
Vertex Splitting and Tension-Free Layout

P. Eades 1. and C. F. X. de Mendonqa N. 2.*

1 Dept. of Computer Science
Univ. of Newcastle NSW Australia

2 Depto. de Ci~ncia da Comp.
UNICAMP SP Brasil

Abs t r ac t . In this paper we discuss the "vertex splitting" operation. We
introduce a kind of "spring algorithm" which splits vertices to obtain
better drawings. We relate some experience with the technique.

1 I n t r o d u c t i o n

Suppose that G = (V, E) is a graph and w : E --* R + assigns a weight to each
edge of G. Graph drawing functions may be required to draw G so tha t the
Euclidean distance between two vertices is the same as the weight of the edge
between them. For example a weighted graph model is proposed in [1, 9] to
represent email relationships: if two users Ul and us exchange email frequently,
then the weight on the edge (Ul, u2) is small; otherwise the weight is large. To
visualize these relationships, we draw the graph so that the Euclidean distance
between two vertices represents the closeness of the relationship between two
users. Further applications of weighted graph drawings are given [3, 4, 6].

The problem of drawing a weighted graph so that the Euclidean distance
between vertices conforms to prespecified edge weights is NP-hard (see [7]). The
heuristic approach of [1] uses a kind of "spring algorithm" [2] as a heuristic.

This paper takes a different approach to the problem. Suppose that vertex
a is required to be close to vertex b, and b is required to be close to c, but a is
required to be far from c. The triangle inequality makes this situation impossible
to represent. The operation presented in this paper resolves this conflict by
creating two copies of the vertex b, so that a may appear close to one copy of b
and c may appear close to the other copy of b.

Intuitively, a vertex v may be "split" by making two copies vl and v2 and
attaching the edges incident with v to either vl or v2. The operation is illustrated
in Figure 1.

This simple operation is commonly used in manual layout: it has been ob-
served in diagrams used in theorem proving systems, prerequisite diagrams for
course structures, d iagrammatic representations of metro systems and computer
networks, and in circuit schematics. In each of these cases, a small number of
vertices are split to change the graph a little to make it amenable to layout.

* Supported partially by a grant from LAC-FAPESP and by The Dept. of Comp. Sci.
Univ. of Newcastle

** Supported partially by a grant from LAC-FAPESP and Proj. Integrado CNPq

203

e2

V " ~f,,,. ~,. ,,-"x V2

7
Fig. 1. The splitting operation

2 P r e l i m i n a r i e s

A graph consists of a finite set V of vertices and a finite set E of edges, where
each edge is an unordered pair of vertices of G. A vertex u is said to be adjacent
to a vertex v if uv is an edge of G; in this case, the edge uv is said to be incident
with u and v. The neighbor (or incident) set N~ of a vertex u is the set of all
edges incident with u.

A splitting operat ion replaces v by two vertices vl and v2, and par t i t ions Nv
into two nonempty disjoint sets Nv 1 and N ~ .

A straight line drawing of a graph G = (V, E) is a funct ion D : V -+ R ~ tha t
associates a posit ion D(v) to each vertex v of V. Since all drawings in this paper
are s traight line drawings we omit the term "straight line".

A weight w(e) is a non-negative real value associated with an edge e of a
graph. A weighted graph G = (V, E, w) consists of a graph G = (V, E) and a
weight w(e) for each e E E.

Suppose tha t G = (V, E, w) is u weighted graph. The tension in an edge
e = vu from a vertex v incident with e in a drawing D of G is a vector t,~ whose
magn i tude is the difference between the edge weight and the Euclidean distance
between the two endpoint vertices, and whose direction is f rom D(v) to D(u).
T h a t is,

D(v) - D(u)
_ :)) (d(v, u) - w(vu))

where d(v, u) denotes the Euclidean distance between D(u) and D(v). Note tha t
rue = - t v e . A vertex v of G is at equilibrium if the sum of the tensions in the
edges f rom v is zero, tha t is, if

t w = O.
eEN(v)

The drawing D is at equilibrium if every vertex is at equil ibrium.

204

A drawing of a weighted graph G is said to be tension-free if rye = 0 for
all edges e of G. When a weighted graph admits a tension-free drawing we say
that the weighted graph G is tension-free s. Every graph can be transformed into
a set of nonadjacent edges by a sequence of vertex splitting operations, and in
par t icular we can obtain a tension-free graph in this way.

P r o p o s i t i o n 2.1 A weighted graph G = (V, E, w) can be transformed in a ten-
sion free weighted graph a sequence of vertex splitting operations.

The problem of creating a tension free drawing of a graph is NP-hard. The
proof uses a complex transformation from 3SAT; details may be found in [7].
In practice very few weighted graphs are tension-free. In this paper we consider
splitting vertices to preprocess a graph to make its tension-free layout possible.
Our approach is based on the spring system of Kamada and Kawai [4, 5].

3 The TensionSplit algorithm

First we review Kamada 's spring algorithm [5]. The graph structure is simulated
by a set of particles (for the vertices) in a plane where these particles are con-
nected by springs (for edges and/or paths). An optimization method is applied to
find a state of locally minimum energy of this system; this minimum energy state
corresponds to the final drawing. The locally minimum energy state is found by
repeating two steps: a local minimization step, and a rearrange step. The first
step moves a vertex to a position where it is at equilibrium. In the second step
some overlappings and crossings may be avoided by swapping vertices in pairs.
In both steps the main goal is to reduce potential energy. The two steps are
applied one after the other until the rearrange step does not change the layout.

Kamada 's approach is be modified in two ways to form procedure Tension-
Split in Figure 2. Our algorithm performs the local minimization step for all the
vertices; and a modified rearrange step is used to perform splitting operations.
Intuitively, the algorithm works in a very similar way to the Kamada algorithm,
but when a vertex splits when it becomes "critical", that is, it has too much
tension on it.

We now give details of the steps in procedure TensionSplit.
The first step partitions the edge set E into parts El , E2, �9 �9 Er, where each

Ei is the edge set of a biconnected component.
Step 2(a) is a implemented the the same way as the Kamada algorithm.
For step 2(b) we need to define some terms. For each vector tv,e we define a

split line which consists of a straight line through v perpendicular to the direction
of the vector. Figure 3 displays a split line for the vector tv,~ (in. this example,
all edge weights are zero). This split line divides the plane into two semi-planes.
The point where the vertex v is located divides the split line into two semi-lines.

3 Our choice of terminology here is slightly nonstandard but it is motivated by the
algorithm which follows.

205

p r o c e d u r e T e n s i o n S p l i t ;

1. divide the graph into biconnected components;
2. repeat until there is no critical vertex:

(a) run the local minimization on all vertices until the drawing is at
equilibrium;

(b) if a critical vertex exists then
i. choose a critical vertex v for which the the tension Tv on v is

greatest;
ii. split v into vl and v2;

iii. partition Nv into Nvl = Nv N Rv,e and Nv2 = Nv fl Lv,e;
iv. run the local minimization step on vertices vl and v2;

(c) run the rearrange step for all vertices of G;

Fig. 2. The Tension Split algorithm

Let R denote the region of the u O.
plane defined by one semi-plane
and one semi-line, and let L de-
note the complement of R. Fig- .f4~T.... f
ure 4 displays the two regions.
We define a partition of N. into
edge sets Rv,~ and Lv,~ as fol- /
lows. An edge e = vw is in R~,~ / if w lies in R; and e is in Lv,,
if w lies in L. Figure 5 displays
the partitions R, , , and L, , , for
the graph in Figure 3. ur

A split line is valid if there
is at least one biconnected
component Ei for which both
Ei f3 Rv,e and Ei f3 Lv,e are
nonempty. Figure 6 displays:

II b

J

/ tv'c ! or I r e

Fig. 3. A sample of a split line

(a) a valid and an invalid split line for t , , / , and (b) an invalid split line for
type.

For each valid split line t.,~ we define the tension for this split line as

Tv,e = ~ tv,].
f E R,, ,e

Since the graph drawing is at equilibrium after step 2(a), we could replace/tv,e
by Lv,e in the definition of Tv,e above. The tension Tv in vertex v is the max-
imum value of ITv,~l over all valid split lines. Our algorithm uses a constant r
corresponding to the value of the minimum permissible tension. This constant
can be explicitly changed by the user. A vertex is critical if Tv > r.

206

S p l i t L i n e v

b sojt ~,o / / M Z Z Z Z / / . . ,

Split Line v SYY/
Fig . 4. The two regions define by a split line

~ " ~ v , f - v

Re

v ,d

1/- Le

Fig . 5. The parti t ion of the vectors into two sets

207

x

(a) (1o)

Fig. 6. A valid and an invalid split-lines

4 S a m p l e s

Some typical samples of splitting operations performed by the TensionSplit al-
gorithm are described below.

4 b

7

Co) %

Fig. 7. example 1
Figures 7 and 8, are graphs for which spring algorithms perform poorly.

Figure 7(a) displays the layout without splittings. Figure 7(b) displays the layout
with three splittings (indicated by the letters a, b and c). Figure 8(a) displays
the layout without splittings. Figure 8(b) and (c) display an intermediate stage
layouts of the Tension Split algorithm with one splitting (indicated by the letter
a) and two critical vertices (indicated by b and c). Figure 8(d) displays the final
drawing with very little tension.

The diagram in Figure 9(a) is a schema from a commercial database design.
It is drawn by a standard spring technique. Some node overlaps and crossings

208

b

(a) ku7 t~,,J

Fig. 8. example 2

b

(d)

appear. Algorithm TensionSplit gives better diagram in Figure 9(b) with only
one vertex split (indicated by a surrounding ellipse). This sample shows a very
good application of TensionSplit algorithm.

'-'~ S ~ ,~:, \ y -
(fi)

- ~ ,, o)~/~ ~ -~.

' ; ' g ' , "-:'

\

(a) ,:,-~:' (b)

Pig. 9. example 3

209

(a) (b)

Fig. 10. example 4

Figures 10, 11 and 12 are general graphs. For each figure, a relatively small
value of critical tension was used. The splitting operations are displayed. For all
layouts the algorithm gives considerable symmetry, the resulting drawings are
attractive: the symmetry is not bad and the edge length tends to 1.

5 Conclusion

The TensionSplit algorithm produces a layout which is near tension- free and
symmetric. However, it has some problems which are inherited from Spring Sys-
tem [2]: it is relatively slow, and does not resolve edge crossings. For a more
comprehensive approach to vertex splitting which takes edge crossings into ac-
count, see [8].

References

1. P. Eades, W. Lal, and X. Mendon~a. A Visualizer for E-mall Trafic. In 4th Int.
Conf. Proc. Pacific Graphics'94 / CADDM'94, pages 64-67, 1994.

2. P. D. Eades. A Heuristic for Graph Drawing. Congr. Numer., 42:149-160, 1984.
3. T. Kamada. Visualizing Abstract Objects and Relations. World Scientific, 1989.

210

(

(a)

)

Fig. 11. example 5

4. T. Kamada and S. Kawai. Automatic Display of Network Structures for Human Un-
derstanding. Technical Report 88-007, Department of Information Science Faculty
of Science, University of Tokyo, Tokyo, 1988.

5. T. Kamada and S. Kaw~i. An algorithm for drawing general undirected graphs.
Information Processing Letters, 31:7-15, 1989.

6. X. Lin. Analysis of Algorithms for Drawing Graphs. PhD thesis, University of
Queensland, Department of Computer Science, University of Queensland, 1992.

7. C. F. X. Mendonqa. A Layout System for Information System Diagrams. Technical
Report 94-01, Department of Computer Science, University of Newcastle, Australia,
April 1994.

8. C. F. X. Mendonqa and T. A. Halpin. Automatic Display of NIAM Conceptual
Schemas Diagrams. Technical Report 209, Department of Computer Science, Uni-
versity of Queensland, Australia, July 1991.

9. Wei Lai. Building Iteractive Diagram Applications. PhD thesis, University of New-
castle, 1993.

cr
~

