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Abs t rac t .  We give a visibility representation of graphs which extends 
some very well-known representations considered extensively in the lite- 
rature. Concretely, the vertices are represented by a collection of parallel 
hyper-rectangles in t t  n and the visibility is orthogonal to those hyper- 
rectangles. With this generalization, we can prove that each graph ad- 
mits a visibility representation. But, it arises the problem of determining 
the minimum Euclidean space where such representation is possible. We 
consider this problem for concrete well-known families of graphs such as 
planar graphs, complete graphs and complete bipartite graphs. 

1 I n t r o d u c t i o n  

The problem of determining a visibility representation of a graph has been stu- 
died extensively in the literature due to the large number of applications (as in 
VLSI design, CASE tools, hidden-surface elimination problem, etc., [7, 8, 11, 13, 
15]) and, also, by the combinatorial properties of those graphs. 

In a visibility representation of a graph, the vertices map to objects in Eu- 
clidean space and the edges are determined by certain visibility relations. 

Of course, both, the objects and the visibility used play an important  role 
in characterizing the types of graphs that  admit visibility representations. But, 
in any ease, given a certain class of objects and a concrete visibility, there exist 
always graphs that  are not representable, in this way, Tamassia & Tollis [14] and 
Wismath [16] proved that  a graph is a bar visibility graph (where the vertices 
represent horizontal line segments in the plane and two nodes are connected 
by an edge if their two horizontal rectangles can see each other vertically and 
non-degenerately) if and only if it admits a planar embedding with all cutpoints 
in the exterior face. And Bose et al. [3] proved that  Kn is not VR-representable 
for n > 103 (a graph is said to be VR-representable if each vertex of the graph 
maps to a closed rectangle in R 3 such that  the rectangles are disjoint, the planes 
determined by the rectangles are perpendicular to the z-axis, and the sides are 
parallel to the x or y axes. And, again, two nodes are connected by an edge if 
their two horizontal bars can see each other vertically and non-degenerately). 

On the other hand, from a more theoretical point of view and since Kura- 
towski's Theorem [10], several measures of the planarity and/or  dimension of a 
graph have been considered. But, few of these measures, notably, Boxicity, Grid 
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intersection graphs [1, 9, 2], are related with visibility representations in the line 
of the approachs mentioned above. 

In this paper, we prove that  the representations studied by Tamass ia  & To- 
llis [14] and Wismath  [16] in R 2 and by Bose et al. [3] in R 3 can be easily 
generalized to any dimension, and, if we consider for each graph the min imum n 
where it is possible such a representation we obtain,  in this way, a new measure 
of the complexity of the graph. Thus, we say that  a graph is representable in 
R '~ if it can be represented in such a way that  each vertex maps  to a hyper- 
rectangle in R n (where the hyper-rectangles that  we consider are a cartesian 
product  of n - 1 closed intervals in R and a number  in the last coordinate; i.e., 
[al, bl] • [a2, b2] •  • Jan-l ,  bn-1] • {an}) and two nodes are connected by an 
edge if there exists a closed cylinder in R ~, orthogonal to the rectangles, of non- 
zero length and radius such that  the ends of the cylinder are contained in each of 
the hyper-rectangles and it does not intersect any of the other hyper-rectangles. 
We say that  a graph G has representation index equal to n (or R I ( G )  = n for 
short) if R '~ is the minimum where such a representation is possible. 

This paper  is organized in the following way, in Sect.2 we prove that  any 
graph has a finite RI, and we see that  it is convenient to extend that  index. 
Section 3 is devoted to the study of the R I  of planar graphs. And in Sect.4 and 
5 we deal with the R I  of complete graphs and bipart i te  graphs respectively. 

2 R e p r e s e n t a t i o n  I n d e x  

In this section we are going to prove tha t  each graph is representable in some 
R n. First, we need the following lemma. 

L e m m a  1. Every graph representable in R n is representable in R n+]. 

Proof. It is easy to check that  of the configuration 

�9 .. a i b / Ri = [a~,b~] x x [ n - l ,  n-1] x {ai} i =  l , 2 , . . . p  

represent G, then the configuration 

�9 i i [ 0 ,  1 ]  x . Ri : [a~l, b~] •  • [an_l, bn_x] x {ai} i = 1, 2 , . . p  

also represents G. 

T h e o r e m 2 .  Given a graph G, there exists n E N such that G is representable 
in R ~ . 

Proof. We will prove the theorem by induction on k the number of vertices of 
G. Obviously the s ta tement  is true for small values of k. We now assume that  
G has k + 1 vertices and that  the s ta tement  is true for graphs with k vertices. 
Given a vertex p of G, we split a representation 7~ of G - p into two subset 
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Fig.  1. G is representable in R '~. 

In  such a way t h a t  the hyper- rec tangles  Rt ,  = It,  1 • " '"  x I , , n - i  • {ti} (1 < i < 
rip) correspond with  the vertices Pti adjacent  to p in G. Now, it is easy to see tha t  
the configurat ion 7~* = {R~I ,R* R* * * .. * t~, . . . ,  t . , }U{Q~, , ,Q~,~, .  ,Q~ , ( ,_ . , ) }U {R}  
represents  G (being p represented  by R),  where 

n p  

F% 

= • . , .  • 0] •  • [ - 1 ,  0 i  • 

r t ?  

n ~ l  = I t 1  1 x . . .  x I t  1 n - 1  ~X[-1, 1] x . . .  x [ -1 ,  O] x . . .  x [ -1 ,  0 i x { t l }  

n ~  

R ; ,  ~- I t ,  1 x . . .  x I t , n - 1  "X [ -1 ,0 ]  x . . - x  [ -1 ,1 ]  x . . .  x [ -1,0] '  x { t s }  

n p  

R ; . ,  = I t . , 1  x . . .  x It .~ n - a  x [ -1 ,O ]  x . . . x  [ -1 ,0 ]  x . . -  x [ -1,  1] • 
n l o  

and n = /1 x . . .  x I n - i  x[0 ,  1] x . . .  x [0, 1] x . . .  x [0, 1]" x{ tk+ i}  wi th  Ii = 
[m.in{x : x E I j i } , m . a x { x  : x E I j i } ] .  [3 

J 3 

Observe,  t h a t  in L e m m a  1 the last  interval  in all hyper - rec tangles  in the 
configurat ion is always [0, 1], t ha t  means  t ha t  we are not  using the whole R "  
for our represen ta t ion  but  only a ha l f  ( x ~ - i  > 0) and tha t  all hyper- rec tangles  
are lying on the hyper -p lane  of equat ion  x ~ - i  = 0. Thus ,  we can give a finer 
definit ion of R I  saying t h a t  a g raph  G of (old) representa t ion  index equal  to n 
has ac tual ly  R I ( G )  = (n - 1) + 1/2 if it admi t s  a reprepresen ta t ion  in R "  such 
t h a t  any hyper - rec tang le  is of  the fo rm [ai,  bl] x [a2, 52] x . - - x  [0, b,~-i] • {a,~}. 

This  new definit ion will allow us to get a be t t e r  view of  the problem,  and 
we will get  our m a i n  results  using it. Moreover ,  there are some other  addi t io-  
nal  reasons to consider this more  general concept  of  represen ta t ion  index. For 
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Fig. 2. RI(h3) = 1 + 1/2 and RI(K4) = 2. 

instance, observe that if a graph has index 1 + 1/2, then we can associate it 
an n-tuple of integer numbers in such a way that each vertex maps to one of 
the number of the n-tuple and two vertices are joined by an edge if all numbers 
between them in the n-tuple are smaller. Note that  graphs with index 1 + 1/2 
are not the same of those of index 2 (K4 has index 2 and/s  has index 1 4- 1/2). 

3 P l a n a r  G r a p h s  

Bose et al. [3] proved that if G is planar then RI(G) < 3. On the other hand, Ta- 
massia &; Tollis [14] and Wismath [16] gave the following theorem characterizing 
those graphs with representation index smaller or equal to 2. 

T h e o r e m 3 .  [14, 16] A graph G has representalion index smaller or equal to 2 
if and only if there is a planar embedding of G with all cutpoints on the exterior 
face. 

We complete now this theorem, characterizing those graphs with represen- 
tation index 1 + 1/2. For that characterization we say that a graph G is outer- 
hamiltonian if it has a path (possibly open) containing all vertices of G such 
that  there exists a planar embedding of G with all edges of that  path on the 
exterior face. Observe that Mitchell's algorithm to determine if a graph is ou- 
terplanar [12] with some modifications allows to get a linear-time algorithm to 
determine if a given graph is outerhamiltonian. 

T h e o r e m 4 .  A graph has representation index 1 + 1/2 if and only if it is outer- 
hamiltonian. 

Proof. It is obvious that if RI(G) = 1 + 1/2 then G is outerhamiltonian. 
For the sufficiency there are two cases to consider. 
In the first case, we suppose that G is 2-connected. In this case, G is a polygon 

of vertices {vl, v2 , . . . ,  v,~} (where that  ordering i f  one of the two possible orde- 
rings of the vertices of the polygon) with some of its non-intersecting diagonals. 
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i ' T T i 
Fig. 3. If RI(G) = 1 + 1/2 then G is outerhamiltonian. 

We map the vertex vi to the bar [0, di] x {a~}, where di - 1 for 2 < i < n -  1 
is the total  number  of diagonals minus the number  of diagonals {vl, vk} with 
l < i < k, and dl = d,~ is the total  number of diagonals plus 2. 

In the second case, if G is not 2-connected, in each block there exist, at  most ,  
two cutpoints, place them the first and the last in that  block, and we sort the 
blocks, obtaining, in that  way, an ordering of all vertices of the graph. Now, we 
represent each block as in the first case, but giving the same length (the biggest 
one) to all bars representing cut-points. [] 

5 4 

2 3 4 5 6 

Fig. 4. Construction of a bar-representation in I t  1+1/z 

r / r 

- 6 -  

O m 

m 4 - -  

- -  3 - -  

- -  2 - -  

m 1 - -  

Finally Bose et hi.[3] proved that  if G is a planar graph then RI(G) < 3. 
Thus, it remains to determine which planar graphs have representation index 
2 + 1/2, this question is still open. 

4 C o m p l e t e  G r a p h s  

As it was said before RI(K3) = 1 + 1/2, RI(K4) = 2 and Bose et al. [3] proved 
that  if n < 20 then RI(Kn) < 3. In this section, we are going to prove tha t  
RI(Klo) = 2 + 1/2 and that  RI(K2,0 < RI(Kn) + 1/2. Observe that  this 
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+ II II 
Fig. 6. The first case of Theorem 6. 
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/ 
(e) 

Fig. 7. The second case of Theorem 6. 

As an inmediate consequence of Lemma 5 and Theorem 6 we get. 

C o r o l l a r y  7. For all n > 2 i f  m < 5 �9 4 n-2 then RI( I fm)  < n. 

Corollary 7 provides an upperbound to the representation index of the com- 
plete graphs. Now, we are going to try to get a lowerbound. As Fekete, Houle 
and Whitesides do in their paper  [6], we will use the following lemma. 

L e m m a 8 .  [Attributed by F.R.K. Chung [4] to V. Chvs and J.M. Steele, 
/ "x 

others.] For all m > 1, in every sequence of ( 2 )  + 1 distinct integers, among 

there exists at last one strongly unimaximal subsequence (with only one local 
/ k 

of length m). On the other hand, there exists a sequence of ( 2 )  maximum) 
k / 

distinct integers that has no strongly unimaximal subsequence of length m. 



159 

We will use the following easy-to-prove lemma. 

L e m m a  9. lithe hyper-rectangles Ri = [a/l, b/l] • [a/2, b/2] • 2 1 5  [a~_ 1, b~_l] • {ai} 
with l < i < n (b~_ 1 > O) represent Kn, and {(a~_l) 1 < i <  n} is a strongly 
unimazimal sequence, then the hyper-rectangles R~ = [ai~, bix] x [a S, b~] • . . . •  
[0, b~_l] • {ai} represent also Kn. 

Bose el hi. prove in their paper [3] that  RI(Klo3) > 3 and Fekete, Houle 
Whitesides prove in [6] by using of Lemma 8 that  RI(K56) > 3. It is possible to 
get this same lowerbound as a consequence of Lemma 9 and Lemma 8, in fact, 
a more general result can be achieved. 

T h e o r e m  l0 .  RI(K(,~)+I ) > RI(Km). 

Proof. (Outline) If the hyper-rectangles R, = [a/l, b/l] • [a/2, b~] •215  [a~_l, b~_.l] • 

(b~_ 1 > 0) with 1 < i < ( 2 )  + 1 represent g(~,)+l, by Lemma 8, there {hi} 

exists a strongly unimaximal subsequence of (a~_l) of length m. Then Lemma 9 
assures that  K~ has representation index strictly lower than K(~,)+ I. I3 

5 C o m p l e t e  B i p a r t i t e  G r a p h s  

In this section we characterize the representation index of all complete bipartite 
graphs. Firstly, it is easy to observe that  RI(Km,~ ) < 3. But from the results 
in Sect. 3, we get that  RI(K1,2) = RI(K2,2) = 1 + 1/2, and that  RI(K2,,)  = 
RI(K2.,~) = 2 for all n > 2. 

Now, we are going to prove that  RI(K3,n) = 2 + 1/2, for n > 3, and that  
RI(K, ,m)  = 3 when n, m > 4. 

L e m m a l l .  RI(K3,,)  = 2 +  1/2, forn  > 3. 

n-I 

Fig. 8. K3,n in R ~+I/2 

(height 2) 

(height 1) 

(height 1) 

(height 2) 

(height 2) 

(height 1) 
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Proof. As K3,n is not planar, we get that RI(K3,n) >_ 2 + 1/2, and we can give 
the configuration of Fig. 8 to prove that  RI(K3,n) = 2 + 1/2. [] 

And studying exhaustly all cases it is possible to prove the following lemma. 

L e m m a  12. RI(K4,4) = 3. 

Finally, it is trivial to check that  RI(Kr,,~) = 3 for all m, n E N such that  
4 < m < n .  

r" 

[2 

E 
V 

. . .  

Fig. 9. K,~,r~ in R 3 

-1 

"1 

i ( n )  

3 
3 

6 C o n c l u s i o n s  

We can sumarize our results in the following table. 

Type of graph G 

0uterhamil tonian 

Cutp oint-outerplanar 

Planar 

Kn n_<3 

K4 

K10 

re(a) 
1 + 1/2 

< 2  

< 3  

1 + 1/2  

2 + 1/2 

Reference 

Theorem 4 

Theorem 3 [14] 

Bose et al. [3] 

L e m m a  5 

K5.4,~-2 n > 2 

K,~ n > + 1  

< n Corollary 7 

> RI(Km) Theorem 10 

Kl l  3 Theorem 10 

Kn n > 56 > 3 Fekete et al. [6] 
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K1,2 or K2,~ 1 + 1 /2  

Kt , ,  or K2,n n >_ 3 2 

Kj, ,  n_>3 2 + 1 / 2  

K4,4 3 

Km,n 4 < m <_ n 3 

Lemma 11 

Lemma 12 

Bose et al. [3] 
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