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ABSTRACT. We present a simple mechanism for quickly rendering computer 
images of botanical trees based on random binary trees commonly found in 
computer science. That  is, we visualize abstract binary trees as botanical ones. 
We generate random binary trees by splitting based upon the beta distribution, 
and obtain the standard binary search trees as a special case. We draw them in 
PostScript to resemble actual botanical trees found in nature. Through flexible 
parameterization and extensive randomization, we can produce a rich collection 
of images. 
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F i g u r e  1. A visualization of a random binary tree with 5000 internal nodes. 
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The computer imagery of realistic-looking trees has many applications rang- 
ing from the verification of botanical models to computerized landscaping and 
animation. In their book, The Algorithmic Beauty of Plants, PRUSINKIEWICZ 
AND LINDENMAYER (1990) provide an excellent overview of this emerging field. 
Through beautiful pictures, they and others have shown the mathematical  ele- 
gance underlying simple biological systems. In this note, we hope to outline how 
computer data  structures such as binary trees may be visualized in a similarly 
elegant way as botanical trees. 

Suffix trees and tries are commonly used for storing text  files for string 
searching (STEPHEN (1994)). When shown as a drawing in a window, a lot of 
information is revealed about the authorship, language, and nature of the text.  
Drawings can be used as simple, elegant signatures of files. 

For example, the drawing in Figure 1 does not originate in nature. Rather  
this image has been created by visualizing a random binary tree in such a way 
as to resemble a botanical tree found in nature, i.e., each internal node of the 
random binary tree is drawn as a branch in the botanical tree and each external 
node is drawn as a leaf. 

O u r  a l g o r i t h m .  
Our algorithm builds on the approach taken in KRUSZEWSKI (1994) which in 
turn is inspired by VIENNOT, EYROLLES, JANEY, AND ARQUI~S (1989) (see 
also VIENNOT (1990) or ALONSO AND SCHOTT (1995)). Indeed, we are heavily 
indebted to these authors for the idea of using combinatorial trees as a basis for 
drawing botanical ones. Logically speaking, we first generate a random binary 
tree by random splits and then we draw a corresponding botanical tree according 
to the resulting structure of the binary tree and to various controlling parameters 

( ~ ~ " ~  ). In practice, we generate the binary tree and draw a corresponding 
botanical one "on the fly", branch by branch, one after the other, in a preorder 
traversal. Tha t  is, for each subtree rooted at node u with children v and w, 
we draw the branch corresponding to u and then recursively draw the branches 
corresponding to nodes v and w. Our algorithm is implemented in PostScript 
and as such the algorithm runs entirely inside the printer. 

O ve ra l l  s t r u c t u r e .  
We generate the tree by random splits. It is well-known (e.g., DEVROYE (1994)) 
that  many binary tree data  structures such as binary search trees, tries, and 
PATRICIAS can be simulated by recursive random splits. Tha t  is, starting at 
the root with n nodes, let X be a [0, 1]-valued random variable. Assign the left 
and right subtrees LnXJ and n -  1 - LnX] nodes respectively. This splitting 
continues with independent identically distributed copies of X on the left and 
right subtrees until they each have only one node. Such a tree is called a random 
split tree. In our simulations, X is a beta random variable, and we call the 
resulting trees random beta trees. 

After each node is created, its corresponding branch is drawn as a deformed 
rectangle. For each node u with children v and w, we determine for its corre- 
sponding branch, its length, width and branching angle. Implicit to our drawing 
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style is the idea of sap flow through the tree. That  is, for each branch, the 
number of leaves in its subtree is supposed to be the key influence on its growth 
and there is some relation between size of the logical subtree and layout of the 
physical branch. Typically for example, the more leaves a branch has above it, 
the longer and wider that  branch is. 

Obviously, we are not the first to make such observations. The earli- 
est reference which we could find are from about 1513 by Leonardo Da Vinci 
(RICHTER (1970)). In his book, Botany for Painters, Da Vinci sets up rules to 
guide artists in representing trees. Although Da Vinci attemps to give scientific 
explanations why things look as they do, his observations are first and fore- 
most concerned with how things should look. We re-iterate that  this is also our 
approach. That  is, we are concerned with developing a model which produces 
convincing synthetic images rather than actually articulating how nature works. 

Both VIENNOT ET AL. (1989) and KRUSZEWSKI (1994) use the HORTON- 
STRAHLER number of a node as the basis for functions of length, width and 
branching angles. At present, we prefer using subtree sizes. Typically, the width 
and length of a branch is a nondecreasing function f of l u], the size of the subtree 
rooted at node u. Often, the aesthetically most pleasing results for the length 
and the width functions occur when the functions are of the form c In lul or c x / ~  
where c > 0 is a constant (e.g., see Figure 2). 

l----Cl In lul l=cl In lul 
w=cw in lul w=cw vIV~T 

l=cl V~I 
w=c~ In lul W ~ C w  

F i g u r e  2. Various length and width functions for the same tree. 

However, as Figure 3 shows, many other length functions may be used, such 
as c-~, c - ~  or ~ ,  where d is the depth of the corresponding node and both 
c and c' are constants. 

l = ~ , i v / i - ~  l = c , i  In H t = c, id <, Isin 1'41 

F i g u r e  3 .  Examples of trees with atypical length functions. 

Given two sibling branches v and w, it is often the case in nature that  the 
larger branch deviates less in angle from the parent branch u than its sibling. 
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VIENNOT ET AL. (1989) determine three cases and corresponding angles: a 
branch is the main branch (typically 10~ secondary branch (typically 25~ 
or a fork branch where it and its sibling are about  equal in value so that  both 
angles are also about equal (typically 30~ Classification of branches is based the 
HORTON-STRAHLER number. However, since many families of random binary 
trees have logarithmic HORTON-STRAHLER numbers in the number of nodes (see 
e.g., DEVROYE AND KRUSZEWSKI (1994,1995)),  similar comparisons such as 

10 , if [loglvlJ > [ loglwlJ,  
Ov = 25 ~ if [loglvlJ < [ loglwlJ,  

30 ~ i f  / log IvlJ = [ log lwlJ ,  

are equally acceptable (e.g., see the first drawing in Figure 4). Nonetheless, 
the possibilities for branching angles are endless. In this figure, each tree has 
the same number of nodes and is drawn from the same probability distribution. 
The second drawing uses sibling sizes directly to determine angle, i.e., 0v = 
~ x 30 ~ Finally, the last two drawings rely on depth d of the branch in the 

27~ and 0 = 23~ tree, i.e., 0 = ~ ~ .  

8,, E {10~176 ~ O,,= ~ • ~ 0=27~247 O=23~ +1) 

F i g u r e  4. Various angle functions for the same tree. 

For greater realism, each angle 0 may be multiplied with cos(27rU) where 
U is uniform[0, 1] to simulate projection in the plane of a random 3-d rotat ion 
(e.g., Figure 5 shows this effect on the second drawing in the previous figure). 
In all cases, to avoid any absurdly asymmetric drawings, at each split, we flip a 
coin and place 0 by - 0  with probability 1/2. 

F i g u r e  5. Simulated random 3-d angles. 

Drawing polygonal branches typically results in rough-looking notches 
where the branches meet. VIENNOT ET AL. (1989) fill in these joints with 
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small triangles. We avoid this problem by drawing smooth, rounded forks 
rather than individual branches (cf. BLOOMENTHAL (1985)). 

That  is, the "buds" of the left and right child branches are also drawn with 
the parent as one smooth unit. We then overlay the buds with the corresponding 
child forks for a smooth fit. This means that  in practice, the size and orientation 
of a branch is worked out when its parent branch is drawn. Thus, the child forks 

are laid over the parent fork ~ . Note that  all of the curves are created by 
the PostScript command c u r v e t o  which implements B@zier curves (see p. 140 
in ADOBE (1985)). This layering continues throughout  the preorder traversal. 

B e t a  d i s t r i b u t i o n .  
We split according to the beta distribution as it yields a rich family of branching 
patterns. The beta(a,  b) has density 

F(a + b) x)b_ 1 
/ ( x )  - r ( a ) r ( b )  = ~  - , 0 < = < 1, 

where a, b > 0 are parameters and F is the gamma function. For example, 
beta(I ,1)  produces random binary search trees. Beta trees are defined in DE- 
VROYE (1986) as trees in which the sizes of right and left subtrees are multinomial 
(n, X, 1 - X) where X is as before. The multinomial beta trees are slightly dif- 
ferent from the model used for tree drawing, but  the differences are so minor 
that  for tree drawing purposes, we prefer to use the ( [nX] ,  [(1 - X)n ] )  model 
of this paper. 

For the multinomial beta trees pruned as soon as a subtree size reaches one, 
if a,b tend to infinity such that  ~ = p, then one obtains a trie with sym- 

bol probabilities p and 1 - p (see e.g., PITTEL (1985)). The beta distribution 
is versatile primarily because varying a and b results in a wide family of trees 
with logarithmic average depth and height. That  is, the bushiness and elonga- 
tion of the trees can be controlled by varying the parameters. More formally 
DEVROYE (1995) shows the following theorems for random split trees in general. 

THEOREM 1. Let Dn be the depth of the last node in a random split tree with 
n nodes. Then 

Dn 1 
log---~ -~ - in probability as n ~ c~, 

p 

and E { D n } / l o g n  tends to the same limit, where # = 2E { Y l o g ( 1 / Y ) } ,  Y E 
[0, 1] is X and 1 -  X with equal probability, and X is the branch-splitting random 
variable introduced earlier. 

THEOREM 2. Let Hn be the height of a random split tree with n nodes. Then 

Ha 
log n ~ 7 in probability as n --+ c~, 

where 7 = i n f { c :  et*(2m(t*)) c < 1}, m(t) = E{Yt} ,  t > O, t* is the unique 
solution of m ' ( t ) /m( t )  = - 1 / c ,  and Y is as in Theorem 1. 
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With random beta trees, one can choose the desired expected depth and height 
and solve the above formulas to determine explicit values for a and b. Note, for 
example, that  1/# can take any value between 1 / log2  and cr We implement 
this distribution by the PostScript uniform random number generator r and  and 
Cheng's method for beta  variates (CHENG (1978) as explained on p. 438 of 
DEVROYE (1986)). 

Figures 6 and 7 show the flexible nature of the beta  distribution. Each tree 
consists of 500 nodes and is drawn using the same rules (for length, width, and 
aalgle) but  for different beta parameters.  As Figure 6 shows, as a -+ co, and 
b = a, the splitting is even and deterministic, and as a -~ 0, b = a, the splitting 
is asymmetric and unstable. 

beta(50,50) beta(10,10) beta 

F i g u r e  6. Examples of random beta(a,a 

1,1) beta(0.5,0.5) 

trees with 500 nodes. 

~L 

Y 
beta(I,2) 

/ 
beta(I,10) 

beta(2,5) 

beta(0.5,0.9) 

beta(i,5) 

betaq 0.5,10) 

beta(5,15) 

beta(5,50) 

F i g u r e  7. Examples of random beta(a,b) trees with 500 nodes. 
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R a n d o m i z a t i o n .  
Our algorithm is heavily randomized. The underlying tree structure is generated 
by random splits. Furthermore, all functions such as length, width and branching 
angle can be perturbed using randomness. Angles can be randomized based upon 
subtree sizes, depths and split ratios, for example. 

Leaves. 
Realistic-looking leaves are an important component for any tree drawing pro- 
gram. We use a very simple rectangular shape based on the examples found in 
SUGDEN (1984). A leaf consists of an apex (top) and a base. Shape is controlled 
by varying the apex height, base depth and leaf width. As Figures 8 and 9 
show, we have nine different apices and four different bases, each constructed 
with simple B4zier curves. 

AA 
acute subacute 

AA A. Aa 
obtuse rounded cuspidate acuminate mucronate aristats retuse 

Figure 8. Various leaf apices. 

cordate cuneate rounded truncate 

Figure  9. Various leaf bases. 

Added realism can be achieved by drawing two-dimensional projections of 
the leaves. Rather than actually modelling in three dimensions, sufficient realism 
can be achieved by rotating and projecting the leaves. 

Various t ropisms:  sun and wind.  
Tropism is the property by which an organism turns in a certain direction in 
response to external stimulus. In plants, this stimulus is primarily the sun 
and hence heliotropism has been incorporated into many models (e.g., CHIBA, 
OHKAWA, MURAOKA, AND MICRA (1994)). We simulate heliotropism according 
to sun position and intensity. With respect to intensity, we use the admittedly 
naive idea that the larger the branch the more light it receives over its lifetime 
and thus the more it reacts by changing its angle. That is, for node u after 
8u is determined, 8u is multiplied by an intensity factor (based on lul) which 
pulls branch u closer to the sun. In Figure 10, we take the beta(I,5) tree with 
500 nodes from Figure 7 and subject it to increasing sun intensity with the sun 
directly overhead. However as Figure 10 shows, we neglect to consider that 
leaves tend to spread out to maximize coverage. 

Wind is also an important environmental factor. Both VIENNOT ET 
AL. (1989) and KRUSZEWSKI (1994) simulate wind by changing the underly- 
ing structure; the former always flips larger branch to one side while the later 
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F i g u r e  10. A tree under increasingly intense sun. 

F i g u r e  11. A tree under increasingly intense wind. 

uses asymmetric tries. As Figure 11 shows, by placing the sun perpendicular 
to the ground and inverting the intensity function (i.e., larger branches should 
bend less than smaller ones), reasonable wind can be simulated. 

Finally, if we set the wind to blow from above, we can simulate the effect 
of droughts or flexible branches such as those found in weeping willows. 

F i g u r e  12. A weeping willow. 

Three-dimensional drawing. 
Botanical trees are three-dimensional objects. Therefore, added realism is ob- 
tained by drawing the trees in three dimensions and projecting them onto the 
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two-dimensional plane. In the 3-d case, we now consider the branching angle 
from the 2-d case to be a rotation about the z-axis and add a second rotation 
about the z-axis. This approach was first taken by ANON AND KUNII (1984). We 
have forking, main and secondary angles of sizes 30 ~ 70 ~ and 20 ~ respectively. 
Branches are now cylindrical and smooth B4zier curves require a serious com- 
putational effort. Currently, we opt for the simpler solution of representing the 
branches as solid cylinders. This approach is very acceptable when the branches 
are very thin (e.g., Figure 13). However, drawings of thick-branched trees are 
rather unappealing. We are currently working on a new 3-d model which will 
produce the same smooth forks as in the 2-d model. 

/ 
! 

,z 

Figure  13. A three-dimensional tree. 

Conclusions.  
All of the images were generated in PostScript on a 600 dpi Apple Laser: 
Writer Pro with 8 megabytes of memory. All files t are completely self-contained 
and are about 27 kilobytes long, of which more than half is documentation. For 
example, Figure 1 has 5000 branches and takes approximately 33 minutes to 
print. Image rendering by ghostview is about eight times faster. 

Many extensions and enhancements can be imagined. Probably, the most 
desired would be to wrap the program in a graphical user-interface. Currently, 
different trees are generated by modifying the PostScript code by hand and 
then re-viewing with the PostScript previewer ghostview. A graphical interface 
would allow the user to freely change parameters and then instantly view result- 
ing changes. We do not grow the tree dynamically to model physical growth. 
However, if we re-draw the tree after each successive node is added, we could 
have a reasonable animation of tree growth. Finally, not all trees are binary, we 
hope to extend our model to arbitrary k-ary trees. 

t Our programs are available by anonymous f t p  at f t p . r  in the directory 
pub/tech-reports/library/code/botan-ical.trees/. 
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A birch tree from Quebec's Laurentians. 

Figure  14. Sundry trees. 

A yucca tree. 
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