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Abs t r ac t .  In this paper we discuss the "vertex splitting" operation. We 
introduce a kind of "spring algorithm" which splits vertices to obtain 
better drawings. We relate some experience with the technique. 

1 I n t r o d u c t i o n  

Suppose that  G = (V, E) is a graph and w : E --* R + assigns a weight to each 
edge of G. Graph drawing functions may be required to draw G so tha t  the 
Euclidean distance between two vertices is the same as the weight of the edge 
between them. For example a weighted graph model is proposed in [1, 9] to 
represent email relationships: if two users Ul and us exchange email frequently, 
then the weight on the edge (Ul, u2) is small; otherwise the weight is large. To 
visualize these relationships, we draw the graph so that  the Euclidean distance 
between two vertices represents the closeness of the relationship between two 
users. Further applications of weighted graph drawings are given [3, 4, 6]. 

The problem of drawing a weighted graph so that  the Euclidean distance 
between vertices conforms to prespecified edge weights is NP-hard (see [7]). The 
heuristic approach of [1] uses a kind of "spring algorithm" [2] as a heuristic. 

This paper takes a different approach to the problem. Suppose that  vertex 
a is required to be close to vertex b, and b is required to be close to c, but a is 
required to be far from c. The triangle inequality makes this situation impossible 
to represent. The operation presented in this paper  resolves this conflict by 
creating two copies of the vertex b, so that  a may appear close to one copy of b 
and c may appear  close to the other copy of b. 

Intuitively, a vertex v may be "split" by making two copies vl and v2 and 
attaching the edges incident with v to either vl or v2. The operation is illustrated 
in Figure 1. 

This simple operation is commonly used in manual  layout: it has been ob- 
served in diagrams used in theorem proving systems, prerequisite diagrams for 
course structures, d iagrammatic  representations of metro systems and computer  
networks, and in circuit schematics. In each of these cases, a small number  of 
vertices are split to change the graph a little to make it amenable to layout. 

* Supported partially by a grant from LAC-FAPESP and by The Dept. of Comp. Sci. 
Univ. of Newcastle 

** Supported partially by a grant from LAC-FAPESP and Proj. Integrado CNPq 



203 

e2 

V " ~f,,,. ~,. ,,-"x V2 

7 
Fig. 1. The splitting operation 

2 P r e l i m i n a r i e s  

A graph consists of  a finite set V of vertices and a finite set E of  edges, where 
each edge is an unordered pair of vertices of  G. A vertex u is said to be adjacent 
to  a vertex v if uv is an edge of G; in this case, the edge uv is said to be incident 
with u and v. The  neighbor (or incident) set N~ of  a vertex u is the set of  all 
edges incident with u. 

A splitting operat ion replaces v by two vertices vl and v2, and par t i t ions  Nv 
into two nonempty  disjoint sets Nv 1 and N ~ .  

A straight line drawing of a graph G = (V, E)  is a funct ion D : V -+ R ~ tha t  
associates a posit ion D(v) to each vertex v of  V. Since all drawings in this paper  
are s traight  line drawings we omit  the term "straight  line". 

A weight w(e) is a non-negative real value associated with an edge e of  a 
graph.  A weighted graph G = (V, E, w) consists of a graph  G = (V, E)  and a 
weight w(e) for each e E E.  

Suppose tha t  G = (V, E,  w) is u weighted graph.  The  tension in an edge 
e = vu from a vertex v incident with e in a drawing D of  G is a vector t,~ whose 
magn i tude  is the difference between the edge weight and the Euclidean distance 
between the two endpoint  vertices, and whose direction is f rom D(v) to  D(u). 
T h a t  is, 

D(v) - D(u) 
_ :)) (d(v, u ) -  w(vu)) 

where d(v, u) denotes the Euclidean distance between D(u) and D(v). Note tha t  
rue = - t v e .  A vertex v of  G is at equilibrium if the sum of the tensions in the 
edges f rom v is zero, tha t  is, if 

t w  = O. 
eEN(v) 

The  drawing D is at equilibrium if every vertex is at  equil ibrium. 
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A drawing of a weighted graph G is said to be tension-free if rye = 0 for 
all edges e of G. When a weighted graph admits a tension-free drawing we say 
that  the weighted graph G is tension-free s. Every graph can be transformed into 
a set of nonadjacent edges by a sequence of vertex splitting operations, and in 
par t icular  we can obtain a tension-free graph in this way. 

P r o p o s i t i o n  2.1 A weighted graph G = (V, E, w) can be transformed in a ten- 
sion free weighted graph a sequence of vertex splitting operations. 

The problem of creating a tension free drawing of a graph is NP-hard. The 
proof uses a complex transformation from 3SAT; details may be found in [7]. 
In practice very few weighted graphs are tension-free. In this paper we consider 
splitting vertices to preprocess a graph to make its tension-free layout possible. 
Our approach is based on the spring system of Kamada and Kawai [4, 5]. 

3 The TensionSplit algorithm 

First we review Kamada 's  spring algorithm [5]. The graph structure is simulated 
by a set of particles (for the vertices) in a plane where these particles are con- 
nected by springs (for edges and/or  paths). An optimization method is applied to 
find a state of locally minimum energy of this system; this minimum energy state 
corresponds to the final drawing. The locally minimum energy state is found by 
repeating two steps: a local minimization step, and a rearrange step. The first 
step moves a vertex to a position where it is at equilibrium. In the second step 
some overlappings and crossings may be avoided by swapping vertices in pairs. 
In both steps the main goal is to reduce potential energy. The two steps are 
applied one after the other until the rearrange step does not change the layout. 

Kamada 's  approach is be modified in two ways to form procedure Tension- 
Split in Figure 2. Our algorithm performs the local minimization step for all the 
vertices; and a modified rearrange step is used to perform splitting operations. 
Intuitively, the algorithm works in a very similar way to the Kamada algorithm, 
but  when a vertex splits when it becomes "critical", that is, it has too much 
tension on it. 

We now give details of the steps in procedure TensionSplit. 
The first step partitions the edge set E into parts El ,  E2, �9 �9 Er, where each 

Ei is the edge set of a biconnected component. 
Step 2(a) is a implemented the the same way as the Kamada algorithm. 
For step 2(b) we need to define some terms. For each vector tv,e we define a 

split line which consists of a straight line through v perpendicular to the direction 
of the vector. Figure 3 displays a split line for the vector tv,~ (in. this example, 
all edge weights are zero). This split line divides the plane into two semi-planes. 
The point where the vertex v is located divides the split line into two semi-lines. 

3 Our choice of terminology here is slightly nonstandard but it is motivated by the 
algorithm which follows. 
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p r o c e d u r e  T e n s i o n S p l i t ;  

1. divide the graph into biconnected components; 
2. repeat until there is no critical vertex: 

(a) run the local minimization on all vertices until the drawing is at 
equilibrium; 

(b) if  a critical vertex exists then 
i. choose a critical vertex v for which the the tension Tv on v is 

greatest; 
ii. split v into vl and v2; 

iii. partition Nv into Nvl = Nv N Rv,e and Nv2 = Nv fl Lv,e; 
iv. run the local minimization step on vertices vl and v2; 

(c) run the rearrange step for all vertices of G; 

Fig. 2. The Tension Split algorithm 

Let R denote the region of the u O. 
plane defined by one semi-plane 
and one semi-line, and let L de- 
note the complement of R. Fig- .f4~T.... f 
ure 4 displays the two regions. 
We define a partition of N. into 
edge sets Rv,~ and Lv,~ as fol- / 
lows. An edge e = vw is in R~,~ / if w lies in R; and e is in Lv,, 
if w lies in L. Figure 5 displays 
the partitions R, , ,  and L, , ,  for 
the graph in Figure 3. ur 

A split line is valid if there 
is at least one biconnected 
component Ei for which both 
Ei f3 Rv,e and Ei f3 Lv,e are 
nonempty. Figure 6 displays: 

II b 

J 

/ tv'c . . . . !  or I r e  

Fig.  3. A sample of a split line 

(a) a valid and an invalid split line for t , , / ,  and (b) an invalid split line for 
type. 

For each valid split line t.,~ we define the tension for this split line as 

Tv,e = ~ tv,]. 
f E R,, ,e 

Since the graph drawing is at equilibrium after step 2(a), we could replace/tv,e 
by Lv,e in the definition of Tv,e above. The tension Tv in vertex v is the max- 
imum value of ITv,~l over all valid split lines. Our algorithm uses a constant r 
corresponding to the value of the minimum permissible tension. This constant 
can be explicitly changed by the user. A vertex is critical if Tv > r.  
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S p l i t  L i n e  v 

b sojt ~,o / / M Z Z Z Z / / . . ,  

Split Line v  SYY/  
Fig .  4. The two regions define by a split line 

~ "  ~ v , f  - v 

Re 

v ,d  

1/- Le 

Fig .  5. The parti t ion of the vectors into two sets 
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(a) (1o) 

Fig. 6. A valid and an invalid split-lines 

4 S a m p l e s  

Some typical samples of splitting operations performed by the TensionSplit al- 
gorithm are described below. 

4 b 

7 

Co) % 

Fig. 7. example 1 
Figures 7 and 8, are graphs for which spring algorithms perform poorly. 

Figure 7(a) displays the layout without splittings. Figure 7(b) displays the layout 
with three splittings (indicated by the letters a, b and c). Figure 8(a) displays 
the layout without splittings. Figure 8(b) and (c) display an intermediate stage 
layouts of the Tension Split algorithm with one splitting (indicated by the letter 
a) and two critical vertices (indicated by b and c). Figure 8(d) displays the final 
drawing with very little tension. 

The diagram in Figure 9(a) is a schema from a commercial database design. 
It is drawn by a standard spring technique. Some node overlaps and crossings 
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b 

(a) ku7 t~,,J 

Fig. 8. example 2 

b 

(d) 

appear. Algorithm TensionSplit gives better diagram in Figure 9(b) with only 
one vertex split (indicated by a surrounding ellipse). This sample shows a very 
good application of TensionSplit algorithm. 

'-'~ S ~ ,~:, \ y -  
(fi) 

- ~  ,, o)~/~ ~ -~.  

' ; ' g '  , "-:' 

\ 

(a) ,:,-~:' (b) 

Pig.  9. example 3 
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(a) (b) 

Fig. 10. example 4 

Figures 10, 11 and 12 are general graphs. For each figure, a relatively small 
value of critical tension was used. The splitting operations are displayed. For all 
layouts the algorithm gives considerable symmetry, the resulting drawings are 
attractive: the symmetry is not bad and the edge length tends to 1. 

5 Conclusion 

The TensionSplit algorithm produces a layout which is near tension- free and 
symmetric. However, it has some problems which are inherited from Spring Sys- 
tem [2]: it is relatively slow, and does not resolve edge crossings. For a more 
comprehensive approach to vertex splitting which takes edge crossings into ac- 
count, see [8]. 

References 

1. P. Eades, W. Lal, and X. Mendon~a. A Visualizer for E-mall Trafic. In 4th Int. 
Conf. Proc. Pacific Graphics'94 / CADDM'94, pages 64-67, 1994. 

2. P. D. Eades. A Heuristic for Graph Drawing. Congr. Numer., 42:149-160, 1984. 
3. T. Kamada. Visualizing Abstract Objects and Relations. World Scientific, 1989. 



210 

( 

(a) 

) 

Fig. 11. example 5 
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