there exists a representat ion 
by polygons P1, ..., Pn parallel to the xy-plane with at most  k edges each. With- 
out loss of generality we can assume that  Pi has z-coordinate i for i = 1, ..., n. 

Consider the projections of all the polygons into the xy-plane. Extend each 
edge s of each polygon to a line ls, obtaining a family /2 of at most  m := nk 
not necessarily distinct straight lines. Each edge s and, thus, each line Is can be 
oriented by the convention that  the polygon lies, say, left of s. Now, G can be 
uniquely identified by the information in the following items. 



14 

1. the arrangement of the lines in / : .  
2. Each polygon Pi, i = 1, ..., n is identified by the description of a counterclock- 

wise tour around its boundary. In particular, the starting point s is given by 
a line l E s containing it and a number no <_ m meaning that  s is the n0th 
intersection point when traversing 1 in direction of its orientation. Then a 
sequence of at most k numbers nl ,  ..., nr E {1, ..., m} is given, meaning that  
the tour starts at s, goes straight on l for nl intersections, then turns into the 
oriented line crossing there, goes straight for n2 intersections, etc. Clearly, 
this describes a tour within the arrangement. 

Cleary, the information in the above items uniquely identifies the pairwise 
intersections of the projections of the polygons into the xy-plane. This together 
with the convention that  Pi has z-coordinate equal to i makes it possible to 
determine all visibilities, and hence G itself. 

It remains to count the number of different possibilities for the data in the 
above items: 

1. As is well known (see [A]) the number of different arrangements of m oriented 
straight lines is at most 2 ~lm log m for some constant f~l > 0. 

2. For each polygon there are  m possibilities for the starting line l, and at 
most m possibilities for each number no, . . . ,nr ,  r < k. So the number of 
possibilities per polygon is bounded by m k + 2  . Altogether, the number of 
possibilities is at m o s t  m (k+2)n , which is at most 2 B2m log m for some constant 

f~2 > 0 .  

Multiplying the upper bounds in 1 and 2 gives the desired total upper bound 
of 2 ~m log m where f~ = f~l + f~2. 

Since there are exactly 2(]) graphs with vertex set V there are at least 2( ] ) /n!  
(pairwise nonisomorphic) graphs with n vertices which is more than 2 ~n2 for some 

> 0. Theorem 2 follows from this lower bound and Lemma 3. 
On the other hand, every graph with n vertices is (2n + 1)-representable, 

which will be shown in the next section. 

4 T h e  C o n s t r u c t i o n  

This section gives a general construction which produces for any graph G -- 
(V, E)  a 3-dimensional visibility representation for G. The construction can be 
carried out in a straight-forward manner by an algorithm that  runs in O(n 2) 
time, where n is the number of vertices of G. Each vertex is represented by a 
polygon of O(n) sides (the polygons may differ in shape). 

If desired, the basic construction can be modified easily and with the same 
time complexity to produce convex polygonal (or polyhedral) pieces. Further- 
more, these pieces can be made to have all vertex angles of at least ~r/6. By 
using the technique of [CDR], it is also possible to implement the algorithm in 
O(n 2) time with respect to a Turing machine model of computation. 
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4.1 T h e  Bas i c  P i e c e s  

Let W denote a regular, convex 2n-gon centered at the origin O, and let 
wl, w2, . .  �9 w2n denote the locations of its vertices. We use W to define the basic 
pieces representing the vertices of G. For this purpose, let X denote a regular, 
convex n-gon with vertices located at the odd-indexed vertices of W. Imagine 
adding tr iangular "tabs" to X to obtain W as follows. Call edge w2i-1,  w2i+l of 
X tab position i, and for each i from 1 to n, add a triangle whose vertices are 
w2i_l,W2i,w2i_{_l to X at tab  position i. W is X together with its tabs (see Fig. 
7). 

The pieces of our construction are obtained from X in a similar way, except 
tha t  the tabs may vary in size. The construction may at tach to tab  position i 
of X a tab Ti with vertices w2i-1, ti, w2i+l. Vertex ti is called the tab vertex of 
Ti. In general, Ti lies inside the corresponding tab on W, with vertex ti lying on 
the radial line through O and w2i. 

w 4 = t  2 W Aws 
w2 t / / /  1 T1  

ition I �9 O position 3 

X T3 w 6 = t  3 

w 

w 7 

Ws=t  4 

Fig. 7. Regular n-gon X for n = 4 tabs. 

D e f i n i t i o n  4. Let P2i denote the point of intersection of the radial line through 
O and w2i with the line through w2i-1 and w2i+l. The size si of tab  T~ is defined 
by si = nd( t i ,p2i ) /d(w2i ,p2i ) .  

A tab of full size n has its tab  vertex ti positioned at w2i. 
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We depth first search G, assigning to each vertex a number i indicating 
the order in which the search discovers the vertex. The i th vertex discovered is 
represented by a polygon Pi consisting of a wedge-shaped portion of X with tabs 
of various sizes adjoined. See Fig. 8. 

W 
2i+1 

w2j-1 

position ~ """ . . .  

W 

2j+l 

t i = w2i 

W 

2i-1 

' I  

I position i J 
! 

t 
! 
I 
I 

Fig. 8. Piece Pi. 

0 

P �9 
1 

position i + n i 

~ 1 1 1  i 1 '  

, r ~' �9 j 

w 2(i+ni )+1 

t . 
l+n .  

1 

W 
2(i+n i )- 1 

The bounding wedge of Pi is defined by two radial segments emanating from 
O, one to w2i-1 and the other to W2(i+n,)+l, for some ni _> 0 to be determined. 
Between these radial segments, X has 1 + ni tab positions. Each piece Pi has a 
tab of full size n at its lowest indexed tab position, i.e., at position i. Hence P/ 
has a tab vertex ti(Pi) = w2i. For i < j _< i + ni, the existence and location of 
the tab vertex tj(Pi) of tab Tj(Pi) depends on the size sj(Pi) assigned to tab 
Tj(Pi). 

The idea behind the construction is as follows. Realize a depth first search 
tree for G by polygonal pieces floating parallel to the x, y-plane. Arrange these 
pieces so that  the piece P(v) representing a vertex v lies above the pieces rep- 
resenting vertices in the subtree rooted at v, with the x,y-project ion of P(v) 
containing exactly the projections of the pieces P(w) for which w belongs to the 
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subtree rooted at v. Thus each piece has the possibility of seeing its ancestors 
and descendants, but nothing else. 

Unless G itself is a tree, depth first search discovers back edges, i.e., edges 
of G that do not appear as tree edges in the depth first search tree. A familiar 
property of depth first search trees for graphs is that  each back edge must connect 
an ancestor, descendant pair in the tree. The purpose of adding tabs of varying 
sizes is to control which ancestors and descendants see each other. 

s i z e  = 3 

size = 2 

s i ze  = 1 

size = 1 

s i z e  = 0 

size = n 
l 

d 

t t 
I 
I 
I 
I 

L 
I 

P~ 

I 
I 

e I 
I 
I 
f 

b l 

/ 
t 

a / 

/ 
t 

W 
position i ,,-"----1- 2 i -  1 

. - - "  _ . . . . . . . . . . . . . . . . .  2 2 2 2 2 : : : : = :  . . . .  �9 
I I . . . . . . . . . . . . . . . .  
I 

~ J "(_ . . . . . . .  w 2i+1 

X 

Fig. 9. Back edges from i and their inverted staircase of tabs. 

w 2i 

Suppose the depth first search tree has a back edge between i and ancestor 
j of i. Our construction creates a visibility between the tab Ti of full size n in 
position i on Pi and a tab in position i on Pj. See Fig. 9. 

Of course there may be back edges in the tree joining i to k, where k lies on 
the path from i to its ancestor j.  (Consider k -- b,c, d in the figures.) In this 
case, our construction creates a visibility between the tab in position i on Pk 
and the full sized tab in position i on Pi. Note that the visibility between the 
tabs in position i on Pk and Pj must be blocked if the graph G contains no edge 
between j and k. Hence, for example, the tabs in position i on P~ and Pj must 
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be blocked from seeing each other by intervening tabs. 
Blocking inappropriate  visibilities between tabs is achieved by creating an 

inverted staircase of tabs above the tab of full size on Pi and the tab  in position i 
on Pj.  The tab on Pi has full size n. The tab in position i on the piece immediately 
above Pi is assigned size 0, as this piece sees Pi in any case. The tab  on the next 
piece above Pi is also assigned size 0 unless there is a back edge from i to the 
vertex corresponding to this piece; in this case, the tab  size is increased to 1. 
Tab size remains the same or increases with increasing integer z values. In fact, 
t ab  size increases precisely when Pi and the piece at the z value in question 
should be mutual ly visible. Thus the size of the tab in position i on Pj is equal 
to the number  of back edges of the form i, k, where k lies on the pa th  from i to 
j (possibly k = j ) .  

L e m m a  5. Let G be a connected graph. The following assignment of parame- 
ters to the piece representing an arbitrary vertex v of G gives a 3-dimensional 
visibility representation for G: 

- v is assigned its depth first search order i; 
- the index ni of v is set equal to the number of descendants of v in the depth 

first search tree; 
- the tab Ti(Pi) in position i on Pi is assigned size si(Pi) = n; 
- for i < j < i + ni the size sj(P~) of the tab Tj(Pi) on Pi at position j is set 

equal to the number of nodes on the tree path from j ,  up to and including i, 
that receive a back edge from j;  and 

- the z coordinate of Pi is set equal to 1 less than the z coordinate of its parent. 

Proof. (Sketch) A well-known property of depth first search ordering is tha t  the 
descendants of v are numbered with consecutive integers, beginning with i + 1. 
Thus Pi has, in addition to a tab of full size at position i, a tab  in position j for 
l < j < i + n i .  

It  is easy to check that  the pieces have disjoint interiors and tha t  Pi cannot 
see any Pk representing a vertex w unless w is either an ancestor or a descendant 
of v. Clearly, Pi sees its parent (if any) and all of its children. 

Let us check tha t  if the depth first search tree has a back edge from v, where 
v is numbered i, to some ancestor u of v, where u is numbered k, then Pi and Pk 
are mutual ly  visible. Pk has a tab in position i. This tab  aligns with the tab  of 
full size in position i on Pi. Furthermore,  the tab on Pk has size greater than  the 
intervening tabs in position i, as the number  of back edges from i on the pa th  
from i to k is at least one greater than the number of back edges on the pa th  
from i to k, up to but not including k. Hence Pi and Pk have a line of visibility 
between their tabs at position i. Thus all back edges are represented. 

I t  can also be checked that  no inappropriate visibilities axe present. 

It  is straightforward to design an algorithm that ,  by computing tab sizes 
efficiently, carries out the construction in O(n 2) time. Summarizing we obtain 

T h e o r e m  6. Every graph on n vertices is 2n-representable. Furthermore, a rep- 
resentation can be constructed in O(n 2) time. 
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C o r o l l a r y  7. The construction of Lemma 5 can be modified to produce convex 
pieces, fat pieces, polyhedral pieces, or pieces having any combination of these 
properties. 

Proof. To produce convex pieces, use a W with sufficiently many  vertices (12n) 
tha t  each piece has a vertex angle at O of at most  ~r/6. To produce fat pieces, 
move the vertex at O sufficiently close to the chord through the first and last ver- 
tices of Pi shared with W. To produce polyhedral pieces, take the cross product  
of Pi with a short line segment parallel to the z axis. 
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