
GD-Workbench: A System for Prototyping and
Testing Graph Drawing Algorithms*

Luciano Buti 1, Giuseppe Di Bat t is ta 2, Giuseppe Liot ta 3, Emanuele Tassinari 1,
Francesco Vargiu 1, and Luca Vismara 4

i Dipartimento di Informatica e Sistemistica, Universit~ di Roma "La Sapienza"
Via Salaria 113, 00198 Roma, Italy

{but i, t as s inar, vargiu} @dis. uniroma I. it

2 Dipartimento di Discipline Scientifiche, Sezione Informatica
Terza Universith. di Roma

Via Segre 2, 00146 Roma, Italy
dibatt ista@ias i. rm. cnr. it

3 Department of Computer Science, Brown University

115 Waterman Street, Providence, Rhode Island 02912-1910
gl@cs, brown, edu

4 Istituto di Analisi dei Sistemi ed Informatica, Consiglio Nazionale delle Ricerche
Viale Manzoni 30, 00185 Roma, Italy

vismara@ias i. rm. car . it

Abs t r ac t . We present a tool for quick prototyping and testing graph
drawing algorithms. The user interacts with the system through a dia-
grammatic interface. Algorithms are visually displayed as directed paths
in a graph. The user can specify an algorithm by suitably combining the
edges of a path. The implementation exploits the powerful functional-
ities of Diagram Server and has been experimented both as a research
support tool and as a back-end of an industrial application.

1 O v e r v i e w

We present GD-Workbench (GDW), a system for quick prototyping and testing
graph drawing algorithms. The user interacts with G D W through a diagram-
mat ic interface. Graph drawing algorithms are visually displayed as directed
paths in a graph. The potential users of GDW are:

- Graph drawing researchers that aim at experimenting existing algorithms
against real-life or randomly generated graphs; an experimental work per-
formed with an early version of GDW is described in [2].

- Graph drawing researchers that aim at implementing new algorithms and at
quick understanding how such algorithms can exploit existing algorithms as
subroutines.

* Work supported in part by Progetto Finalizzato Sistemi Informatici e Calcolo Par-
allelo of the Consiglio Nazionale delle Ricerche, by ESPRIT Basic Research Ac-
tion No. 7141 (ALCOM II), by the National Science Foundation under grant CCR-
9423847, and by N.A.T.O.- C.N.R. Advanced Fellowships Programme.

112

- Graduate course teachers that aim at easily demonstrating in their classes
the behavior of graph drawing algorithms.

- Professionals, already skilled with graph drawing, that want to select the best
algorithm for a given application; as an example, GDW has been used in co-
operation with the Italian Authority for Computer Engineering in the Public
Administration: about 2,500 Entity-Relationship diagrams have been auto-
matically drawn and the whole work (algorithm-selection, graphic features
setting, fine-tuning, large-scale drawing, and printing) has been performed
with GDW.

GDW has the following main functionalities:

- Path-management. It allows to construct a new algorithm by composing
steps of existing algorithms. The new algorithm is visually represented as a
path in a graph. It also allows to visualize several algorithms at the same time,
to discard previously visualized algorithms, and to show info on algorithms.

- Schema-management. It allows to load graphs (we will use the terms schema
and graph as synonyms) and to create them either with a graph editor or
with random graph generators.

- Test-management. It allows to draw the current graphs with the currently
visualized algorithms and to generate reports on the aesthetic features of the
drawings.

Although several interesting and powerful tools have been recently devised in
the graph drawing field (to give only a few examples we mention [5, 4, 7, 6, 3]), we
believe that GDW has several innovative characteristics. In particular, the user-
interaction paradigm of GDW has flexibility and friendliness features that, to our
knowledge, have no counterparts in existing tools. The flexibility and friendliness
of GDW are both in providing an easy interaction with the algorithms and in
showing diagrams. Existing tools usually focus on just one of these two aspects.

Rather than presenting all the details of the architecture and of the imple-
mentation, we prefer to start the description of the system with an introductory
example (Section 2). However, the main architectural issues are outlined in Sec-
tion 3. Section 4 describes further examples of usage of GDW. Future research
directions are sketched in Section 5.

The paper is supplied with several figures, most of them snapshots of the
screen.

2 A n I n t r o d u c t o r y E x a m p l e

We show how a user can simply construct his/her own graph drawing algorithm
with GDW, by combining pieces of existing algorithms.

2.1 The Taxonomy

GDW presents the algorithms to the user through a taxonomy of classes of
graphs. The most general class of graphs of the taxonomy is Multigraph; a multi-
graph is a graph that has both directed and non-directed edges. All the other

113

classes of the taxonomy are subclasses of Multigraph. Each class is provided with
a set of methods that map an object of a class into an object of another class. A
method is a layout functional step, taken from an existing algorithm. A drawing
algori thm A is a sequence of methods tha t is visually represented on the taxon-
omy as a pa th (algorithmic path); the edges of the algorithmic path describing A
are the methods that compose A and the vertices are the classes of the t axonomy
the methods are associated to.

The t axonomy is a very general structure to classify graph drawing algo-
r i thms and has been already exploited for the internal structure of the algori thms
database of Diagram Server [1, 3].

2.2 Construct ing a N e w Algor i thm

Suppose the user wants to draw graphs with a polygonal graphic s tandard (i.e. all
edges are polygonal lines) and to this aim wants to construct a "new" algorith-
mic path. He/she opens a window displaying the taxonomy and executes the
following steps:

- All the classes of the taxonomy are displayed on the screen. The dashed
edges of the taxonomy show containment between classes. Class Multigraph
is white colored. White classes (in this case only Multigraph) are the already
selected classes for the algorithmic path (Fig. 1).
The classes Connected, Planar, and Digraph are red colored. Red classes are
the ones that can be reached by applying an available method of the last
selected class of the currently constructed algorithmic path (in this case class
Multigraph).

- The user clicks on one of these three classes, say Planar. The system displays
the set of available methods that t ransform an element of Multigraph into
an element of Planar. The user can now select one method of the set. In this
case the set consists of just one method, namely MakePlanar (Fig. 2).

- Now class Multigraph is white, class Planar is colored white and red, and
the classes Connected, Digraph, ConnectedPlanar, and FourPlanar are red.
Planar is white and red because (i) it is already selected for the algorithmic
path and (ii) there is method MakePlanar (inherited from the class Multi-
graph) that transforms an element of Planar into an element of the class
itself. The user can now click on any reachable class, i.e. either a red or a
white and red class, say ConnectedPlanar (Fig. 3).
The system displays the set of methods that t ransform an element of Planar
into an element of ConneetedPlanar. The user can now select one me thod of
the set. In this case the set consists of two methods, namely MakeConnected
and IsConnected. In our example, the user selects MakeConnected.

- The user, by performing other similar operations, constructs an algorithmic
path whose final class is Polygonal. The complete path is now on the screen
and consists of classes Multigraph, Planar, ConnectedPlanar, Biconnected-
Planar, PlanarSTDigraph, ReducedPlanar, Straightline, and Polygonal, plus
the methods connecting them (Fig. 4).

114

Fig. 1.

Fig. 2.

115

Fig. 3.

Fig. 4.

116

F i g . 5 .

- The user can now execute the algorithmic path to obtain a drawing of an in-
put graph (Fig. 5). Of course, if he/she is not satisfied by the resulting draw-
ing, with similar operations the algorithmic path can be modified, choosing
different classes and/or different methods. The algorithmic path can also be
stored to be reused.

3 T h e A r c h i t e c t u r e o f G D W

GDW is a client application of Diagram Server. Diagram Server provides the
capabilities for the drawing and the visualization of the graphs managed by
GDW.

In Fig. 6 the main blocks of the architecture of GDW are shown.
The GDW/Diagram Server Interface coordinates the exchange of data be-

tween the client and the server application. The interaction is based on a message
passing technique. For example: (i) GDW can force Diagram Server to wait for
a user action; (ii) Diagram Server can notify GDW that the user has clicked on
a menu item; (iii) GDW can force Diagram Server to enter the status in which
vertices and edges can be added or deleted; etc.

The Schema Manager provides the functionalities for loading, creating (au-
tomatically or manually), and discarding schemas. Once a schema is loaded, it
is active and it can be used during the testing of the algorithmic paths.

A schema can be randomly generated by using the Random Graph Generator
of GDW. It ispossible to generate different types of graphs, including connected
graphs, biconnected planar graphs, and trees. The component uses two different
strategies for the generation of the graphs: (i) they are generated from scratch,

117

Report ~ J Algorithm]
Generator [[Tester. I

I GD-Workbench |
~. Kernel .,)"-'-1 Diagram Server 1-

] Interface |

I Algorithm Schema . . Random Graph
Manager Generator Manager I

I
I Algorithm I

Builder
Schema
Editor

Fig. 6. The Architecture of GDW.

Diagram
Server

by using, first, randomly insertion of edges and, second, local adjustments that
force them to belong to the chosen class; (ii) they are generated starting from a
core set of existing real-life based graphs (stored in the Seeds Base), by means
of a list of operations that preserve the similarity with the starting graph.

Alternatively, a schema can be constructed by using the Schema Editor, a
powerful interactive editor that allows to addl delete, move, reshape vertices and
edges.

The Algorithm Manager manages the algorithmic paths. They can be loaded,
created, visualized, and discarded. As for the schemas, once an algorithmic path
is loaded, it becomes active.

The Algorithm Builder is the component devoted to the creation of new
algorithmic paths. Algorithmic paths can be created also starting from existing
ones. The Algorithm Builder, through the GDW / Diagram Server Interface, asks
Diagram Server to display the taxonomy on a window. The actions performed
by the user on the taxonomy are captured by Diagram Server and notified to
the tool, that executes the proper operations (e.g. opening of a dialog window,
sending a message for highlighting a class of the taxonomy, sending a message
for the insertion of an edge).

The Algorithm Tester and the Report Generator are the components for the
testing and the evaluation of the active algorithmic paths on the active schemas.
Partial and full reports on the tests can be generated as well as diagrams with
disparate graphic features.

118

4 F u r t h e r E x a m p l e s

In this section we exploit the functionalities of GDW by means of a set of ex-
amples.

The first example shows the facilities to manage algorithmic paths.

- AlgorithmicPaths menu allows to activate, discard, create, highlight, get info
on algorithmic paths.

- ActivatePath item of AlgorithmicPaths menu displays a dialog window with
a set of algorithmic paths that have been stored in previous working ses-
sions. Once an algorithmic path is selected, it is activated, it is shown in the
taxonomy, and it can be executed on a given set of graphs.

- Displaying several active algorithmic paths. Different colors identify differ-
ent algorithmic paths. White classes and edges describe subpaths that are
shared by two or more algorithmic paths. For example, the yellow path is
the algorithm bead2 (Fig. 7).

- Info about the active algorithmic paths. A dialog window is shown with
the correspondence between colors and algorithmic paths. By selecting one
color, the list of classes and methods of the corresponding algorithmic path
is displayed in a text window (Fig. 8).

- Highlighting an algorithmic path. When several algorithms are shown at the
same time, the screen may become difficult to read. Each active algorithmic
path can be highlighted by selecting it in a dialog window.

- By clicking on a class (say PlanarTriangulated) the system displays the avail-
able methods for that class and for each method suitable bibliographic ref-
erences (Fig. 9).

The following example illustrates the capabilities of GDW in managing
graphs.

- Schemas menu allows to activate, discard, and get info either On single
schemas or on directories of schemas.

- ActivateSchema item of Schemas menu displays a dialog window with the
stored schemas is shown. Once a schema is selected it can be drawn using
the active algorithmic paths.

- InfoSchemas. The identifiers of the active schemas are shown on a dialog
window.

- Random graph generation. GDW is provided with a random graph generator.
The user, by means of a dialog window, can select the class of graphs to be
generated, their number and size. In this case two biconnected graphs with
ten vertices are generated (Fig. 10).

- Alternatively, the user may construct graphs by using a powerful interactive
graph editor.

The functionalities of GDW in testing algorithms are shown by the following
example.

119

Fig. 7.

Fig. 8.

12o

Fig. 9,

Fig . l o .

121

- Testing menu allows to apply the active algorithmic paths on the active
schemas (randomly generated or manually constructed) and to setup several
output options.

- Output Options i tem of Testing menu displays a dialog window in which the
user can select the diagrams to be displayed on the screen and choose to
generate the reports.

- The diagrams obtained by applying the active algorithmic pa th (bend2) to
two randomly generated graphs are shown in Fig. 11.

- In the left window of Fig. 12 the reports on the previous application are
displayed, while in the right window the average results of the reports are
displayed.

5 F u t u r e W o r k

We will improve and expand our tool in the following directions.

- We plan to interconnect GDW with an object-oriented software development
platform, in order to support the whole development cycle of a graph drawing
algorithm.

- In order to bet ter show experimental reports, we aim at integrating into
G D W a system for visualizing graphics.

- We aim at extending our experiments by further interacting with the I tal ian
Public Administrat ion, which is a promising source of case studies.

R e f e r e n c e s

1. P. Bertolazzi, G. Di Battista, and G. Liotta. Parametric graph drawing. IEEE
Trans. Softw. Eng., 21(8):662-673, 1995.

2. G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and F. Vargiu. An
experimental comparison of three graph drawing algorithms. In Proc. 11th Annu.
ACM Sympos. Comput. Geom., 1995.

3. G. Di Battista, G. Liotta, and F. Vargiu. Diagram Server. J. Visual Languages and
Computing (special issue on Graph Visualization, 1. F. Cruz and P. Eades, editors),
6(3), 1995.

4. C. Ding and P. Mateti. A framework for the automated drawing of data structure
diagrams. IEEE Trans. Softw. Eng., SE-16(5):543-557, 1990.

5. P. Eades, I. Fogg, and D. Kelly. SPREMB: a system for developing graph algo-
rithms. Congressus Numerantium, 66:123-140, 1988.

6. M. Himsolt. GraphEd: A graphical platform for the implementation of graph algo-
rithms. In R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proc. GD '94),
volume 894 of Lecture Notes in Computer Science, pages 182-193. Springer-Verlag,
1995.

7. F. N. P&ulish and W. F. Tichy. EDGE: An extendible graph editor. Softw. - Pract.
Exp., 20(S1):63-88, 1990.

122

Fig. 11.

Fig. 12.

