
Drawing High Degree Graphs
with Low Bend Numbers

Ulrich FSgmeier Michael K a u f m a n n

Universitgt Tiibingen, Wilhelm-Schickard-Institut, Sand 13, 72076 Tiibingen, Germany,
email: foessmei / mk@informatik.uni-tuebingen.de

Abstract . We consider the problem of drawing plane graphs with an arbi-
trarily high vertex degree orthogonally into the plane such that the number of
bends on the edges should be minimized. It has been known how to achieve the
bend minimum without any restriction of the size of the vertices. Naturally,
the vertices should be represented by uniformly small squares. In addition we
might require that each face should be represented by a non-empty region.
This would allow a labeling of the faces. We present an efficient algorithm
which provably achieves the bend minimum following these constraints. Omit-
ting the latter requirement we conjecture that the problem becomes NP-hard.
For that case we give advices for good approximations. We demonstrate the
effectiveness of our approaches giving some interesting examples.

1 I n t r o d u c t i o n

Embedding planar graphs into a grid while optimizing quality parameters like area ,
edge lengths or bend number is not only a challenging combinatorial problem, but
viewed as a graph drawing problem, it has many direct practical applications.

A drawing of a graph in the plane roughly consists of a representation of the
vertices by geometric objects (circles, squares, rectangles, lines, ...) and an assignment
of the vertices to geometric positions in the plane. The edges are represented by
curves between the objects representing two vertices; in orthogonal representations
they form a continous sequence of horizontal and vertical line segments embedded
in the plane. Intersections of a horizontal and a vertical line segment belonging to
the same curve are called bends. The goal in graph drawing is the production of nice
drawings: The representation of the graph should be simple, the incidence structure
should be easily readable, planar graphs should be drawn planar, the vertices should
be distributed nicely in the drawing. There are many other requirements, which might
be even contradicting.

Orthogonal drawings of planar graphs have been extensively studied in the last
decade. There are plenty of applications like VLSI-design [10], entity relationship
and data flow diagrams in Software Engineering (e.g. [5, 12, 2, 14; 1]) or visual-
ization of interactions inside of molecular structures in Astrophysics [3]. In some of
them multiple edges are necessary, so we have to handle multigraphs. Many results
and algorithms have been worked out [4], one of the most important is Tamassia's
algorithm from [16]: How to draw a 4-planar graph orthogonally with the minimum
number of bends preserving a given planar representation. (A 4-planar graph has a
vertex degree of at most 4. A planar representation is given by a fixed cyclic order
of the incident edges of each vertex.) We call a planar graph together with a planar
representation a plane graph.

255

It makes sense to preserve the planar representation, since very often a (non
orthogonal) drawing is given which should have a certain familiarity with the orthog-
onal layout. Moreover an efficient algorithm for the problem without this restriction
cannot be expected since finding a bend minimum solution over all planar represen-
tations is NP-hard [8].

In most of the applications it is necessary to visualize planar graphs with a ver-
tex degree of more than four; this aspect cannot naturally be captured in a usual
orthogonal drawing, so we have to look for extensions of Tamassia's approach.

Approaches like to proceed to k-gonal grids if the maximum degree is k or to
split each vertex of large degree into cluster of many subvertices of degree 3 or 4 turn
out to be useless or to be at most good heuristics which may terribly fail in some
cases. Our target is a provably good quality of the drawing under the commonly used
standards.

Our criterion of optimum is the number of bends. Note that there is always a
representation without any bends if we demand no other qualities of the drawing: A
visibility representation e.g. [17, 13] satisfies all requirements established so far. But
in such drawings the size of the vertices may grow independently of the vertex degree:
Fig. la) shows an example where the size of a vertex grows arbitrarily whereas the
degree of the vertex v is a small constant (in the example: 5).

Drawings like Fig. la) do not fulfill our wishes in many applications. The size of
the vertices should be determined by the degree and not by the structure of the graph.
More concrete our model is as follows: We use a grid with uniform distance A between
the grid lines. The size of the vertices should be smaller than A, and their centers
should be placed on the intersections of the grid lines; this ensures that no vertex is
intersected by any grid line except of those defining its position and consequently two
vertices can never intersect. Let max be the maximal number of edges being incident
to a single side of any vertex. We require every vertex to be a square with side length
(2 �9 m a x - 1). The motivation for the factor 2 is given in section 4. We choose A to
be twice the side length of the vertices. This leaves enough space to route the edges.

With these requirements we ensure a clear and well-arranged look of the drawing.
Note that for each vertex v, no two different adjacent vertices can be connected by
straight lines emanating from the same side of v.

Segments of edges being incident to the same side of some vertex may run very
close together (i.e. the distance between two of them is much smaller than A) and so
it is possible to draw a face in such a way that every point inside of the face has a
tiny distance to some bounding edge of the face (see face C in Fig. lb). We call such
faces empty faces.

We consider two models: In the first model we allow empty faces and call the cor-
responding drawings 'Planar Orthogonal Drawings with Equal Vertex Size' (podevs).
An example can be seen in Fig. lb. Trying to meet the general podevs-requirements,
we noticed that the possible representation of the faces by empty regions (face C
in Fig. lb) does not fit in our efficient approach. We conjecture that in general the
bend-minimization problem for podevs is NP-hard. Therefore in our second model
we additionally require that at least the non-trivial faces (faces with at least three
adjacent vertices) should have a non-empty region. An optimal drawing with this
constraint is given in Fig. lc). We call such drawings 'Planar Orthogonal Drawings
with Equal Vertex Size and Non-Empty Faces' (podevsne]). Note that podevsnef-
drawings always allow a (reasonable) labeling of the faces whereas this is impossible
in the case of faces which are represented by an empty region.

256

A

I , ,
D E 1

~ - - - x - - q

Fig. 1.
a) A visibility representation b) An optimal solution c) An optimal solution al- lowing labeling of the faces

(podevs) (podevsnef)

The rest of this paper is organized as follows: In section 2 we perform the first
modifications on Tamassia's algorithm and receive some kind of two-dimensional visi-
bility representation. In section 3 the main algorithm (for drawings like in Fig. lc)) is
given. We incorporate the requirements of small uniform square sizes for each vertex
and of non-zero area for the faces. In section 4 we shortly describe the postpro-
cessing transformation from the topological to the geometric layout, which is called
compaction. Some remarks on further improvements (heuristics for empty faces, com-
pact visibility representations using the approach in section 2) conclude the paper.
Many proofs and details are omitted and can be found in [7].

2 N e a r l y O r t h o g o n a l R e p r e s e n t a t i o n s

The basis of our data structure is the orthogonal representation defined in [16]: Given
a graph G = (V, E) and a planar representation for it; an orthogonal representation
for G and its planar representation is a set of lists H(f), one for every face] of G,
whose elements are triples ((u, v), s, a), where

- - (u, v) is an edge of G,
- - s is a binary string, and
- - a is an integer in the set {90, 180, 270, 360}.

If jr is an internal face the edges in H(f) appear in clockwise order and counterclock-
wise otherwise. The string s[(u,v)] describes the bends of the edge (u, v): The kth
bit of s[(u, v)] represents the kth bend that appears at the right side of (u, v), as it is
encountered when going along (u, v). The binary symbols 0 and 1 represent angles
of 90 and 270 degrees, respectively, a[(u, v)] specifies the angle formed in face f at
the vertex v by the edge (u, v) and the following edge in H(f).

For our purposes we have to modify this concept and use nearly orthogonal rep-
resentations. We assign 0~ to angles between two parallel edges being incident
to the same vertex at its same, because in this case the representation remains con-
sistent such that the sum of the interior angles of a polygon with k edges is equal to
(k - 2) �9 180 ~ So in a nearly orthogonal representation a[(u, v)] is a number in the
set {0, 90, 180, 270, 360}.

257

r

r

Fig. 2. A Nearly Orthogonal Representation

Fig. 2 shows a drawing for the graph of Fig. 1 with edge identifiers. The nearly
orthogonal representation of the example in Fig. 2 is:
f l = ((e9, r 90), (e5, 0, 90), (el0, r 90));
12 = ((elo, e, 90), (el, E, 90), (e6, 0, 90));
f3 = ((e6, 1,90), (e2, 0,90), (eT,e,0));
f4 = ((e7 , ~, 90), (e3,0, 90), (es, E, 90));
.f5 ---- ((e4, O, 90), (e9, e, 90), (es, e, 90));
f6 = ((el, ~, 180), (es, 1,180), (e4, 1,180), (e3, 1,180), (e2, 1,180)).
Note the angle of 0 ~ in the face f3.

In [16] Tamassia describes a l : l -correspondence between an orthogonal repre-
sentation H of a graph G and a flow in some network NH defined as follows:
N/r = (U, A, s, t, b, c) where
b : A ~]R + is a nonnegative capacity function,
c : A --+]R is a cost function,
U (the nodes of the network) = {s} 12 {t} LJ Uv U Up, where s and t are the source and
the sink of the network, Uv contains a node for every vertex of G and UF contains
a node for every face of G,
A (the arcs of the network) contains

a) arcs from s to nodes v in Uv with cost 0 and capacity 4 - deg(v);
b) arcs from s to nodes] in UF, where f represents an internal face of G with

deg(f) <_ 3; these arcs have cost 0 and capacity 4 - deg(f); deg(f) for a face f
always denotes the number of edges in the list H (]) ;

c) arcs from nodes f in UF representing the external face or representing internal
faces f with de9(f) >_ 5 to t; these arcs have cost 0 and capacity deg(f) - 4 if f
is an internal face and capacity deg(f) + 4 for the external face;

d) arcs of cost 0 and capacity oo from nodes v in Uv to nodes f in UF, i fv iS incident
to an edge of H (f) ;

e) arcs of cost 1 and capacity oo from a node f in UF to a node g in UF, whenever
the faces f and g of G have at least one common edge.

Every flow unit on an arc between two faces stands for a bend on an edge between
these faces. The flow on the arcs in d) defines the angles of H: If x , , / is the flow
from the node v E Uv to the node f E UF then the angle at vertex v in face f
is (x,,l + 1) - 90 ~ Every feasible flow of value ~,b(s,u) -~ E~ob(w,t) with cost B

258

corresponds to an orthogonal representation H with exactly B bends. Thus the cost
minimum solution of the flow problem corresponds to the bend minimum drawing.

In a nearly orthogonal representation H0 we have to handle angles of degree 0.
According to the formula above such an angle corresponds to a flow of value -1 from
some v E Uv to some f E UF. We interprete this as a flow of value +1 in the opposite
direction, from] to v. Thus, in the network there are some additional arcs:

f) arcs of cost 0 and capacity deg(v) - 4 from nodes v in Uv to t, if deg(v) > 5; and

g) arcs of cost 0 and capacity 1 from a node f in UF to a node v in Uv, whenever
there is an arc of type d) from v to] .

Fig. 3 shows the network and the flow for the drawing of Fig. 2; only arcs with
nonzero flow are drawn. Note the arcs from face f3 to vertex v4 and from vertex v4 to t.

v3 ~ ~

! !

s

Fig. 3. Network and Flow for the drawing of Fig. 2

The flow in Fig. 3 is not optimal: Since arcs of type d) as well as arcs of type g)
have cost zero, it is always possible to establish a zero cost flow in the network. This
flow leads to a drawing resembling a visibility representation drawing without any
bends, but with very large vertices (cf. Fig. la)).

259

We discuss the quality of such drawings and possible extensions in section 5. In
the next section we modify the network in order to get drawings with vertices that
are not much larger than necessary.

3 A B e n d - M i n i m i z i n g A l g o r i t h m

We shortly recall the requirements for the model given in Section 1. We want to
generate drawings like the one in Fig. lb or lc respectively, that means: All vertices
have square shape and the same size and the centers of the squares lie on grid points
of a grid where the unit distance is twice the length of a square side.

We already mentioned that at most one edge being incident to a certain side of
some vertex can be a straight line. The only exception are a group of consecutive
multiple edges between two vertices v and w, i.e. multiple edges arising in consecutive
order in the adjacency lists of v and w, thus defining faces of degree two. We call this
(these) edge(s) without bend the middle edge(s).
Moreover, all edges on the same side of v at the left of the middle edge (counterclock-
wise) are required to bend to the left and the edges at the right of the middle edge
(clockwise) bend to the right. We call these bends vertex bends, because they have
nothing to do with the topological structure of the graph, but they are necessary
only because of the vertex degree. For illustration see Fig. 4a).

For the next considerations we assume that there is only one middle edge in each
direction. We consider two models:
a) The general podevs and
b) the podevsne], where we demand every face to have a non-zero area.
At first we discuss the difference between the two models; with k-face we denote a
face] with deg(f) --- k.

L e m m a 1 [7] Every k-face with k >_ 4 can be represented by a non-empty region.

So the significant difference between our models is to allow or to forbid triangles
with zero area. Our algorithm for a podevsnef is based on the following

L e m m a 2 [7] Every O~ ol a podevsnef has a unique corresponding 270~

Using these observations we describe an algorithm to compute a podevsnef: A
flow on an arc of type g) from f E UF to v E Uv is allowed if and only if there is a
flow on an arc of type e) from some g E UF to f where g is one of the two faces on
the other sides of the edges et and e2 which define the face f at the vertex v (this
expresses the correspondence between the 0~ and the 270%bend). We model
this situation by replacing the arcs of type g) by arcs of type h) going directly from
face g to node v: For every edge e being incident with vertex v and neighboring faces
f and g. there are arcs of type h) from] to v and from g to v. Arc (g, v) stands for
the combination of arc (g,]) of type e) and arc (f, v) of type g). Thus type h) arcs
have capacity 1 and cost 1. Note that there are two arcs of type h) from a face f to
a node v (v belonging to J): They correspond to the two type e) arcs belonging to
the two edges of j" incident to v.

After having solved the Min-Cost-Flow-problem we re-insert the arcs (J, v) and
(g,]) instead of (g, v) (with the corresponding tlow values) and compute the nearly
orthogonal representation as described in section 2.

260

Not every feasible flow in the network described so far has a corresponding draw-
ing: Let el and ej be two consecutive edges in the adjacency list of some vertex v and
fi, f j and f~ the resulting faces such that fj lies between ei and ej (cf. Fig. 4b)).

e l '

�9 I I I I
g l f i t I

9V V . f i _ A

�9 \~ ,~ / ,

Fig. 4. a) Vertex Bends b) Forbidden Combinations

We have to avoid two cases:

(a) Since there are no negative angles, the flow from a face into a node must be
restricted to 1: it is not allowed that the flows on the arcs of type h) from fi to v
over ei and from]k to v over edge ej are simultaneously equal to 1 (dashed lines
in Fig. 45)).

(b) Further, since all edges at the left of the middle edge(s) must have their vertex
bend to the left and all edges at the right of the middle edge(s) must have their
vertex bend to the right, it is forbidden to have a flow of value 1 from fi to v
over edge ei and simultaneously a flow of value 1 from f j to v over the same edge
ei (see dotted lines in Fig. 4b)).

Although it is easy to avoid any of the forbidden cases by usual means of flow prob-
lems, we cannot guarantee both conditions simultaneously. So we realize one of the
conditions (we choose condition (a)) using the capacity restrictions of the flow prob-
lem and the other one by punishing it with extraordenarily high cost; thus we estab-
lish the arcs of type h) not directly, but use the following construction: Let v be a
node in Uv and f i l , . . . , fi~ an ordered list of the faces around the vertex v in the
graph (e.g. in clockwise order); let e l l , . . . , ei~ be the edges that separate these faces
such that ei~ separates face fij_~ ,.od ~ and face fij. See Fig. 5 for illustration (for
k -- 3).

Then we add for every edge ei, being incident to v two nodes H~,j and HI, j,
where H~,j (H'~ i) corresponds to the arc of type h) crossing edge ei~ in clockwise

(counterclockwise) order around v; further H)~j are new nodes in the network for
every face lit.

New arcs are:

- Arcs with capacity 1 and cost 2c + 1 (c having a suitable value) from fie to H~j

and to H%+ 1 l .,,od ~' i.e. to the edges of the graph corresponding t o the arcs of

261

type h) starting in face fi; and crossing a bounding edge of this face.

- Arcs with capacity 1 and cost 0 from the nodes Hf, j to node v; the arcs of these

two types replace the arcs of type h).

- Arcs with capacity 1 and cost 0 from node H~j to node Hf,~ and from node

H~,,+I ~ ~ to node Hf~j, i.e. from two auxiliary nodes for two neighboured

edges to the auxiliary node for the face between them. These arcs guarantee con-
dition (a).

- Arcs with capacity 1 and cost - c from node H~ i to node H~j and vice versa.

Every pair of such arcs defines a cycle of cost - 2 c and thus a cost minimum
path from a node f~j to a node v has cost 2c + 1 - 2c = 1 corresponding to one
necessary bend as in the case at the arcs of type h). Every time a second flow
unit passes one of the nodes H~j or H~',j, the arcs with negative cost are already

satisfied and thus the path from f~i to v has cost 2c + 1.

Fig. 5 shows the construction of this part of the network. All capacities are 1 and
all costs not indicated are 0.

el3 2c+J 2c+I

2c§
2c~.I

2c§

Fig. 5. The construction for the arcs of type h)

262

Now we can formulate the algorithm that computes the nearly orthogonal repre-
sentation:

Algorithm

(1) Establish the network as described above;
(2) Solve the Min-Cost-Flow problem;
(3) Re-insert the arcs of type h) instead of the auxiliary construction and replace

them by arcs of type e) and g);
(4) Compute the bends and angles of the drawing using the value of the flow on arcs

of type d), e) and g).

Note that we have to solve a Min-Cost-Flow problem in a network with negative
cycles. But that does not cause any troubles here, since all these cycles are known
and have length 2; so we can use a standard augmentation algorithm where the
cost-minimum paths are determined by (a slightly modified version of) Dijkstra's
algorithm.

Unfortunately we do not have a l:l-correspondence between a feasible max-flow in
the network and a feasible drawing; but if we choose c large enough, we can state the
following

L e m m a 3 For every feasible max-flow in the network with cost b < c there is a
corresponding drawing with exactly b bends.

Proof i Taking into account the considerations about vertex bends (see Fig. 4a)) the
lemma can be proved by the same arguments as those applied in [16]. The only thing
that remains to be shown is that a feasible max-flow of cost smaller than c always
exists. It suffices to show that there is a drawing with b < c bends, since in this
case it is easy to construct a fl0 w with cost b. In [7] an algorithm is described which
computes a drawing with at most 2m <_ 6n bends, so with c = 6n the Lemma is
correct. ~

L e m m a 4 The algorithm above computes a nearly orthogonal representation in time
O(n 2 log n).

Proof." For every vertex and for every face of the graph there is a node in the
network; further we have auxiliary nodes: Two for every edge and one for every face;
thus planarity of the graph implies linearity of the number of nodes in the network.
The number of arcs of type a), b), c) and f) is proportional to the number of vertices
of the graph, the number of arcs of type d), e), g) and h) is proportional to the
number of edges. So the network has a linear number of nodes and arcs and the
Min-Cost-Flow problem can be solved in time O(n 2 log n). The rest of the algorithm
runs in linear time.

4 C o m p a c t i o n

To get a drawing from the nearly orthogonal representation, we have to assign lengths
to the edge segments in a consistent way; let s be the size of the vertices, i.e. the
length of the square side. We want to place the centers of the squares on a grid with
unit distance A -- 2s; then the distance between two vertices is at least as large as

263

the vertex itself. So we have to guarantee that the edge lengths are concurring with
this constraint, in particular that the length of every straight edge is a multiple of s.
Tamassia [16] describes a linear time algorithm that solves the corresponding prob-
lem for a vertex degree of at most 4, and we want to use a similar technique. We
replace every vertex v by a square of 8s small vertices (see Fig. 6), where the small
vertex in the middle of each side (marked with an m in Fig. 6) will be incident to
the (or one of the) middle edge(s) in this direction; there are enough small vertices
for the rest of the edges being incident to v.

1 I _J
i

Fig. 6. Replacing a Large Vertex by Small Vertices.

Note that a square of 4s small vertices would not be enough: Let e.g. s be equal
to 3 and e = (u, v) be a vertical middle edge such that e is the rightmost edge at
the bottom side of u and the leftmost edge at the top side of v. Then it would be
impossible to draw e without any bend, if the centers of the two squares representing
u and v should have the same x-coordinate.
So the size of the vertices is 2s x 2s instead of a possible size of s x s; but in the latter
case we would have drawings with more bends, because we could not guarantee that
we can draw middle edges without bends.
For the resulting graph (after the construction described here) we run a variant of
the compaction algorithm of [16] to compute coordinates for the vertices and thus
the final drawing.

Summarizing the results of the sections 3 and 4 we formulate

T h e o r e m 1 Our algorithm together with the compaction algorithm computes a pode-
vsne] with the minimum number o/ bends in O(n 2 logn) time.

5 C o n c l u d i n g R e m a r k s a n d D i s c u s s i o n

This work has been motivated by the two figures at the end of the paper taken from
the doctoral dissertation of Petra Mutzel [11]. She has convinced us to work on this
specific model: On the left side the original picture from the paper on Astrophysics,

264

on the right side the hand-made layout after the maximum planarization step. The
third picture shows a bend-minimum podevsnef produced by an implementation of
our Algorithm using GraphEd [9] (the non-planar edge between the vertices HCO +
and CH was deleted by hand since the algorithm can only handle planar graphs).
Another interesting example drawn as podevsnef and shown at the end is the planar
graph from the competition in last year's GD-conference.

Our algorithm works well for podevs restricted to have non-empty faces. Trying to
omit this restriction we saw that the case of empty triangles is the only problematic
case. We are currently working on an NP-hardness proof for the general problem.
Running several examples we get the impression that a preference of those (com-
putably hard) configurations lead to clear and understandable drawings, since the
edges are bundled and clearly separated. Possible heuristics to achieve such empty
faces are to eventually flip corners, or more drastically to change the network flow
problem if an empty triangle can be achieved by a local transformation.

A promising approach which is attractive by other criteria is the simple one
described in section 2. Here we achieve some visibility drawings where the edges are
either horizontal or vertical lines. The standard efficient algorithms produce visibility
drawings as shown in figure la). By only a slight modification of the corresponding
network we can balance the number of horizontal and vertical edges and get a much
better drawing instead (see Fig. 7).

B

I ~ I
Fig. 7. A more attractive 'visibility representation'

Aspects for further research are to improve the used area by local transformations
maintaining the minimum bend number and to give bounds for the used area. Another
is to allow different vertex sizes not depending on the graph structure, but depending
on the size of some text labels to be written inside.

A c k n o w l e d g e m e n t : We wish to thank Harald Lauer, Petra Mutzel and Roberto
Tamassia for helpful discussions and comments on earlier versions of this paper.

R e f e r e n c e s

1. Batini, C., E. Nardelli, and R. Tamassia, A Layout Algorithm for Data-Flow Diagrams,
IEEE Trans. on Software Engineering, Vol. SE-12 (4), pp. 538-546, 1986.

2. Batini, C., M. Talamo, and R. Tamassia, Computer Aided Layout Of Entity-Relationship
Diagrams, The Journal of Systems and Software, Vol. 4, pp. 163-173, 1984.

265

3. H.K.B. Beck, H.-P. Galil, R. Henkel, and E. Sedlmayr: Chemistry in circumstellar shells,
I. Chromospheric radiation fields and dust formation in optimcally thin shells of M.
giants, Astron. Astrophys. 265 (1992) 626-642.

4. Di Battista G., P. Eades, R. Tamassia and I.G. Tollis, Algorithms for Automatic Graph
Drawing: An Annotated Bibliography, Tech.Rep., Dept.of Comp.Sc., Brown Univ., 1993,

5. Di Battista, E. Pietrosanti, R. Tama.ssia and I.G. Tollis, Automatic Layout of PERT
Diagrams with XPERT, Proc. IEEE Workshop on VisuaJ Lang. (VL'89), 171-176, 1989,

6. Di Battista, G., L. Vismara, Angles of Planar 73"iangular Graphs, Proc. of the 25th
ACM Symposium on the Theory of Computing, San Diego, California, 1993.

7. F6Bmeier, U., and M. Kaufmann, Drou,ing High Degree Graphs with Low Bend Numbers,
Technical Report WSI-95-21, Univ. T~ibingen 1995.

8. Garg, A. and R. Tamassia, On the Computational Complexity of Upward and Rectilinear
Planarit~l Testing, Proc. of GD '94, Princeton, 1994.

9. Himsolt, M., Konzeption und lmplementierun9 yon Gropheneditoren, Doctoral Disser-
tation, Passau 1993.

10. Lengauer, Th., Combinatorial Algorithms for Integrated Circuit Layout, Teubner/Wiley
& Sons, Stuttgnxt/Chichester, 1990.

11. Mutzel, P., The Maximum Planar Subgraph Problem, Doctoral Dissertation, K61n 1994.
12. Reiner, D., et M., A Database Designer's Workbench in Entity-Relationship Approach,

ed. S. Spaccapietra, pp. 347-360, North-Holland, 1987.
13. Rosenstiehl, P., and R.E. Tarjan, Rectilinear planar layouts and bipolar orientations of

planar graphs, Discrete and Comp. Geometry 1 (1986), pp. 343-353.
14. Protsko, L.B., P.G. Sorenson, J.P. "l~remblay, and D.A. Schaefer, Towards the Automatic

Generation of Software Diagrams, I EEE Trans. on Softwaxe Engineering, Vol. S ~ 17 (1),
pp. 10-21, 1991.

15. Storer, J.A., The node cost measure for embedding graphs in the planar grid, Proc. 12th
ACM Symposium on the Theory of Computing, 1980, pp. 201-210.

16. Tamassia, R., On Embedding a Graph in the Grid with the Minimum Number of Bends,
SIAM Journal of Computing, vol. 16, no. 3, 421 - 444, 1987.

17. Tamnssia, R., and I.G. Tollis, A unified approach to visibility representations of planar
graphs, Discr. and Comp. Geometry 1 (1986), pp. 321-341.

, . ,

c

The layouts for the astrophysics-example from [11]

266

The podevsnef for the astrophysics-example

The podevsnef for the planar competition graph from GD'94

