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Abs t rac t .  This paper considers a 3-dimensional visibility representa- 
tion of cliques Kn. In this representation, the objects representing the 
vertices are 2-dimensional and lie parallel to the x, y-plane, and two ver- 
tices of the graph are adjacent if and only if their corresponding objects 
see each other by a line of sight parallel to the z-axis that intersects the 
interiors of the objects. In particular, we represent vertices by unit discs 
and by discs of arbitrary radii (possibly different for different vertices); 
we also represent vertices by axis-aligned unit squares, by axis-aligned 
squares of arbitrary size (possibly different for different vertices), and by 
axis-aligned rectangles. 
We present: 

- a significant improvement (from 102 to 55) of the best known upper 
bound for the size of cliques representable by rectangles or squares 
of arbitrary size; 

- a sharp bound for the representation of cliques by unit squares (/(7 
can be represented but Kn for n > 7 cannot); 

- a representation of Kn by unit discs. 

1 I n t r o d u c t i o n  

A visibility representation of a graph G maps  vertices of G to sets in Euclidean 
space. An edge u, v occurs in G if and only if the objects representing u and v 
see each other according to some visibility rule. (In some investigations, the "if 
and only if" condition is relaxed to "only if".) 
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Application areas such as VLSI routing and circuit board layout have stim- 
ulated considerable research on visibility representations in R 2. See for exam- 
ple [6], [9], [12], and [13]. Recently, interest has developed in finding good 3- 
dimensional visualizations of graphs. See for example [4], [8], [10]. It is also of 
interest to develop geometric graph theory in higher dimensions. 

This paper continues the study of a particular visibility representation, stud- 
ied for examplein [2], [3], [11] and [1], in which the objects representing vertices 
are 2-dimensional sets parallel to the z, y-plane. An edge u, v occurs in G if and 
only if the objects representing u and v see each other along a line of sight par- 
allel to the z axis. This line of sight must intersect the interiors of the objects; 
hence legitimate lines of sight are extensible to tubes of small radius whose ends 
lie inside the objects. Furthermore, since G has an edge u, v if and only if u 
and v are mutually visible, the graph G is recoverable from the geometry of the 
representation. Throughout the paper, we use the term representation to refer 
to this specific model. Also, when we refer to representation by arbitrary squares 
or discs, we mean that the size of these objects is allowed to vary with the vertex 
represented. As in [2] and [3], rectangles are understood to be axis-aligned and 
disjoint. 

In [2] the objects representing vertices are arbitrary rectangles. In this paper, 
we consider unit squares and discs, and arbitrary squares, rectangles and discs. 
We focus exclusively on the representation of cliques by these objects. 

Constructions for squares can be viewed as constructions for arbitrary rectan- 
gles. Any upper bound on the size of the largest clique K~ that  can be represented 
by arbitrary rectangles is also an upper bound on the size of the largest Kn that 
can be represented by arbitary squares or by unit squares. The current best 
bound on the size of the largest Kn that  can be represented by arbitrary rectan- 
gles is 102 (see [2]), which also holds for representation by arbitrary squares and 
unit squares. Here we lower this bound from 102 to 55 for arbitrary rectangles, 
and hence for arbitrary squares and unit squares. 

The results derived in this paper are as follows: 

- Kss has no representation by arbitrary rectangles. 
- K7 (and hence Kn for all n < 7) has a representation by unit squares, but 

no Kn for n _> 8 has a representation by unit squares. 
- Any K,, has a representation by unit discs. 

The rest of the paper is organized as follows. Section 2 discusses representa- 
tions by arbitrary squares and rectangles, Sect. 3 considers representations by 
unit squares, and Sect. 4 considers representations by arbitrary discs and unit 
discs. 

2 S q u a r e s  a n d  R e c t a n g l e s  

The question of determining the largest complete graph Kn that  can be repre- 
sented by arbitrary rectangles is addressed in [2] and [3], which give an upper 



236 

bound of n < 102 and a lower bound of n > 20. The construction for K20 
that  appears in [3] uses arbitrary squares. In the following, we describe how to 
improve the upper bound from n < 102 to n < 55. 

We consider sequences of n rectangles lying parallel to the z, y-plane in R a, 
and ordered by increasing z-coordinate. We call a sequence valid if its associated 
visibility graph is Kn. Consider the projections of all the rectangles in a valid 
sequence onto the z, y-plane. Because each two must intersect and the objects 
are axis-aligned rectangles, application of a Helly-type theorem shows that  the 
intersection of all the projections must be non-empty. Thus we can choose a 
common point O (henceforth regarded as the origin) belonging to the interior of 
each of the projections. To simplify the notation, we do not distinguish between 
a rectangle and its projection onto the z, y-plane; the meaning will be clear from 
the context. 

Each rectangle R in a valid sequence can be described in terms of the perpen- 
dicular distances from O to each of its sides. Instead of giving the z, y-coordinates 
of the vertices of R, we describe R as a 4-tuple (Er,  Nr, Wr,Sr) whose coordi- 
nates give, respectively, the distances from O E R to the east, north, west and 
south sides of R. 

We can assume without loss of generality that  no two rectangles of a valid 
sequence share the same value on any of the four coordinates E,N,W,S.  Hence 
we can assume that  each coordinate value of each of the n rectangles is an 
integer in the range [1, n] without changing the visibility relationships among 
the rectangles. 

Consider two rectangles A = (Ea, N~, Wa, S~) and B = (Eb, Nb, Wb, Sb) in a 
valid sequence, and denote by A f3 B the intersection of their projections onto 
the x, y-plane. Then Af l  B contains O, and the coordinates of A • B are EAc~B 
= min{Ea, E~}, NAnB = min{N~,Nb}, WAnB = min{Wa, Wb} and S a n B =  
min{S~, Sb}. We say that  a corner of A n B is free if it is not covered by any of 
the projections of rectangles oecuring between A and B in the sequence. 

Suppose A and B are rectangles in a valid sequence. Then since 0 belongs 
to all the rectangles, at least one of the corners of A N B must be free. This is 
because any rectangle that  covers a corner also covers O and hence an entire 
quadrant of A A B. Thus if A N B had no free corner, it would be covered by the 
union of the intervening rectangles that  cover at least one corner of Af l  B. 

The northeast corner of A N B is not covered by a particular rectangle/~ = 
(E~, N~, W~, S~) between A and B if and only if the Boolean expression Er < 
min{E~, Eb} OR Nr < min{Na, Nb} is true. Similar conditions hold for the other 
three corners. 

We summarize: the rectangles A and /3. can see each other if and only if 
one of the following conditions F holds simultaneously for all the rectangles R 
between A and B: 

FCne(A, B): northeast is free, i.e. (Er < min{Ea, Eb} OR Nr < min{Na, Nb}); 

FCnw(A, B): northwest is free, i.e. (Nr < min{Na, Nb} OR Wr < min{Wa, Wb}); 
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FC,w(A, B): southwest is free, i.e. (Wr < min{Wa, Wb) OR Sr < min{S~, Sb}); 

FC,~(A,B):  southeast is free, i.e. (S~ < min{Sa,Sb} OR Er < min{Ea, Eb}). 

Now we give a definition that is needed in the following discussions. Given 
a valid sequence of n rectangles (El, NI, I4/1, $1), . . . ,  (En, Nn, Wn, Sn), we de- 
note by VE, VN, Vw, Vs the sequences of integers obtained by projecting the 
rectangles onto their E, N, W a n d s  coordinates, respectively. 

The next definition and lemma provide the key tool in our anMysis. 

Def in i t ion  1. A sequence of distinct integers will be called unimaximal if it has 
exactly one local maximum. 

L e m m a 2 .  For all m > 1, in every sequence of ('~) + 1distinct integers, there 
exists at least one unimaximal subsequence of length m. On the other hand, there 
exists a sequence of (7) distinct integers that has no unimaximal subsequence of 
length m. 

This result arises from the Erdbs-Szekeres Theorem (1935), whose pigeon- 
hole proof was given by [7]. Lemma 2 is attributed by F. R. K. Chung [5] to V. 
Chvs and J. M. Steele, among others. 

L e m m a  3. In a representation of K5 by five rectangles, with no other rectangles 
present, it is impossible that both sequences VN and Vs are unimaximal. 

Proof. Suppose both VN and Vs were unimaximal. Then Nr > min{N~, Nb} and 
Sr > min{Sa, Sb} must hold for all rectangles A, B, and R between A and B. 
Now consider the conditions F C ~ ,  FCnw, FCs~0, FCs~. For FCn~(A, B) to be 
true, it must be the case that ER < min{Ea, Eb} for all R between A and B. 
The same is true for FCs~(A, B). Similarly, for FC,~(A,  B) or FC,~(A, B) to 
be true, Wr must be less than min{Wa, Wb). Hence the free corner conditions 
reduce to the following. One of the two possibilities (Wr < min{Wa, Wb)) or 
(E~ < min{Ea, Eb}) holds simultaneously for all rectangles R between A and B. 
This means that all rectangles A and B can see each other Mong a line of sight 
with y-coordinate 0. By intersecting the arrangement of five rectangles with the 
x, z-plane, we get an arrangement of 5 line segments in this plane that all see 
each other. This contradicts the fact that only planar graphs can be represented 
by vertical visibility of horizontal line segments in a plane. (See [12] and [13] for 
results on such representations in the plane.) 

[] 

T h e o r e m  4. No complete graph Kn has a representation by arbitrary rectangles 
for n > 56. 

Proof. Suppose we had a representation of Kn with n >_ 56. Lemma 2 implies 
that V~ has a unimaximal subsequence V~ of length 11. Consider the associated 
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Fig. 1. Representing K7 by unit squares. 

subsequence V~ of length 11. It follows again from Lemma 2 that there is a subse- 
quence V~' of length 5 that is unimaximal. Remove the rectangles not associated 
with the subsequence. This destroys no visibility lines, so the five remaining 
rectangles represent Ks. However, both V~ ~ and its corresponding subsequence 
V~ are unimaximal. This contradicts Lemma 3. 

D 

3 U n i t  S q u a r e s  

While it is still a challenge to narrow the gap between the known upper and 
lower bounds for representation of Kn by rectangles or general squares, we will 
see in the following that the largest possible n for which Kn has a representation 
by squares of equal size is n - 7. 

T h e o r e m 5 .  K7 has a representation by unit squares. 

Proof. See Figure 1. The six phases indicate how the seven squares are placed 
on top of each other. D 

T h e o r e m 6 .  Ks does not have a representation by unit squares. 

Proof. We did the proof by a computer search that enumerates all maximal valid 
sequences of squares. The search begins with a single square. It proceeds in a 
depth-first-search manner, examining all the ways to add a new square abovethe 
squares in the valid sequence currently considered. It tests validity by checking 



239 

the free corner conditions of the previous section. Whenever a valid extension is 
discovered, an immediate a t tempt  is made to extend it further. 

To be more specific, consider a valid sequence, not necessarily maximal, of 
m squares of the same "unit" size. As before, without loss of generality, we may 
describe these squares as 4-tuples (E, N, W, S). The coordinate positions give 
rise to four sequences VE, VN, Vw, Vs of distinct integers in the range [1,m]. 
Because all the squares have the same size, the E and W coordinates of any 
given square must sum to m + 1, and similarly for the N and S coordinates. 
Hence VE determines Vw, and VN determines Vs. Since the sequence is valid, 
the free corner conditions given in the previous section must hold for each pair 
of squares in the sequence. 

Now suppose we want to enumerate all the possible ways to position a new 
unit square above the existing m squares. Each new sequence will be described 
by 4-tuples whose coordinates are integers in the range [1, m + 1]. There are 
m + 1 choices for the E coordinate of the new square and m + 1 choices for its N 
coordinate. Since these choices determine W and S, there are in total  (m + 1) ~ 
possibilities. These may be considered by lexigraphic order of the (E, N) pair of 
coordinates of the new square, from (E, N) = (1, 1) to (E, N) = (m + 1, m + 1). 

Note that  although the squares in the old sequence do not change position 
in any way, their coordinates must change to make room for the coordinates of 
the new square. For example, if the new square has E = 3, then all old squares 
with an E coordinate of 3 or greater must increase the old E coordinate by 1. 

To check whether a new sequence is valid, we need only check the free corner 
conditions of the previous section for pairs of squares involving the new square. 

Our program enumerates all valid maximal sequences of unit squares as fol- 
lows. It begins with a valid sequence of length m = 1, described in the E, N, W, S 
coordinate system by the single 4-tuple (1, 1, 1, 1). Then it carries out a depth- 
first-search as follows. When processing a valid sequence of length m, it considers 
in lexigraphic order the possibilities for adding a new square above the existing 
ones. If a sequence of length m + 1 proves to be valid, it is recursively processed 
immediately. 

Since every prefix of a valid sequence is valid, and since the number of valid 
sequences is finite (recall that m < 55), this search eventually discovers all valid 
sequences. 

Using this depth-first-search strategy, we were able to generate all maximal 
valid sequences in three minutes running time on a SPARC 1. There were 2064 
of these maximal valid sequences, all of which had length 7. 

[3 

4 D i s c s  

After the results on rectangles and squares, we examine the situation for discs. 
We show that any K~ can be represented. 

T h e o r e m 7 .  Any Kn can be represented by unit discs. 
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C! 

Fig.  2. Representing Kn by n unit discs. 

1 Proof. See Figure 2. Let ~ < r < 1 and consider the circle co of radius r centered 
at the origin O. Now pick n points ml  = ( z l ,  yl ,  0 ) , . . . ,  mn = ( ~ ,  Yn, 0) equally 
spaced and in counter-clockwise order on an arc of co of length less than half 
the circumference of co. Without loss of generality, assume that  all yl < 0. Let 
Mi = me + (0, 0, i). Let Ci be the unit disc parallel to the z, y-plane with center 
Mi, and let c~ be its projection onto the x, y-plane. We claim that  the Ci form 
a representation for K,~. 

It suffices to show that  for each i, 1 < i < n, all the discs above Ci can see 
Ci, i.e., Cj can see Ci whenever j > i. 

Consider the points pij obtained by selecting from the two intersection points 
of the boundaries of cj and ci the one that  has positive y-coordinate. (Figure 2 
illustrates this for i = 1.) Consider some fixed i and the set of indices j > i. 
Observe that  p~j lies on the perpendicular bisector of the line segment [rni, mj]. 
This bisector runs through 0. As j increases, so does the angle between the x- 
axis and [0, pij]. This means that  for j > i, the pij appear in counter-clockwise 
order around the boundary of ci. Therefore none of the points Pj = pj + (0, 0, j )  
on discs Cj, i < j < n, are blocked from the view of the boundary of disc Ci. 
Obviously if j = i + 1, then Ci and Cj are mutually visible along lines of sight 
with x, y-projection in ci N ci+l. Now suppose j > i + 1. Because c~'+1 U cj-1 
contains ck for i + 1 < k < j - 1, Ci and Cj are visible along lines of sight with 
z, y-projection in ci N cj fq c~+ 1 N c~_1, where the prime denotes complement. For 
j = i + 2, this figure is bounded by three circular arcs, and for j > i + 2, by four 
circular arcs. 

[] 
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