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Abstract.  In this paper, we look at the problem of upward planar draw- 
ings of planar graphs whose vertices have preassigned y-coordinates. We 
give a linear time algorithm for testing whether such an embedding is 
feasible for trieonnected labelled graphs. 

1 Introduction 

For directed graphs, a notion similar to planarity (for undirected graphs) is that 
of an upward planar drawing, that is a planar drawing of the graph such that all 
the edges are directed upward (monotonic curves from a lower y-coordinate to a 
higher one). There has been a lot of work on upward planarity testing of various 
classes of graphs [8, 3]. Recently, Garg and Tamassia [6] have proved that the 
problem of upward planarity testing for arbitrary graphs is NP-complete. 

In this paper, we consider the problem of upward numbering testing for planar 
graphs (see Section 3 for the definition). The main contribution of this paper 
is a linear time algorithm for upward numbering testing for triconnected la- 
belled graphs. Battista and Nardelli [1] have given a linear time algorithm for 
recognising upward numberings for single source labelled digraphs. Lin [11], gave 
an algorithm for a subclass of digraphs having their sources and sinks on the 
outerface, called proper s-t boundary hierarchical graphs. Recently Heath and 
Pemmaraju [7] have given a linear time algorithm for graphs with adjacent ver- 
tices having labels which differ by unity. This algorithm leads to a quadratic 
time algorithm for upward numbering testing for arbitrary graphs. 

The rest of the paper is organised as follows. Section 2 looks at earlier work on 
upward planarity testing. Section 3 contains the algorithm for upward numbering 
testing. Section 4 gives an interesting connection between the upward drawings 
of a graph with distinct labels and an intersection graph realization problem. 

2 Upward planar drawings of digraphs 

In this section, we look at the prior work on upward planarity testing for di- 
graphs. DiBattista and Tamassia [2] have shown that the problem of upward 
planarity testing is equivalent to the problem of augmenting a given digraph to 
obtain a planar s-t digraph. Kelly [9], and DiBattista and Tamassia [21, have 
proved the following theorem. 



141 

T h e o r e m  1. A digraph admits an upward planar drav~ing iff  it is a subgraph of 
a planar s-t digraph. 

[] 

DiBatt ista and Tamassia [2] have given a linear time algorithm for producing an 
upward polyline grid drawing of a s-t digraph. 

3 U p w a r d  d r a w i n g s  o f  p l a n a r  g r a p h s  w i t h  l a b e l s  

We now consider the problem of upward drawings of graphs with the additional 
constraint that  the vertices have labels attached to them, which denote the y- 
coordinate (level) at which they are to be placed. 

3.1 P r e l i m i n a r i e s  

We consider only planar graphs and henceforth refer to them only as graphs. A 
map f : V --* Z + (set of positive integers) is called a labelling of the graph. 

D e f i n i t i o n  1 A g e n e r a l i z e d  s-t  n u m b e r i n g  of a graph G = (V, E)  is a map 
f :  V --* {1, 2 , . . . ,  N} ,  such that l { v  : f ( v )  ---= 1} [ and l{v : f(v) = N }  { are 
equal to one, and such that each vertez v # s, t, where f ( s )  = 1 and f ( t )  =- N ,  
has two adjacent vertices u, w for which f (u )  < f ( v )  < f (w )  and the vertices s 
and t are adjacent. 

We call the value f (v )  attached to vertex v the label associated with v. We denote 
a labelled graph as a 3-tuple G -- (V, E,  l) where 1 is the labelling function. 

D e f i n i t i o n  2 A labelling of the vertices of a planar graph such that no two 
adjacent vertices have equal labels is said to be an u p w a r d  n u m b e r i n g  if  there 
ezists a planar embedding of the graph such that all the vertices labelled i have 
y-coordinate i and all the edges are strictly monotonic curves. 

Without  loss of generality, we can assume that  the labels are positive integers 
between 1 and N. Let 1 and N be the smallest and largest labels in a labelling of 
a graph. We can make the following assumption about any labelling of a graph. 

- We can assume that there is a unique vertex labelled 1 and also a unique 
vertex labelled N. We can also assume that  these two vertices are adjacent. 

- We can assume that  in any face that  there are no three consecutive vertices 
with increasing labels. Note that as we are considering triconnected graphs, 
the faces are uniquely defined. 

For all labelled graphs, we denote the unique vertex with the smallest label by 
s and the unique vertex with the largest label by t. Following the terminology 
of digraphs, we call a vertex a source (sink) if it has no neighbouring vertices 
with labels smaller (larger) than it. In [2] it has been shown that  every planar 
st-digraph admits an upward drawing. We prove a similar result for labelled 
digraphs. The following theorem follows easily from the algorithms given in [12] 
to construct polyline representations(planar embeddings such that the edges are 
polygonal segments) of a planar graph from its s-t numbering. 
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T h e o r e m  2. A labelling of a planar yraph G is an upward numbering i f  and only 
i f  the graph can be augmented to a planar graph through the addition of edges 
such that the given labelling is a generalised s-t numbering of the augmented 
graph, with no two adjacent vertices having the same label. 

0 
The following lemma establishes a property of graphs with a generalised s-t 
numbering. 

L e m m a  3. Given a graph G = (V, E, l). Let u and v be two vertices of G. Then 
l is a generalised s-t numbering only if  there ezists a path between u and v such 
that all the labels are less than max(/(u), l(~)) and there ezists a path such that 
all the labels are greater than min(l(u), l(v)). 

[] 

3.2 R e s o l v i n g  sources  a n d  sinks 

Our strategy for testing for upward numbering is the following. We try to add 
edges to a given embedding of a graph to resolve all sources and sinks other than 
s and t, that  is to add outgoing edges to sinks and incoming edges to sources 
to get a planar graph, with a generalised s-t numbering. We say that  such an 
embedding is a feasible embedding. 

As we are considering triconnected graphs we have to examine only a poly- 
nomial number of embeddings as the embedding is decided by the choice of 
outerface. Moreover we want the edge (s, $) to lie on the outerface. As an edge 
can be shared by exactly two faces we have to consider only two embeddings. If 
the graph were to have an upward planar drawing then there are at least two 
embeddings which are feasible namely the embedding having the s-t edge as the 
leftmost edge and the one with it as the rightmost edge. Hence we have to test 
exactly one of the embeddings with the edge from the vertex labelled s to the 
vertex labelled t on the outermost face. 

3.3 R e d u c i n g  t h e  face  size 

When we are testing a given embedding of a triconnected graph, we can perform 
certain transformations to make the faces smaller in siT.e. The following lem- 
mas describe ways of adding edges to faces in a given embedding of a labelled 
triconnected graph to decrease the face size. 

Let G -- (V, E) be a graph and let e be an edge which does not belong to 
E.  Then by G + e we denote the graph G along with the additional edge e. 
We represent the fact that I is an upward numbering of G iff it is an upward 
numbering of H by (G, l) - (H, l). 

We omit the proof of the following lemmas, which show that  testing for 
upward numbering of a given labelled graph is equivalent to testing on the same 
graph with certain additional edges. The first lemma shows that  if in any face, 
there exist vertices u and v such that  all the vertices between them on one of the 
face paths joining them have labels lying strictly between those of u and v, then 
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the edge (u, v) can be added to the face. The second lemma shows that  an edge, 
joining a vertex with the largest label in a face and a vertex with the smallest 
label in a face, can be added to the face. 

L e m m a  4. Given a labelled graph G = (17, E ,  1). Let  f be a face such that there 
are consecutive vertices z0, zl ,  z2, . . . , z~  such that l(zo) = i and l(zk) =- j and 
i < l(zr) < ] , 1 < r < k.  Let H = (V, E t J { ( z o ,  z~)}). Then (G , I )  -- ( H , l ) .  

[] 

L e m m a 5 .  Given a labelled graph G=(V,E , I ) .  Leg f be a face and let z~ and z j  
be vertices with l ( z i )  = 1 and l(zj)  = N ,  where 1 and N are the smal les t  and 
largest labels on the face. Let  H be the graph obtained by adding the edge (z~, z j)  
to the face f . Then (G, l) -- (H,  l). 

[] 

From the previous lemmas, we note the following facts. 

1. If there are two vertices labelled n on the face, they can both be joined to a 
vertex labelled 1. 

2. If there are two vertices labelled 1 on the face, they can both be joined to a 
vertex labelled n. 

We can add edges to the faces using Lemma 4 and 5 till no more edges can be 
added. We now look at the labels on the faces which are remaining. We can show 
by simple arguments that the face labels must be one of the four cases depicted 
in Figure 1. 

L e m m a  6. In  each of the four  basic face configurations shown in Figure 1, the 
only possible resolution of sources and sinks is one in which, either all the sources 
or all the sinks are resolved in any face. 

P r o o f :  Case  1: There is a unique vertex with the smallest label. In this case 
all the sources must be resolved in the face. Otherwise let v be a vertex (source) 
not resolved in the face. Clearly zl ,  zz, z3 are not resolved in the face. Hence 
there exist paths from xl to z3 and from z2 to v, with labellings as in Lemma 3. 
But these two paths cannot exist at the same time without violating planarity. 
Hence it follows that  all the sources in the face must be resolved in the face 
and all of them are resolved by connecting them to the source with the smallest 
label. 
C a s e  2: There is a unique vertex with the largest label. As in Case 1, all the 
sinks must be resolved in the face by connecting them to the sink with the largest 
label. 
Case  3: Consider the arc S between zl  and ~4. If there are no vertices labelled 
2 or n - 1 on this arc then it follows that we can add the edge (zl ,  z4) to the 
face f .  But we have assumed that all such edges have already been added to 
the face. Hence there must be a vertex labelled 2 or n -  1 in S. Also, one of the 
vertices z l  or z4 must be resolved in the face, otherwise by Lemma 3 we have 
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Fig. I. Basic face configurations 

two vertex disjoint paths between Z1 and z3, and z2 and ~4 which lie totally 
outside the face. These paths must cross, violating the planarity of the resolved 
graph. 
If  one of the vertices labelled 2 is resolved in the face it follows that all the ver- 
tices labelled 2 are resolved in the face. Let v be a vertex labelled 2, which is not 
resolved in the face. Otherwise, by Lemma 3, there are paths between z2 and ~4, 
and zs and v which do not share a vertex and which lie completely outside the 
face in any resolution of the face. Hence these paths must cross, implying that 
there is no planar resolution. Similarly, we can show that if one of the vertices 
labelled r~-  1 is resolved in the face, then all the vertices labelled r~-  1 must be 
resolved in the face. 
Subcase A: There is a vertex labelled 2 in S. 
Zl is resolved in the face: Now assuming that all the vertices labelled 2 are re- 
solved in the face by connecting them to x3 as shown in Figure 2(a). In face f l ,  
there is no vertex labelled 2 in the arc T. Hence the vertices z5 and z6 must 
have labels which are the largest in the face. If some other vertex has a larger 
label in arc T, then we can add an edge connecting this vertex and the vertex 
labelled 2. But we have assumed that all such edges have already been added. 
We can add the edges (z3, zs) and (Za, ~6) to the face. Hence from Case 1 we 
get that  all the sources must be resolved in the face. The same argument can 
be applied to each of the faces. For the last face, that is the face containing ~4, 
either ~7 is adjacent to z4 or there is a vertex labelled 2 or r~ -  1 on the path 
between them. If there is a vertex labelled n -  1, then the edge between ~7 and 
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Fig. 2. Resolving all sources or all sinks 

the vertex can be added. As we have assumed that all such edges have already 
been added, there must be a vertex labelled 2 adjacent to a:4. This face is now 
exactly like the other faces. Hence all the sources must be resolved in f .  
Similarly if a single vertex labelled n - 1 is resolved in the face, we can show 
that all the sinks are resolved in the face as shown in Figure 2(b). 
Subcase B: In this case there is a vertex labelled n -  1 in arc S. The arguments 
are exactly similar to the above case and it follows that either all the sources or 
all the sinks are resolved in the face. 
Case  4: This case is trivial. [] 

3.4 A l g o r i t h m  for  u p w a r d  n u m b e r i n g  t e s t i n g  

The algorithm for upward numbering testing is shown in Figure 3. We now 
prove the correctness of the algorithm. We show that at each step of the algo- 
ri thm there is either a forced vertex, that is a vertex which can be resolved in 
exactly one face or a vertex which cannot be resolved in any of the faces. If  nei- 
ther of these two conditions hold, then for each unresolved source or sink there 
are exactly two faces in which they can be resolved. Both these faces are of size 
four. In this case, we show that the choice of face for resolution is not critical. 
We omit the proof of the following lemma. 

L e m m a  7. Let G = (V, E, l) be a labelled triconnected graph. Let f be a face 
such that two of the sources on the face are connected to each other by a path 
lying outside the face, such that the vertices have strictly decreasing labels. Then 
there ezists a sink, which has an unique choice of face for resolution or there 
ezists a sink, which cannot be resolved in any face. 

[] 

We use the above property, while proving the next lemma. 

L e m m a  8. At  every step of the algorithm, there is a forced vertez, or an un- 
resolvable vertez or a vertez for which the choice of face for resolution is not 
critical. 
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A l g o r i t h m  Upward-Numbering-Testing 
1. Find an embedding of the graph such that 8 and t lie on the outefface. 
2. Add edges to the faces using lemmas 4 and 5 till no more edges can be added to 

any of the faces. 
3. w h i l e  there exists an unresolved source or sink (other than s or t), do 
4. i f  there is a vertex which cannot be resolved in any of the faces 

stop. ~ The current numbering is not an upward numbering }. 
5. e n d i f  
6. i f  there exists a forced vertex 

resolve the vertex in the unique face. 
resolve all the sources or sinks in the same face. 

7. e n d i f  
8. i f  there is no forced Vertex 

pick any arbitrary vertex. 
resolve the vertex in any of the faces in which it can be resolved. 
resolve all the sources or sinks in the same face. 

e n d i f  
e n d w h i l e  

9, 

10. 

Fig. 3. Upward numbering testing 

P r o o f :  We assume t h a t  there  are no vertices which are  forced or have no choice 
of  face for resolut ion .  We now show tha t  there  mus t  exist  a ver tex  for which 
the  choice of  face for resolu t ion  is not  cr i t ical .  Let  s be a ver tex  such t h a t  al l  
vert ices,  wi th  labe ls  smal le r  t han  l(s)  have been resolved.  As there  are  no forced 
vert ices or unreso lvable  vert ices,  i t  follows t ha t  s can be resolved in a t  least  two 
faces. 
C a s e  1: s can be resolved in faces f l  and  f2, which do  not  share  an  edge, as 
shown in the  t o p  of  F igure  4. Let  Sl and  s~ be the  sources wi th  the  smal les t  
labe ls  in f l  and  f2 respect ively.  By our a s sumpt ion ,  i t  follows t h a t  Sl and  s2 
have been resolved.  Hence there  exists  a p a t h  P f rom s t  and  s2, which have 
labe ls  less t h a n  or equal  to mare(s1, s2). By L e m m a  7, we can a lways  assume 
t h a t  the  p a t h s  do not  use any  ver tex  in f l  or f2. Cons ider  the  larges t  s ink v 
in the  region A m a r k e d  in F igure  4. If  it  lies in the  in ter ior  of  the  region,  then  
c lear ly  i t  canno t  be resolved in any  face which is a con t rad ic t ion .  If  i t  lies on 
the  b o u n d a r y  of  A i t  mus t  lie e i ther  on P1 or on P2. In  e i ther  case v is a forced 
ver tex,  which con t rad ic t s  the  fact  t h a t  there  are  no forced vert ices.  
C a s e  2: s can  be resolved in two faces f l  and  f2, which share  an  edge, as shown 
in the  lower ha l f  of  F igure  4. Let s l  and  s2 be the  smal les t  sources in f i  and  
f2 respect ively .  There  are  two subcases  in th is  case and  they  are  shown in the  
lower ha l f  of  F igure  4. 
Subcase  A: We aga in  consider  the  largest  s ink in region A a n d  argue as in the  
prev ious  case. 
Subcase  B: We consider  the  largest  sink in the  region A. If  i t  lies on P1 or P2 
(o ther  t h a n  v), we have a forced vertex.  We are  left now wi th  the  case when the 
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Subcase B 

Subcase A 

Fig. 4. Faces share a vertex or edge 

largest sink is v. If  v itself is a forced vertex, we are done. We are now left with 
the case when v can be resolved in bo th  f l  and f2. 
If  bo th  the face cycles are of size four, then s and v can be resolved in either 

v 

I'".. ,'1"".. ,'1 ~ �9 ~ �9 

I / / �9 ~176176 j,  ~ 
%~ �9 "% L,- ...1,- .J 

$ 

Fig. 5. Face cycles of size four 

of  the ways shown in Figure 5. Note tha t  only these vertices can be resolved in 
these faces. Also the manner  in which they are resolved within the faces does 
not  affect the choices for other faces. 
The  other  case is t ha t  at  least one of  the face sizes mus t  be larger t han  four .Let  
f2 be the face whose size is larger than  four. All the vertices on P1 have labels 
between sl  and v. Similarly, all the vertices on P2 have labels between s2 and  v. 
Hence we can assume tha t  these vertices are adjacent ,  as no such edge can be 
added  to any of the faces. From the previous discussion on the types of  labellings 
on the  smallest faces, we get tha t  l(v) is the second largest label in each of  the 
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faces f l  and f2, where nl  is the largest label in fx and n2 in f2. Similarly, it 
follows that  l(s) = 2. Also there is a vertex y which is adjacent to s2 such tha t  
l ( y )  = 

As the edge (s, y) cannot be added to f2, there must exist a vertex w, with 
l(w) = 2, which is adjacent to y. 
w already resolved: I f  the vertex w has already been resolved, then there exists a 

Sl v s2 / Sl # v . . . . .  ~2 

rl f2 w ', \ 

F i g .  6 .  V e r t e x  zo a l r e a d y  r e s o l v e d  

pa th  between w and s2. The pa th  can lie in either of the ways depicted in Figure 
6. Consider the largest sink in the enclosed region in the first configuration in 
Figure 6. If  it is in the interior it cannot be resolved. If  it lies on the boundary  
it must  be the vertex y which again cannot be resolved. Consider the second 
configuration shown in Figure 6. In this case consider the largest sink in the 
region bounded by the dotted line. If it lies in the interior then it cannot be 
resolved. If  it lies on the boundary it must be v, but  v cannot the largest sink 
as it can be resolved in f l .  
w is not already resolved: If  there exists another face in which w can be resolved 
and they do not share an edge, we can argue as previously. 
I f  the two faces share an edge, let sa be the smallest source vertex in fa (the 
other face in which w can be resolved). As s2 and sa have already been resolved, 
there exists a pa th  P between s~ and sa. The pa th  P can lie in either of the 
ways shown in Figure 7. 
F i g u r e  7(a) :  Look at the largest sink in region A. If  it lies on the boundary, 
t h e n  it must lie between y and sa. Hence there is a unique choice of face for 
resolution. If  it lies in the interior it cannot be resolved. 
F i g u r e  7 (b) :  Consider the largest sink in the region shown. As l(v) = n - 1 it 
cannot lie between s and w. If it lies between w and s3 there is a unique face for 
resolution. 
Another possible configuration, is when fa and f2 share the edge (w, z). In this 
case, it can be argued using exactly similar arguments that  there is either a 
forced vertex or an unresolvable vertex. This completes the proof of the lemma. 
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1 l Z w x 

. S S $$ 

I 
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Fig. 7. Vertex w not already resolved 

[] 

T h e o r e m  9. Algorithm Upward-Numbering-Testing produces a graph with a gen- 
eralised s-t numbering, of which G is a subgraph, i f  I is an upward numbering in 
linear time. 

Proof." The correctness follows from the previous lemmas. We just  give a brief 
sketch of the t ime complexity arguments.  The first phase in which edges are to 
be added to the various faces can be carried out in t ime linear in face size for 
each face. We maintain a list of sources and sinks f rom which we can add edges 
and as we traverse the face, we add edges depending on the label assocaited with 
the new source or sink. The second phase in which the sources and sinks are to 
be resolved can be carried out by maintaining a graph of sources and sinks and 
faces in which they can be resolved. Hence the algori thm produces a graph with 
a generalised s-t numbering in linear time. [] 

4 Grid intersection graphs and upward drawings with 
labels 

A bipart i te  graph is a grid intersection graph, if it can be realized as the inter- 
section graph of horizontal and vertical line segments in the plane. Such graphs 
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have been studied in literature [10, 4]. A bipartite graph can be represented by 
the adjacency matrix, whose rows correspond to the vertices in one of the colour 
classes and whose columns correspond to members of the other class. The fol- 
lowing problem was raised in [10, 4] : If the vertices on the left hand side class of 
the bipartite graph are linearly ordered, and are to be represented as horizontal 
segments placed at the same level (y-coordinate) as their order, can the bipartite 
graph be realized as an intersection graph. 
In the case that  all the vertices on the right side are vertices of degree two, then 
such a realization can be converted to an upward planar drawing of the graph 
(corresponding to the bipartite graph) with labels (as defined by the linear or- 
der). The upward drawing corresponding to the following matrix is shown in 
Figure 8. 

[iO00ilO01010100lll 
Each horizontal segment can be contracted to a single point producing the above 

IAll i 2 B D 

I 
4 I 

3 

Fig. 8. An upward drawing of an IHV graph with labels 

drawing. The process is clearly reversible, that is, such a drawing can be con- 
verted to a realization of the corresponding bipartite graph using horizontal and 
vertical segments alone (see [12] for details). Hence testing for the realization is 
easy for bipartite graphs arising from triconnected graphs. 

5 D i s c u s s i o n  

We have given an algorithm to test for upward numberin# for triconnected 
graphs. The problem of testing upward r~umbering for arbitrary graphs has 
some interesting connections with the problem of characterising grid intersec- 
tion graphs [10, 5]. 
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