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A b s t r a c t .  This paper initiates the study of weak proximity drawings of 
graphs and demonstrates their advantages over strong proximity draw- 
ings in certain cases. Weak proximity drawings are straight line drawings 
such that if the proximity region of two points p and q representing ver- 
tices is devoid of other points representing vertices, then segment (p, q) 
is allowed, but not forced, to appear in the drawing. This differs from 
the usual, strong, notion of proximity drawing in which such segments 
must appear in the drawing. 
Most previously studied proximity regions are associated with a parame- 
ter/3, 0 _</3 < c~. For fixed/3, weak/3-drawability is at least as expressive 
as strong/3-drawability, as a strong/3-drawing is also a weak one. We give 
examples of graph families and/3 values where the two notions coincide, 
and a situation in which it is NP-hard to determine weak/3-drawability. 
On the other hand, we give situations where weak proximity significantly 
increases the expressive power of/3-drawability: we show that every graph 
has, for all sufficiently small/3, a weak/3-proximity drawing that is com- 
putable in linear time, and we show that every tree has, for every/3 less 
than 2, a weak/3-drawing that is computable in linear time. 

1 Introduction and Overview 

Given two points  u and v of  the plane, a proximity region of u and v is a por t ion  
of  the plane, de termined by u and v, tha t  contains points  relatively close to bo th  
of  them.  A prozimity drawing of a graph  G has been defined in the l i terature as 
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a straight-line drawing (vertices of G are mapped to distinct points of the plane, 
and edges to straight-line segments) such that: (i) for each edge (u, v) of G, the 
proximity region of the points representing u and v does not contain any other 
vertex; and (ii) for each pair of non-adjacent vertices u, v of G, the proximity 
region of the points representing u and v contains at least one other vertex. 

Most of the results on proximity drawings take as proximity regions the 
so-called E-regions [11]. Such regions form an infinite family, each element of 
the family being identified by a value of the parameter ~ (0 < ~ < cx~). For 
example, when fl = 1 the proximity region of u and v is the disk with u and v as 
antipodal points; when fl = 2 the proximity region is the intersection of two disks 
with centers at u and v and radius the distance d(u, v) between u and v; when 

= c~ the proximity region is the infinite strip perpendicular to the line segment 
between u and v. A E-drawing is a proximity drawing such that the proximity 
regions are E-regions. A graph is fl-drawable if it has a/~-drawing. A brief survey 
on proximity drawability is in [4]. Besides their theoretical interest, proximity 
drawings have been studied for their practical characteristics: neighboring graph 
vertices are clustered in the drawing, and adjacent edges tend to have large 
angles. Furthermore, proximity drawings are related to minimum spanning tree 
drawings, minimum weight drawings of triangulations, and Delaunay drawings 
(e.g., see [6, 10, 2]). 

The purpose of this paper is to initiate a study of weak proximity drawings, in 
particular, weak E-drawings. A weak proximity drawing of a graph G is one that 
ignores requirement (ii) for traditional, or strong, drawings. In other words, if 
(u, v) is not an edge of G, then no requirement is placed on the proximity region 
of u and v in a weak drawing. For example, Fig. 1 shows a weak proximity 
drawing of a tree. Here, the proximity region of any two points p and q is the 
disk having p and q as antipodal points. Note that the drawing is not a strong 
drawing, as no edges between neighbors of the degree six vertex are included. 

There are several motivations for studying weak proximity drawings and in 
particular, weak E-drawings. 

- Strong proximity drawability is very restrictive, perhaps too much so. By 
relaxing (ii), a graph G can no longer be reconstructed from the locations 
of its vertices in a weak drawing; however, many graphs that do not admit 
strong drawings can be drawn weakly. For example, a tree that has a vertex 
of degree greater than five has no strong E-drawing for any ~ [3]. Thus the 
drawing in Fig. 1 illustrates a graph that is weak but not strong drawable 
for the circular disk proximity region defined by antipodal points. Also, char- 
acterizations and algorithms for strong ~-drawability have been devised only 
for a few classes of graphs. 

- Weak and strong visibility drawings (e.g., see [15]) can be considered as a 
particular class of proximity drawings. In the field of visibility drawing, the 
coordinated study of both strong and weak types of drawings led to deep 
and practical results. 

- Weak proximity can be considered as an "edge-vertex resolution rule" in the 
sense that a vertex cannot enter the region of influence of an edge. Thus, the 
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Fig. 1. A weak proximity drawing of a tree. 

study of weak proximity can contribute to the body of drawing strategies 
that adopt a resolution rule ( e.g., see [5, 9]). 

- The weak proximity model may well be sufficient for many drawing applica- 
tions, particularly ones that do not require recovery of the graph solely from 
the positions of its vertices. 

The main results presented in this paper are as follows. 

Genera l  graphs .  We show that any graph G is weak/%drawable for all f~ in 
the range 0 to some upper bound that is a function either of the number of 
vertices or of the maximum vertex degree of G. (Section 3.) 

P l ana r  graphs.  First, we show how to extend existing strong proximity drawa- 
bility results on outerplanar graphs to weak drawability results. Second, we 
show that, in a certain interval for/~, strong and weak f~-drawings of triangu- 
lated planar graphs coincide. Third, we give new insights on the interplay be- 
tween angular resolution and proximity drawability. Namely, we show how to 
interpret any straight-line drawing algorithm for planar triangulated graphs 
as an algorithm for constructing weak proximity drawings. (Section 4.) 

Trees. We provide an algorithm to draw any tree as a weak ~-drawing for any 
value of/~ less than two. Then we show that for 2 < ~3 < c~, the weak and 
the strong proximity models give rise approximately to the same class of 
f~-dr~wable trees. Finally, we show the NP-hardness of deciding whether a 
tree has a weak proximity drawing for/~ -- c~, where the region of influence 
is an open strip. (Section 5.) 

All our algorithms admit a linear time implementation in real RAM. The 
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above results represent, in many cases, substantial improvements over the known 
algorithms and characterizations for strong proximity drawability. 

2 P r e l i m i n a r i e s  

We recall some basic definitions concerning proximity drawings. 
Given a pair x, y of points in the plane, the open fl-region of influence of z 

and y, and the closed fl-region of influence o]x and y, denoted by R(z,  y, fl) and 
R[z, y, fl] respectively, are defined as follows: 

1. For 0 < fl < 1, R(z, y,/3) is the intersection of the two open disks of radius 
d(x, y)/(2fl) passing through both z and y. R[~:, y, fl] is the intersection of 
the two corresponding closed disks. 

2. For 1 _< fl < cr R(z,  y, fl) is the intersection of the two open disks of radius 
fld(z, y)/2, centered at the points (1-fl/2)x+(~/2)y and (fl/2)z+(1-fl/2)y. 
R[z, y, ~] is the intersection of the two corresponding closed disks. 

3. R(x, y, cr is the open infinite strip perpendicular to the line segment ~yy and 
R[x, y, cr is the closed infinite strip perpendicular to the line segment ~yy. 

4. R(z, y, 0) is the empty set; R[x, y, 0] is the line segment connecting z and y. 

Let G be a graph. A weak (strong) (fl)-drawing of G is a weak (strong) 
proximity drawing of G such that for each pair of points z, y the proximity 
region is R(z,  y, fl). Weak and strong (fl)-drawings are called w-(fl)-drawings 
and s-(fl)-drawings, respectively. Analogously, a weak (strong) [fl]-drawing of G 
is a weak (strong) proximity drawing of G such that for each pair of points 
x, y the proximity region is R[z, y, fl]. Weak and strong []3]-drawings are called 
w-[~3]-drawings and s-[~]-drawings, respectively. 

A graph is w-(fl)-drawable (s-(fl)-drawable) if it has a w-(fl)-drawing (s-(~)- 
drawing). Analogously, a graph is w-[~]-drawable (s-[fl]-dvawable) if it has a w- 
[13]-drawing (s-[~]-drawing). When it is clear from the context or when it is not 
necessary to distinguish between open and closed proximity regions, we simplify 
the notation by talking about  fl-drawings and fl-drawable graphs. A class of 
graphs is w-~-drawable (resp. s-fl-drawable) if all its graphs are w-fl-drawable 
(resp. s-/~-drawable). A class of graphs is not w-fl-drawable (resp. s-~-drawable) 
if it contains at least one graph that is not w-fl-drawable (resp. s-9-drawable). 

The following properties extend many results on strong drawability to weak 
drawability. 

P r o p e r t y  1. An s-fl-drawable graph is also w-~-drawable. 

P r o p e r t y  2. Let F be a w-/~-drawing of a graph G and let P be the set of points 
of F representing the vertices of G. Let F '  be an s-~-drawing such that F ~ uses 
the same set of points P to represent the vertices of G'. Then G C G ~. 

Attractive drawability inclusion properties follow from weak proximity. 
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Property3. If G is a w-~drawable graph, then G' C G is a w-/9-drawable 
graph. 

Property 4. If G is a w-~-drawable graph, then G is w-/3-drawable for any/3  
such that 0 </3 </3. 

To analyse w-H-drawings we will frequently use two angles a(/9) and 7(/3), 
defined as follows. 

1. ~(/9) = in f {Lzzy  II z e R[=,y,/3]}. 
2. v(/9) is only defined for/9 > 2, and 7(2) = ~. For/9 > 2, let z r y be a point 

on the boundary of R[~:, y,/3] such that  d(z, y) -- d(x, z). Then 7(B) = Lzary. 

Property 5. [3] 

1. /3 = s ina  for 0 < /3  < 1. 
2 . / 3 =  1 i-co, a for 1 </3  < c~. 
3. /3=  1 f o r 2 < / 3 < c ~ .  

3 G e n e r a l  Graphs  

In this section, we give a simple, fast method for producing w-(/3)- and w-[/9]- 
drawings of arbitrary graphs on n vertices for certain/3 in the range 0 < /9  < 1. 

Theorem 6. Any graph on n vertices is w-[/9]-drawable for all values of/3 such 
that 0 </3 < sin(2~r/n); any graph on n vertices is w-(sin(2zr/n))-drawable. 

Sketch o/proof. For the trivial case/3 -- 0, it suffices to place the points on a 
circular arc of measure < rr. For/3 > 0, place n points equally spaced around a 
circle C of arbitrary radius R. Recall that  for 0 < /3  < 1, the radius r for the 
circular arcs bounding a proximity region R(x, y,/3) is given by d(z, y)/(2/3). For 
/3 sufficiently close to 0, the region of influence is a slight widening of the line 
segment joining x and y. It lies entirely within C and hence contains none of 
the n points distinct from x and y. Radius r decreases with increasing/9. When 
/3 increases to the extent that  r < R, then points that  are not consecutive on 
the circle cannot be joined by an edge in a w-[/3]-drawing (similarly for r < R 
and w-(/3)-drawings). This critical value of )3 is thus determined by R = r = 
d(p, q)/2/9, i.e.,/9 = d(p, q)/2R, where p, q is the closest pair of points that  are 
non-consecutive on C. For n equally spaced points, sin(21r/n) = (d(p, q ) /2) /R ,  
so d(p, q) = 2Rsin(27r/n). Hence, independent of R, the critical value of/~ is 
sin(2zc/n) (approximately 2~r/n for large n). 

The statement of Theorem 6 can be strenghthened in certain cases by using 
a method of [16]. Consider a coloring of G by X colors, where X is the chromatic 
number of G. Divide a circle C of arbitary r a d i u s / / i n t o  X arcs of equal length. 
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Cluster points receiving color i about the center of arc i. The closest pair p, q 
of points that  are non-consecutive on C but that  are joined by an edge of G 
must lie in different arcs. Hence given any t < 2Rsin(~r/x), by placing points 
sufficiently close to the centers of their arcs, we can be sure that  d(p, q) > t. 
Hence, for 0 < 3 < sin(r/X), w-j3-drawings exist for G. Of course, the chromatic 
number X is in general hard to compute. Instead of breaking C into X arcs, one 
can instead break C into d + 1 arcs, where d is the maximum degree of G. A 
coloring for G by d + 1 or fewer colors can be obtained in linear time by a well- 
known greedy coloring algorithm. Hence for/3 between 0 and sin(21r/(d + 1)), a 
w-(3)- or w-[/3]-drawing for G can be obtained in linear time. Hence we have: 

T h e o r e m  7. A graph with chromatic number X is w-3-drawable for all 3 such 
that 0 < 3 < sin(r/X).  A w-3-drawing for G can be obtained in linear time for 
any 3 such that 0 < 3 < sin(Tr/(d + 1)), where d is the mazimum degree of G. 

4 P l a n a r  G r a p h s  

Several interesting results on planar graphs can be "imported" from strong prox- 
imity results by using Property 1. Other results can be obtained with the same 
property and little more work. For example, from Lubiw and Sleumer [12] we 
obtain: 

T h e o r e m  8. Biconnected outerplanar graphs are w-/3-drawable for all values of 
/3 such that 0 </3 < 2. Furthermore, such graphs are w-(2)-drawable. 

Sketch of proof. In [12] it is shown that  any biconnected outerplanar graph is 
s-(2)-drawable. The conclusion follows immediately by Properties 1 and 4. 

Another example concerns planar triangulated graphs, which admit planar 
drawings with all faces triangular, including the external face. 

T h e o r e m  9. Let G be a planar triangulated graph. For each value of 3 such that 
1 < 3 < oo, G is w-/3-drawable if and only if it is s-3-drawable. Furthermore, G 
is w-[1J-drawable if and only if it is s-[1]-drawable. 

Sketch of proof. The if-part of both statements is trivial by Property 1. For the 
only-if-part of the first statement (the argument for the second is analogous), 
consider an allowed value of/3 and suppose G is w-3-drawable with w-/3-drawing 
F. We show that  F is also an s-/~-drawing. Consider the graph G I that  has an 
s-3-drawing with the same set of points for the vertices as F.  From Property 2 
we have that G C G I. From [3] we have that in the above interval of 3 values, 
s-3-drawable graphs are planar; hence, G I is planar. The conclusion follows from 
the maximality of G. 

Further consideration of planar triangulated graphs reveals a connection be- 
tween weak proximity drawability and angular resolution. 
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Lemma 10. Let F be a straight-line drawing of a planar triangulated graph G 
such that the angle between two adjacent edges is at most a(/3), where 0 < ~ < 1. 
Then F is a w-(~}-drawing of G. 

The angular resolution of a straight-line drawing is the size of the minimum 
angle formed by adjacent edges. The angular resolution of a straight-line drawing 
algorithm r is a number ~" that is the infimum of all the angular resolutions 
of all the drawings that A could construct. When inputs to .4 are restricted to 
various classes of graphs, examples in the literature show a dependency of ~" on 
the maximum degree (e.g., see [13]) or on the number of vertices of graphs (e.g., 
see [14]). Lemma 10 is the geometric foundation of the following theorem. 

T h e o r e m  11. Let A be a straight-line drawing algorithm whose inputs are pla- 
nar triangulated graphs. Let Jr be its angular resolution. We have that any draw- 
ing produced by A is a w-E-drawing for all values of/3 such that 0 < t3 < 
sin(  - 2 y ) .  Furthermore, such a d wing is a w-(sin(  - 2J:))-drawing. 

5 T r e e s  

We denote by 7~ a class of trees having maximum vertex degree at most k; Too is 
the class of all trees. We also denote by T(/3) the class of w-(~)-drawable trees. 
Similarly, T[/3] is the class of w-[j3]-drawable trees. 

First we prove that every tree is w-(~)-drawable for/3 < 2. We begin by 
constructing a w-(2)-drawing for an arbitrary tree. The construction can be 
formulated as a linear time algorithm for real RAM. In the drawing, each point 
p representing a tree node has the following construction devices associated with 
it: an open disk D(p) centered at p; an open superwedge W+(p) with vertex at 
the parent of p (this wedge is left undefined if p is the root); a closed subwedge 
W(p) with vertex at p. 

To generate the children of a point p means to compute for each child ql 
its superwedge, its coordinates, its disk, and its subwedge. The construction 
continues in breaxith-first fashion from the root. Each time the children q/ of 
some point p are generated, the following invariants are maintained. 

1. Each superwedge W + (qi) belongs to W(p), and the superwedges of distinct 
children of p are disjoint. 

2. Each disk D(qi) lies inside the superwedge W+(ql), tangent to its sides. 
3. Subwedge W(ql) with vertex at qr lies inside the superwedge W+(ql) and has 

sides parallel to those of the superwedge W+(qi). (Its purpose is to contain 
ql and all its descendants.) 

The root of the tree is placed at the origin. If the root has k > 2 children 
ql , . . .qk,  these are generated by dividing the plane into k equal angle super- 
wedges W+(qi) with vertex at the origin. Then each qi is placed distance 1 
from the origin on the bisector of its superwedge. This determines the disks and 
the subwedges of the qi. If the root has only one child ql, then the superwedge 
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W+(ql) is given vertex angle rr/2 and qt is placed at unit distance from the 
origin on the bisector of its superwedge; its disk D(qs) has unit radius. Once 
the coordinates, disks and wedges have been determined for all points at depth 
0 and 1, the construction continues in a breadth-first manner.  Suppose the tree 
has depth d, where the root has depth 0. For each depth i = 1 to d -  1, the 
children of each point p at depth i are generated from p and its disk and wedges 
as follows (see Fig. 2). Suppose p has k > 1 children qi, 1 < i < k. Equally sub- 
divide W(p) into k superwedges W + ( q l ) . . .  W + (q~). Place ql at the intersection 
of the bisector of its superwedge with the boundary of D(p). This determines 
the subwedge of p, since its sides are parallel to those of the superwedge of p, 
and the disk of qi, since it is tangent to the superwedge. 

T h e o r e m  12. T(2) = T~. Furthermore, given a tree T E Too, a w-(2)-drawing 
of T can be computed in time proportional to the size of T in the real RAM. 

w( ql ) 

Fig. 2. Construction for trees. 

We can now exploit Property 4 to extend the above result to infinitely many 
values of/3. 

Corollary 13. T(/3) = T ~  and T[~] = To~ fo r  any 0 < fl < 2. 

Surprisingly, it turns out that  if/~ = 2 and the region of influence is a closed 
set, then the class of w-[2]-drawable trees does not contain trees with arbitrarily 
large vertex degree. 

L e m m a  14. 7-[2] = Ts. 

The previous lemma can be generalized to values of/3 such that  2 < /3  < c~. 
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L e m m a  15. 

1. Let F be a w-(8)-drawing of a tree for 2 < ~ < o0. Then the angle between 
two adjacent edges is at least 7(8). 

P. Let F be a w-[~]-drawing of a tree for 2 < ~ < cr Then the angle between 
two adjacent edges is greater than 7(8). 

From Lemma 15, an upper bound can be deduced for the maximum vertex 
degree of w-8-drawable trees for 2 < ~ < cr It is worth noticing that the 
same lemma, and hence the same upper bounds, hold for s-~-drawable trees [3]. 
Thus, we can use Lemma 15 and Property 1 to import the results of [3] on the 
s-~-drawability of trees. 

8 
1 1 2 < 8 <  

2 j3= 1 
1 3 ~o~--;;-(~-~ < ~ < cr 

4 ~ = c r  

T(Z) T@ 
T4 c T(8) _c T5 T4 c T[8] _ Ts 
T4 C T(/3) C T5 T[/3] = T4 

T(/3) = T4 T[13] = T4 
T3 C T(~) C T4 T[/3] -- Ta 

Table 1. Table for Theorem 16 

T h e o r e m  16. Table 1 describes w-~-drawable trees for all values of ~ such that 
2<~_<cr  

We conclude this section by proving that it is NP-hard to determine whether 
a tree of maximum degree four is w-(cv)-drawable. The proof follows the NAE- 
3SAT paradigm introduced by Bhatt and Cosmadakis [1] and exploited for ge- 
ometric graph realizability questions by Eades and Whitesides [6], [7]. First we 
introduce some terminology for w-(c~)-drawings. These are also called weak open 
strip drawings, as the region of influence of two points z, y is the open strip per- 
pendicular to the line segment between them. 

A weak open strip drawing is orthogonal if each of its edges is parallel to 
one of two given orthogonal direction vectors. These vectors may be assumed to 
be horizontal and vertical. A normalized orthogonal drawing is obtained from 
an orthogonal drawing as follows. Order the vertices in the drawing from left 
to right, with vertices having the same x-coordinate assigned the same place in 
the order. Order the vertices from bottom to top similarly. Assign each vertex a 
new z-coordinate equal to its order in the left-to-right order; assign each vertex 
a new y-coordinate equal to its order in the bottom-to-top order. The drawing 
resulting from this coordinatization is a normalized orthogonal drawing. Nor- 
malized drawings are weak open strip drawings if the original weak open strip 
drawing was orthogonal. This is not necessarily true in general. 
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A graph G is orthogonally unique if a) any weak open strip drawing of it must 
be orthogonal, and b) the set of points and edges of any normalized orthogonal 
drawing of G is unique up to rigid motions (i.e., combinations of reflections, 
rotations and translations) of the plane. 

Obse rva t ion  17. Suppose H is a subgraph of some graph G that has a weak 
open strip drawing s When the part of s that does not represent H is discarded, 
what remains is a weak open strip drawing of H.  

It follows from this observation that if H is orthogonally unique, then any 
weak open strip drawing of a graph G containing H must respect the constraints 
on the drawing of H.  

Obse rva t ion  18. Any angle formed by edges with a common endpoint in a 
weak open strip drawing must be > 7r/2. 

§ 

~P 

II--I I--@ 
@--~ I--@ 

@--I l-@ 
II--4 l--@ 

II--I 1-@ 
@-.q 1-@ 
@--I 1--@ 
@--I 1--@ 

q 

@.~ ..@ 
~ -41--@ 
@.~ ..@ 

@-~ I-@ 

@-~ i--@ 
1-~ i--@ 

a) b) c) d) 

e) 

Fig. 3. Orthogonally unique graphs. 

L e m m a  19. Each of the graphs a) through e) of Figure 3 is orthogonally unique 
and has a normalized orthogonal drawing as shown. 

Now consider an instance of NAE-3SAT consisting of m clauses Cx. . .  Crn and 
n variables and their complements, X1, . . .  X , ,  X~, . . .  XIn. Each clause contains 
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three literals, but no clause contains both a literal X and its complement X'. The 
instance is a "yes" instance if and only if a truth assignment can be found such 
that each clause contains at least one true literal and at least one false literal. 
We encode the instance in polynomial time in its length by designing a graph 
G having the form shown in part e) of Figure 3. In particular, G should have 
m internal vertical columns, n internal rows lying above the horizontal chain 
containing the crosses, and n internal rows lying below this horizontal chain. 

By Lemma 19, G is orthogonally unique. Note, however, that the vertical 
columns can be flipped individually around the central horizontal chain without 
changing the drawing. Similarly, short 2-edge horizontal paths joining degree 1 
vertices can be flipped around their points of attachment to long paths without 
changing the drawing. 

T h e o r e m  20. To determine whether a given tree of ma3:imum degree four has 
a weak open strip drawing is NP-hard. 

Sketch of proof. We modify graph G to encode a particular instance of NAE- 
3SAT. This is done following the Bhatt Cosmadakis paradigm. Applications of 
this paradigm are familiar from [6] and [7], and the application of the paradigm 
in this case is straight-forward once Lemma 19 is known. Hence we sketch only 
briefly how this is done, referring the reader to the original paper by Bhatt and 
Cosmadakis [1] for more details. 

The first pair of rows above and below the horizontal chain of crosses repre- 
sents clause Cz, the second pair represents C2, and so on. Similarly, the left-most 
internal column represents variable X1 and its complement X~. For the jth in- 
ternal column, label one half the column with Xj and the other half with the 
corresponding Xj. Now add some extra edges to G as follows. If Ci fails to con- 
tain Xj (or XJ), add an extra edge to the short horizontal path in one of the 
two rows corresponding to C/, on the half-column corresponding to Xj (or X~). 
Clearly the resulting graph has a weak open strip drawing if and only if the 
columns and the short paths can be flipped around so that there is at least one 
position in each row to which no extra edge is attached. But such flips can be 
found if and only if the NAE-3SAT instance is a "yes" instance. This is because 
half-columns appearing above the horizontal chain can be interpreted as "true", 
and half-columns appearing below the horizontal chain can be interpreted as 
"false". Hence a missing edge in each of a pair of corresponding rows above and 
below the horizontal chain means that the clause associated with this pair of 
rows contains a true literal and a false literal. 

6 O p e n  P r o b l e m s  

Several remaining open problems make weak proximity drawability an attrac- 
tive direction of research. One class of problems concerns the use of the weak 
model for proximity regions other than j3-regions. For example weak rectangle 
of influence drawings [8] could be tackled. It is easy to see that any planar graph 
that admits an st-orientation without transitive edges has a weak rectangle of 
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influence drawing. Another problem area is to consider weak proximity  models 
that  do not allow edges, as opposed to vertices, to enter the proximity  regions of 
other edges. This seems too restrictive to consider in a strong proximity  model.  
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