
The Botanical Beauty of Random Binary Trees

Luc Devroye# and Paul Kruszewski j;

School of Computer Science, McGill University
3480 University Street, Montreal, Canada H3A 2A7

ABSTRACT. We present a simple mechanism for quickly rendering computer
images of botanical trees based on random binary trees commonly found in
computer science. That is, we visualize abstract binary trees as botanical ones.
We generate random binary trees by splitting based upon the beta distribution,
and obtain the standard binary search trees as a special case. We draw them in
PostScript to resemble actual botanical trees found in nature. Through flexible
parameterization and extensive randomization, we can produce a rich collection
of images.

KEYWORDS AND PHRASES. Tree drawing, tree simulation, tree visualization,
beta distribution, random binary trees, PostScript.

I n t r o d u c t i o n .

F i g u r e 1. A visualization of a random binary tree with 5000 internal nodes.

t Research supported by NSERC Grant A3456 and FCAR Grant 90-ER-0291. Emaih
lur .mcgill. ca.

Research supported by a 1967 NSERC Postgraduat e Scholarship. Email: kruz@cs .mcgi11. ca.

167

The computer imagery of realistic-looking trees has many applications rang-
ing from the verification of botanical models to computerized landscaping and
animation. In their book, The Algorithmic Beauty of Plants, PRUSINKIEWICZ
AND LINDENMAYER (1990) provide an excellent overview of this emerging field.
Through beautiful pictures, they and others have shown the mathematical ele-
gance underlying simple biological systems. In this note, we hope to outline how
computer data structures such as binary trees may be visualized in a similarly
elegant way as botanical trees.

Suffix trees and tries are commonly used for storing text files for string
searching (STEPHEN (1994)). When shown as a drawing in a window, a lot of
information is revealed about the authorship, language, and nature of the text.
Drawings can be used as simple, elegant signatures of files.

For example, the drawing in Figure 1 does not originate in nature. Rather
this image has been created by visualizing a random binary tree in such a way
as to resemble a botanical tree found in nature, i.e., each internal node of the
random binary tree is drawn as a branch in the botanical tree and each external
node is drawn as a leaf.

O u r a l g o r i t h m .
Our algorithm builds on the approach taken in KRUSZEWSKI (1994) which in
turn is inspired by VIENNOT, EYROLLES, JANEY, AND ARQUI~S (1989) (see
also VIENNOT (1990) or ALONSO AND SCHOTT (1995)). Indeed, we are heavily
indebted to these authors for the idea of using combinatorial trees as a basis for
drawing botanical ones. Logically speaking, we first generate a random binary
tree by random splits and then we draw a corresponding botanical tree according
to the resulting structure of the binary tree and to various controlling parameters

(~ ~ " ~). In practice, we generate the binary tree and draw a corresponding
botanical one "on the fly", branch by branch, one after the other, in a preorder
traversal. Tha t is, for each subtree rooted at node u with children v and w,
we draw the branch corresponding to u and then recursively draw the branches
corresponding to nodes v and w. Our algorithm is implemented in PostScript
and as such the algorithm runs entirely inside the printer.

O ve ra l l s t r u c t u r e .
We generate the tree by random splits. It is well-known (e.g., DEVROYE (1994))
that many binary tree data structures such as binary search trees, tries, and
PATRICIAS can be simulated by recursive random splits. Tha t is, starting at
the root with n nodes, let X be a [0, 1]-valued random variable. Assign the left
and right subtrees LnXJ and n - 1 - LnX] nodes respectively. This splitting
continues with independent identically distributed copies of X on the left and
right subtrees until they each have only one node. Such a tree is called a random
split tree. In our simulations, X is a beta random variable, and we call the
resulting trees random beta trees.

After each node is created, its corresponding branch is drawn as a deformed
rectangle. For each node u with children v and w, we determine for its corre-
sponding branch, its length, width and branching angle. Implicit to our drawing

168

style is the idea of sap flow through the tree. That is, for each branch, the
number of leaves in its subtree is supposed to be the key influence on its growth
and there is some relation between size of the logical subtree and layout of the
physical branch. Typically for example, the more leaves a branch has above it,
the longer and wider that branch is.

Obviously, we are not the first to make such observations. The earli-
est reference which we could find are from about 1513 by Leonardo Da Vinci
(RICHTER (1970)). In his book, Botany for Painters, Da Vinci sets up rules to
guide artists in representing trees. Although Da Vinci attemps to give scientific
explanations why things look as they do, his observations are first and fore-
most concerned with how things should look. We re-iterate that this is also our
approach. That is, we are concerned with developing a model which produces
convincing synthetic images rather than actually articulating how nature works.

Both VIENNOT ET AL. (1989) and KRUSZEWSKI (1994) use the HORTON-
STRAHLER number of a node as the basis for functions of length, width and
branching angles. At present, we prefer using subtree sizes. Typically, the width
and length of a branch is a nondecreasing function f of l u], the size of the subtree
rooted at node u. Often, the aesthetically most pleasing results for the length
and the width functions occur when the functions are of the form c In lul or c x / ~
where c > 0 is a constant (e.g., see Figure 2).

l----Cl In lul l=cl In lul
w=cw in lul w=cw vIV~T

l=cl V~I
w=c~ In lul W ~ C w

F i g u r e 2. Various length and width functions for the same tree.

However, as Figure 3 shows, many other length functions may be used, such
as c-~, c - ~ or ~ , where d is the depth of the corresponding node and both
c and c' are constants.

l = ~ , i v / i - ~ l = c , i In H t = c, id <, Isin 1'41

F i g u r e 3 . Examples of trees with atypical length functions.

Given two sibling branches v and w, it is often the case in nature that the
larger branch deviates less in angle from the parent branch u than its sibling.

169

VIENNOT ET AL. (1989) determine three cases and corresponding angles: a
branch is the main branch (typically 10~ secondary branch (typically 25~
or a fork branch where it and its sibling are about equal in value so that both
angles are also about equal (typically 30~ Classification of branches is based the
HORTON-STRAHLER number. However, since many families of random binary
trees have logarithmic HORTON-STRAHLER numbers in the number of nodes (see
e.g., DEVROYE AND KRUSZEWSKI (1994,1995)), similar comparisons such as

10 , if [loglvlJ > [loglwlJ,
Ov = 25 ~ if [loglvlJ < [loglwlJ,

30 ~ i f / log IvlJ = [log lwlJ ,

are equally acceptable (e.g., see the first drawing in Figure 4). Nonetheless,
the possibilities for branching angles are endless. In this figure, each tree has
the same number of nodes and is drawn from the same probability distribution.
The second drawing uses sibling sizes directly to determine angle, i.e., 0v =
~ x 30 ~ Finally, the last two drawings rely on depth d of the branch in the

27~ and 0 = 23~ tree, i.e., 0 = ~ ~ .

8,, E {10~176 ~ O,,= ~ • ~ 0=27~247 O=23~ +1)

F i g u r e 4. Various angle functions for the same tree.

For greater realism, each angle 0 may be multiplied with cos(27rU) where
U is uniform[0, 1] to simulate projection in the plane of a random 3-d rotat ion
(e.g., Figure 5 shows this effect on the second drawing in the previous figure).
In all cases, to avoid any absurdly asymmetric drawings, at each split, we flip a
coin and place 0 by - 0 with probability 1/2.

F i g u r e 5. Simulated random 3-d angles.

Drawing polygonal branches typically results in rough-looking notches
where the branches meet. VIENNOT ET AL. (1989) fill in these joints with

170

small triangles. We avoid this problem by drawing smooth, rounded forks
rather than individual branches (cf. BLOOMENTHAL (1985)).

That is, the "buds" of the left and right child branches are also drawn with
the parent as one smooth unit. We then overlay the buds with the corresponding
child forks for a smooth fit. This means that in practice, the size and orientation
of a branch is worked out when its parent branch is drawn. Thus, the child forks

are laid over the parent fork ~ . Note that all of the curves are created by
the PostScript command c u r v e t o which implements B@zier curves (see p. 140
in ADOBE (1985)). This layering continues throughout the preorder traversal.

B e t a d i s t r i b u t i o n .
We split according to the beta distribution as it yields a rich family of branching
patterns. The beta(a, b) has density

F(a + b) x)b_ 1
/ (x) - r (a) r (b) = ~ - , 0 < = < 1,

where a, b > 0 are parameters and F is the gamma function. For example,
beta(I ,1) produces random binary search trees. Beta trees are defined in DE-
VROYE (1986) as trees in which the sizes of right and left subtrees are multinomial
(n, X, 1 - X) where X is as before. The multinomial beta trees are slightly dif-
ferent from the model used for tree drawing, but the differences are so minor
that for tree drawing purposes, we prefer to use the ([nX] , [(1 - X)n]) model
of this paper.

For the multinomial beta trees pruned as soon as a subtree size reaches one,
if a,b tend to infinity such that ~ = p, then one obtains a trie with sym-

bol probabilities p and 1 - p (see e.g., PITTEL (1985)). The beta distribution
is versatile primarily because varying a and b results in a wide family of trees
with logarithmic average depth and height. That is, the bushiness and elonga-
tion of the trees can be controlled by varying the parameters. More formally
DEVROYE (1995) shows the following theorems for random split trees in general.

THEOREM 1. Let Dn be the depth of the last node in a random split tree with
n nodes. Then

Dn 1
log---~ -~ - in probability as n ~ c~,

p

and E { D n } / l o g n tends to the same limit, where # = 2E { Y l o g (1 / Y) } , Y E
[0, 1] is X and 1 - X with equal probability, and X is the branch-splitting random
variable introduced earlier.

THEOREM 2. Let Hn be the height of a random split tree with n nodes. Then

Ha
log n ~ 7 in probability as n --+ c~,

where 7 = i n f { c : et*(2m(t*)) c < 1}, m(t) = E{Yt} , t > O, t* is the unique
solution of m ' (t) /m(t) = - 1 / c , and Y is as in Theorem 1.

171

With random beta trees, one can choose the desired expected depth and height
and solve the above formulas to determine explicit values for a and b. Note, for
example, that 1/# can take any value between 1 / log2 and cr We implement
this distribution by the PostScript uniform random number generator r and and
Cheng's method for beta variates (CHENG (1978) as explained on p. 438 of
DEVROYE (1986)).

Figures 6 and 7 show the flexible nature of the beta distribution. Each tree
consists of 500 nodes and is drawn using the same rules (for length, width, and
aalgle) but for different beta parameters. As Figure 6 shows, as a -+ co, and
b = a, the splitting is even and deterministic, and as a -~ 0, b = a, the splitting
is asymmetric and unstable.

beta(50,50) beta(10,10) beta

F i g u r e 6. Examples of random beta(a,a

1,1) beta(0.5,0.5)

trees with 500 nodes.

~L

Y
beta(I,2)

/
beta(I,10)

beta(2,5)

beta(0.5,0.9)

beta(i,5)

betaq 0.5,10)

beta(5,15)

beta(5,50)

F i g u r e 7. Examples of random beta(a,b) trees with 500 nodes.

172

R a n d o m i z a t i o n .
Our algorithm is heavily randomized. The underlying tree structure is generated
by random splits. Furthermore, all functions such as length, width and branching
angle can be perturbed using randomness. Angles can be randomized based upon
subtree sizes, depths and split ratios, for example.

Leaves.
Realistic-looking leaves are an important component for any tree drawing pro-
gram. We use a very simple rectangular shape based on the examples found in
SUGDEN (1984). A leaf consists of an apex (top) and a base. Shape is controlled
by varying the apex height, base depth and leaf width. As Figures 8 and 9
show, we have nine different apices and four different bases, each constructed
with simple B4zier curves.

AA
acute subacute

AA A. Aa
obtuse rounded cuspidate acuminate mucronate aristats retuse

Figure 8. Various leaf apices.

cordate cuneate rounded truncate

Figure 9. Various leaf bases.

Added realism can be achieved by drawing two-dimensional projections of
the leaves. Rather than actually modelling in three dimensions, sufficient realism
can be achieved by rotating and projecting the leaves.

Various t ropisms: sun and wind.
Tropism is the property by which an organism turns in a certain direction in
response to external stimulus. In plants, this stimulus is primarily the sun
and hence heliotropism has been incorporated into many models (e.g., CHIBA,
OHKAWA, MURAOKA, AND MICRA (1994)). We simulate heliotropism according
to sun position and intensity. With respect to intensity, we use the admittedly
naive idea that the larger the branch the more light it receives over its lifetime
and thus the more it reacts by changing its angle. That is, for node u after
8u is determined, 8u is multiplied by an intensity factor (based on lul) which
pulls branch u closer to the sun. In Figure 10, we take the beta(I,5) tree with
500 nodes from Figure 7 and subject it to increasing sun intensity with the sun
directly overhead. However as Figure 10 shows, we neglect to consider that
leaves tend to spread out to maximize coverage.

Wind is also an important environmental factor. Both VIENNOT ET
AL. (1989) and KRUSZEWSKI (1994) simulate wind by changing the underly-
ing structure; the former always flips larger branch to one side while the later

173

F i g u r e 10. A tree under increasingly intense sun.

F i g u r e 11. A tree under increasingly intense wind.

uses asymmetric tries. As Figure 11 shows, by placing the sun perpendicular
to the ground and inverting the intensity function (i.e., larger branches should
bend less than smaller ones), reasonable wind can be simulated.

Finally, if we set the wind to blow from above, we can simulate the effect
of droughts or flexible branches such as those found in weeping willows.

F i g u r e 12. A weeping willow.

Three-dimensional drawing.
Botanical trees are three-dimensional objects. Therefore, added realism is ob-
tained by drawing the trees in three dimensions and projecting them onto the

174

two-dimensional plane. In the 3-d case, we now consider the branching angle
from the 2-d case to be a rotation about the z-axis and add a second rotation
about the z-axis. This approach was first taken by ANON AND KUNII (1984). We
have forking, main and secondary angles of sizes 30 ~ 70 ~ and 20 ~ respectively.
Branches are now cylindrical and smooth B4zier curves require a serious com-
putational effort. Currently, we opt for the simpler solution of representing the
branches as solid cylinders. This approach is very acceptable when the branches
are very thin (e.g., Figure 13). However, drawings of thick-branched trees are
rather unappealing. We are currently working on a new 3-d model which will
produce the same smooth forks as in the 2-d model.

/
!

,z

Figure 13. A three-dimensional tree.

Conclusions.
All of the images were generated in PostScript on a 600 dpi Apple Laser:
Writer Pro with 8 megabytes of memory. All files t are completely self-contained
and are about 27 kilobytes long, of which more than half is documentation. For
example, Figure 1 has 5000 branches and takes approximately 33 minutes to
print. Image rendering by ghostview is about eight times faster.

Many extensions and enhancements can be imagined. Probably, the most
desired would be to wrap the program in a graphical user-interface. Currently,
different trees are generated by modifying the PostScript code by hand and
then re-viewing with the PostScript previewer ghostview. A graphical interface
would allow the user to freely change parameters and then instantly view result-
ing changes. We do not grow the tree dynamically to model physical growth.
However, if we re-draw the tree after each successive node is added, we could
have a reasonable animation of tree growth. Finally, not all trees are binary, we
hope to extend our model to arbitrary k-ary trees.

t Our programs are available by anonymous f t p at f t p . r in the directory
pub/tech-reports/library/code/botan-ical.trees/.

175

A c k n o w l e d g e m e n t s .
We thank Sue Whitesides for her simulating conversations, useful advice and
ongoing encouragement.

A birch tree from Quebec's Laurentians.

Figure 14. Sundry trees.

A yucca tree.

R e f e r e n c e s .

ADOBE SYSTEMS INC. (1985). PostScript Language Reference Manual. Read-
ing, MA: Addison-Wesley.

ALONSO, L. AND R. SCHOTT (1995). Random Generation o] Trees. Dordrecht,
The Netherlands: Kluwer Academic Publishers.

ANON, M. AND T. KUNII (1984). Botantical tree image generation. IEEE
Computer Graphics Applications ,4, 10-34.

BLOOMENTHAL, J. (1985). Modeling the Mighty Maple. In Proceedings of
SIGGRAPH'85, Computer Graphics, Volume 19, pp. 305-311.

CHENG, R. C. H. (1978). Generating beta variates with nonintegral shape
parameters. Communications of the ACM 21, 317-322.

CHIBA, N., S. OHKAWA, K. MURAOKA, AND M. MIURA (1994). Visual sim-
ulation of botanical trees based on virtual heliotropism and dormancy break.
Journal of Visualization and Computer Animation 5(1), 3-15.

176

F i g u r e 15. Passau im Herbst.

DEVROYE, L. (1986). Non-Uniform Random Variate Generation. New York:
Springer-Verlag.

DEVROYE, L. (1994). Lectures Notes for Computer Science 690A--Probabilistic
Analysis of Algorithms and Data Structures. Montreal: School of Computer
Science, McGill University.

DEVROYE, L. (1995). Universal limit laws for depths in random trees. (Sub-
mitted).

177

DEVROYE, L. AND P. KRUSZEWSKI (1994). A note on the HORTON-STRAHLER
number for random trees. In]ormation Processing Letters 52, 155-159.

DEVROYE, L. AND P. KRUSZEWSKI (1995). On the HORTON-STRAHLER num-
ber for random tries. (Submitted).

KRUSZEWSKI, P. (1994). Using the HORTON-STRAHLER number to draw trees.
Technical Report SOCS-94.1, School of Computer Science, McGill University.

PITTEL, B. (1985). Asymptotical growth of a class of random trees. Annals o]
Probability 13, 414-427.

PRUSINKIEWICZ, P. AND n. LINDENMAYER (1990). The Algorithmic Beauty
of Plants. New York: Springer-Verlag.

RICHTER, J. P. (1970). The literary works of Leonardo Da Vinci (3 ed.). New
York: Phaidon Publishers Inc.

STEPHEN, G. A. (1994). String Searching Algorithms. Lecture Notes Series on
Computing. New York: Springer-Verlag.

SUGDEN, A. (1984). Longman Illustrated Dictionary of Botany. Essex, UK:
Longman Group Limited.

VIENNOT, X. G. (1990). Trees everywhere. In A. Arnold (Ed.), Proceedings
o] the 15th Colloquium on Trees in Algebra and Programming, Copenhagen,
Denmark, May 15-18, 1990, Lecture Notes in Computer Science, Volume 431,
Berlin, pp. 18-41. Springer-Verlag.

VIENNOT, X. G., G. EYROLLES, N. JANEY, AND D. ARQU~S (1989). Com-
binatorial analysis of ramified patterns and computer imagery of trees. In
Proceedings o] SIGGRAPH'89, Computer Graphics, Volume 23, pp. 31-40.

