
A d o c s : a D r a w i n g S y s t e m for G e n e r i c
C o m b i n a t o r i a l S t r u c t ures

Franw Bertaul t

INRIA Lorraine, 615 rue du Jardin Botanique, BP 101,
F-54600 Villers-les-Nancy, France

A b s t r a c t . Existing graph drawing systems imply the use of specific al-
gorithms for each kind of data structures. This paper provide a descrip-
tion of the hdocs program. The program is based on a generic description
of the structures, and thus allows to draw structures of an infinite num-
ber of classes. It can be used in order to produce graphical output for
Gala, an uniform random generator of combinatorial structures. It could
be used with other programs and is well suited for drawing compound
objects.

1 Introduction

The theory of decomposable s tructures [1], used in order to describe combina-
torial objects, allows to describe large classes of da ta structures. W i t h only a
small set of constructors, we can describe structures frequently used in software,
like permuta t ions , trees, part i t ions, or funct ionals graphs. The h d o c s 1 program
produces a graphical representat ion for such objects.

2 Description of Combinatorial Structures

D e f i n i t i o n 1. The objects classes we can deal with are specified by a set of
product ions of the form h = <rhs>, where h is the name of the class being
defined, and <rhs> is an expression involving e lementary classes, constructors
and other classes specifications.

E l e m e n t a r y c l a s se s are :
- E p s i l o n : object of size 0
- A t o m : object of size 1

C o n s t r u c t o r s available are :
- U n i o n (h , B , . . .) : disjoint union of the classes A,B,.. .
- P r o d (h , B , . . .) : p roduct of the classes A, B,...
- S e t (h) : sets (with repetit ions) whose elements are in A
- Sequence(A) : sequences of elements of A
- Cyc l e (A) : directed cycles of elements of A
- Subs t (A,B) : B-objects whose a toms are replaced by A-objects

i available via anonymous ftp from ftp. loria, fr, in pub/loria/eureca/hDOCS/

25

Example 1. The class N of functional digraphs can be defined as a set of cycles of
b inary trees. A binary tree (class Tree) can be defined as a leaf or the produc t
of a node with two trees :

~N=Set (Cycle (Tree)) , Tree=Union(Leaf ,Prod(Node ,Tree ,Tree)) ,
N o d e = A t o m , L e a f = A t o m)

D e f i n i t i o n 2 . Inputs of Adocs are objects described with the following initial
objects and lowercase operators :

I n i t i a l o b j e c t s are :
- Identifiers : a word with a lpha-numerical characters, or a set of char-

acters between double quotes.
O p e r a t o r s are :

- p r o d (a , b , . . .) : p roduc t of the objects a, b , . . .
- s e t (a , b , . .) : se t of objects a, b , . . .
- s e q u e n c e (a , b , . . .) : sequence of objects a ,b , . . .
- c y c l e (a , b , . . .) : directed cycle of objects a ,b , . . .

Example 2. se t (cyc le (prod(A, a l , a2)), cyc le (prod(B, "f (3)" , "*Z$"))) is a valid
funct ional digraph object. Figure 1 shows an object described using all the op-
erators.

3 R e p r e s e n t a t i o n

The default sett ings for each opera tor representat ion are :

- p r o d (o 1, o 2 , . . , ore) draws a rooted tree, where o 1 is the father of the objects
02 . . . ore, with non-oriented edges between father and sons.

- s e q u e n c e (o l , o 2 , . . ,ore) places o l . . om on a s traight line, s tar t ing with
o l on the left, with oriented edges between adjacent elements.

- c y c l e (o l , o 2 , . . ,ore) places o l . . om along a circle, with oriented edges.
- s e t (o l , o 2 , . . ,ore) places o l . . om along a spiral, with no edges.

We can add informat ions to each operator in order to constraint the repre-
sentation. Thus, we can have different representat ions of a same s t ructure (Fig.
2). The instruct ions are as follows, where < o p e r a t o r > is either p rod , s e q u e n c e ,

cycle or set :

- <operator> [Tree] (oi, o2,.. ore) to represent a rooted tree (default for prod).

- <operator> [Radial] (oi, o2,.. ore) to represent a free-tree.

- <operator>ELine](ol, o2, ... ora) to place elements ol .. om on an

horizontal line (default for sequence).

- <operator>[Circle](ol, o2, ... ore) to place elements ol .. om on a

circle (default for cycle).

- <operator>ESpiral](ol, o2, ... ore) to place elements ol .. om on a

spiral (default for set).

26

Fig. 1. Rooted tree with free-tree, sequence of trees, cycle and set

4 I m p l e m e n t a t i o n

Different layout algorithms are used in the Adocs program. The algorithm for
drawing rooted trees is based on the Reingold and Tilford algorithm [3]. The
algorithm has been extended to m-ary trees with nodes of different sizes. For
drawing free-trees, we use an algorithm proposed by P. Eades [2]. The spiral
algorithm is heuristic and tries to place a set of circles in the smallest possible
enclosing circle. All algorithms used need improvement and other algorithms
could be included, but Adocs can already draw quite large structures (more
than 10000 nodes) in a few seconds.

The Adocs interface is very simple. The description of the object we want to
draw is written into a file (for example descr) . The Unix command Adocs d e s c r
produces the d e s c r . p s Postscript file containing the drawing of the structure.
Other outputs can also be provided, like 1.4TEX pictures or a specific simple
graphical description (involve AdocsTex or AdocsGr instead of Adocs). Adocs

prod(prod[Radial](C,H,H,H),
cycle(a,b,c,d,e),
sequence(A,

prod(B,a,b),
C))

27

prod[Line](prod(C,H,H,H),
cycle[Line](a,b,c,d,e),
sequence[Tree](A,

prod(B,a,b),
C))

Fig. 2. Two different drawing of a same structure

can then easily be connected to other programs, like structure generators or
other drawing programs.

For example Adocs can directly draw the structures calculated by the random
structure generator Gal'a 2 [4]. Given a structure class specification and a size of
the object we want to obtain, Gal'a generates with uniform probability an object
of the class, that we can represent with Adocs.

5 C o n c l u s i o n

Adocs could also be used with other programs, like data strugtures browsers. In
particular, the generic description proposed for data structures is well suited for
compound drawing of data structures.

R e f e r e n c e s

1. Philippe Flajolet, Paul Zimmermann, and Bernard Van Cutsem. A calculus for
the random generation of labelled combinatorial structures. Theoretical Computer
Science, 132(1-2):1-35, 1994.

2. Eades Peter D.' Drawing free trees. Bulletin of the Institute for Combinatorics and
its Applications, 5(2):10-36, 1992.

3. Edward M. Reingold and John S. Tilford. Tidier drawings of trees. IEEE Transac-
tions on Software Engineering, SE-7(2):223-228, March 1981.

4. Paul Zimmermann. Gala: a package for the random generation of combinatorial
structures. MapleTech, 1(1):38-46, 1994.

2 available via anonymous ftp from ftp. inria.fr, in lang/maple/INRIA/combstruct

