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Abstract. The drawing of configurations and other linear hypergraphs 
is discussed. From their historical and geometrical context it is quite nat- 
ural to denote hyperedges of vertices as lines, i.e. to position the points 
(vertices) in the plane such that those points which form hyperedges are 
coUinear in the plane ( or as close to collinear as possible ). This is a new 
concept in the area of hypergraph drawing. However, in mathematics it 
has been used for more than 100 years. The exact drawing of configu- 
rations is mainly based on the realization of matroids and techniques in 
computer algebra. 

1 I n t r o d u c t i o n  a n d  N o t a t i o n  

1.1 Graphs and Geometry 

The topic of graph drawing is interesting not only from the point of view of 
finding nice drawings of graphs for all kinds of applications. It is, of course, the 
fascinating meeting of two mathematical theories, geometry and graph theory. 

Geometry is one of the oldest mathematical  theories which reached a high 
level already more than 2000 years ago. It was and perhaps is still dominated by 
the axiomatic way of Euclid. The appearance of noneuclidean geometries in the 
19 ~h century extended the meaning of geometry within mathematics. However, 
in graph drawing the main task is still to display graphs in 2-dimensional ( or 
3-dimensional ) geometry. 

The development of graph theory started from many different applications 
in a rather different way. Many important  roots can be found in sciences like 
physics and chemistry in the 19 th century whereas graph theory was established 
as a theory of its own around 1960. 

This paper being in the section Graphs defined by geometry discusses the 
drawing of hypergraphs in general and configurations in particular. Whether  
these combinatorial structures are regarded to be defined by geometry or whether 
they define new kinds of geometry ( finite and noneuclidean ) depends on the 
point of view. 

These "geometric" structures contain only a finite number of points ( and 
hence lines ). It may even occur that  there is no line connecting two points which 
clearly contradicts to the axioms of Euclid. This makes it possible tha t  many 
new geometric structures arise which are "counterexamples" to classical or more 
modern theorems of euclidean geometry ( Pappus or Sylvester-Gallai ). 

The problem of drawing linear hypergraphs is to obtain ( of course ) nice 
drawings of those structures which exist in euclidean geometry and to produce 
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reasonable drawings of the "new" structures although they have "noneuclidean" 
properties. 

1.2 Some  Definitions 

Definition 1.1 A hypergraph H = (V, E) consists of a set of vertices V and 
a set of hyperedges H where each hyperedge is a non-empty subset of V. A 
hypergraph is called k-uniform if the size of each hyperedge is k, r-regular if 
each vertex belongs to exactly r hyperedges, and linear if the intersection of two 
different hyperedges is at most one vertex. 

For further information on hypergraphs, see e.g. [1]. 

Definition 1.2 A configuration (vr, bk) is a finite incidence structure with v 
points and b lines such that 

(1) there are k points on each line and r lines through each point, and 
(2) two different points are connected by a line at most once. 

A symmetric configuration (vk,vk) is shortly denoted by vk. 
From the point of view of hypergraph theory it is easy to describe configu- 

rations as follows. 

R e m a r k  1 A configuration (vr, bk) is a linear r-regular k-uniform hypergraph 
with v vertices and b hyperedges. 

1.3 H y p e r g r a p h  Drawing 

In the business of graph drawing the drawing of hypergraphs plays a specific 
role. For example, a 3-uniform hypergraph with v vertices has subsets of size 3 
as edges. Perhaps the smallest very interesting hypergraph is shown in Fig.1. It 
has 7 vertices and 7 hyperedges ( the 6 lines and the "curved" line ). 

v 

Fig.l.The unique configuration 73 
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The usual drawing of edges ( of size 2 ) in a graph is the ( linear ) segment 
between its two vertices. The main question is how to position the vertices ( as 
points in the plane or on a grid etc. ) in order to obtain a more or less nice 
drawing. It depends on the special purpose of the drawing whether the focus is 
on aspects of symmetry or readability for example. 

In the case of hypergraphs the problem becomes much more difficult since 
through 3 or more given points there is no line ( in general ). There is a certain 
class of hypergraphs with a history of more than 100 years, the configurations 
(vr, bk). Even their drawing problem was already attacked more than 100 years 
ago. It should be mentioned that the role of configurations as hypergraphs is 
just one interesting relation of configurations and graphs (see [5]). 

1.4 Configurations and Their History 

Hence the question arises: If configurations can be described as .particular hy- 
pergraphs so easily why is there a special name for them ? The answer is quite 
easy: Configurations are much older than hypergraphs. While the term of a hy- 
pergraph was introduced around 1960 the first definition of configurations was 
already given in 1876 in the book Geometrie der Lage of T. Reye at a time when 
even graph theory had not yet found an established place within mathematics. 

It is not only true that configurations are older than graphs and hypergraphs. 
Thus certain graph-theoretic results were already obtained earlier in the language 
of configurations. It is also this geometric language of configurations which raises 
the question of drawability rather naturally. The objects of configurations are 
called points and lines. However, the language of graph theory uses more abstract 
terms like vertex and edge. Moreover, the roots of graph theory are very different 
ones, from logic and topology to physics and chemistry. 

Configurations were "born" in geometry. The paragraph where Reye defines 
configurations is illustrated by a drawing of the famous configuration of Desar- 
gues ( see Fig. 2, not identical with the drawing in Reye's book ). By the way, a 
picture of the Desargues configuration is shown on the cover of the Proceedings 
of Graph Drawing '93 [3] edited by the Centre d'analyse et de rnathgmatique 
sociales. 



270 

Fig.2.The Desargues configuration 103 

In the beginning, only those configurations which were drawn in the plane 
were accepted as "geometric" configurations, the others were called "schematic". 
Quite soon, however, configurations were regarded as combinatorial structures 
defined by the axioms given above. It turned out that the configuration 73 ( the 
hypergraph of Fig. 1 ) cannot be drawn with straight lines only. Since all its 
lines contain 3 points such a drawing would be a contradiction to the theorem of 
Gallai ( which was, however, proved later ). In particular, many configurations 
v~ with v <: 12 were constructed ( combinatoriaUy ) and also drawn as points 
and lines in the plane. Not all the drawings were correct (compare Fig. 3 below). 

A very remarkable result is due E. Steinitz. In his dissertation of 1894 [13] he 
proved that there is always a drawing for a configuration v3 with straight lines 
and at most one "quadratic" line ( compare Fig. 1). 

It is not possible here to describe the history of configurations and their 
drawings in detail. The interested reader is referred to [4] and [8] for further 
information. However, I hope to have clarified why the drawing of configurations 
is not only an interesting topic itself. I think it plays a key role in the drawing of 
hypergraphs and similar combinatorial structures, because of its long tradition 
and its geometrical context. 

2 T h e  D i f f e r e n t  G o a l s  o f  D r a w i n g  

As already mentioned, it is quite clear that in the drawing of graphs the edges 
should be realized by straight lines or curves like segments of lines, circles etc. 
Of course, there remains a lot of discussion how to position the vertices in order 
to obtain a good, nice, readable etc. drawing of the graph. 

In the case of hypergraphs the main strategy until now has been to denote 
the hyperedge by enclosing the corresponding vertices by a circle or ellipse like 
curve. The reason is probably that the main root of hypergraph theory is the 
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theory of subsets of sets. For these mathematical structures a Venn diagram is 
the usual tool of drawing pictures. 

There is not much literature on drawing of hypergraphs available. The only 
software for drawing hypergraphs which I have seen until now is the Hypergraph 
Drawing and Optimization System (HDOS) of Vitaly Voloshin of the State Uni- 
versity of Moldova [15]. This HDOS draws hypergraphs as indicated above (Venn 
like diagrams). 

However, since graphs are also hypergraphs, it provides nice drawings of 
graphs, e.g. of the Petersen graph. Since the Petersen graph has at least 3 nice 
drawings it is a challenging task for every graph drawing software system. More- 
over, the HDOS also computes a lot of graph-theoreticai parameters, e.g. the 
new upper chromatic number, see [14]. 

In this paper the strategy of drawing will be to describe hyperedges by 
(straight) lines, at least as far as possible. If the hypergraph is linear, i.e. two 
hyperedges never intersect in more than one vertex, this aim can be reached 
perhaps. The result of Steinitz shows that at least for configurations n3 it can 
nearly be reached. Of course, for non-linear hypergraphs the strategy can be bad 
since in euclidean geometry there is only one line through 2 given points. 

2.1 R e a l i z a t i o n s  over  t h e  R e a l  or  R a t i o n a l  N u m b e r s  

While the mathematicians of the last century were mainly interested in obtain- 
ing nice pictures of their configurations, quite recently in the theory of matroids 
the question of realizability has been discussed from a more theoretical point of 
view. By generalizing the concept of independence in linear algebra it was asked 
whether a given system of subsets can be realized by a matrix such that depen- 
dent sets correspond to matrices of determinant 0. For the following purpose it is 
not necessary to define matroids here explicitly. For further details on matroids, 
see e.g. [11]. 

The problem can be explained in the language of matrices as follows. Given 
a matrix with 3 rows and n columns with entries in a certain field (e.g. lR). 
Identify the set {1, ..., n} with the set of n columns of the matrix. Determine 
all 3-by-3 subdeterminants of the matrix. If this determinant is 0 call the set 
of 3 numbers corresponding to the chosen columns to be a line or hyperedge, 
otherwise not. This is an algebraic definition of a combinatorial ( or geometric ) 
structure. 

Vice versa, this problem is closely related to the drawing of hypergraphs. 
For example, for configurations v3 the problem of realization can be defined as 
follows. 

D e f i n i t i o n  2.1 A coordinatization or realization of a configuration v3 with point 
set P and line set L over a field K is a mapping from P to K 3 such that for 
all distinct i, j ,  k E P det(x~, xj ,  xk) = 0 if and only if i, j ,  k are eollinear in the 
configuration. 

For our purposes the field will be the field of real or rational numbers. For 
details and references concerning this realization problem the reader is referred 
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to [8]. As an example the following configuration 113 and their realization matrix 
are given. 

Its configuration lines are: 

1,2,4; 2,3,5; 3,4,6; 4,5,7; 5,6,8; 6,7,9; 7,8,10; 8,9,11; 1,9,10; 2,10,11; 1,3,11. 

The 3-by-ll matrix 

i l 0 0 1  0 17 1 1 3 7  il 
f f 1 0 1 - 1 7  17 5 1 2 1 8 -  
1 0 1 1 100 185 285 5 45 

has the property that a 3-by-3 subdeterminant with columns i, j, k is 0 if and 
only if i , j ,  k is one of the 11 lines given above. 

In order to obtain a drawing in the 2-dimensional plane a suitable projection 
of ]R 3 to lit 2 has to be chosen. What suitable means depends on the further 
properties of the drawing which we require. 

2 .2  L i n e a r  D r a w i n g s  

At first, it has to be checked whether a configuration can be realized over the 
real numbers. These realizations have been constructed for all configurations v3 
with v _< 12 for which this is possible. There are exactly 3 of them which are 
not realizable over ]R, the unique configuration 73, the unique configuration 88, 
and one configuration 103 ( see Fig. 3 ). 

E.g. realizations of 8 of the other 9 configurations 103 axe published in [2]. 
The Desaxgues configuration is omitted since its drawing does not cause any 
problems. The Theorem of Desaxgues tells us how to draw it, at least on an 
"infinite" part of paper. 

For the convenience of the reader these 8 matrices are printed below. Of 
course, drawings of these configurations would be nicer, but these matrices are 
the basis of the drawings and shorten the length of this paper. 

I i 1 2  4 1 - I - 4 1 7 0 0  1[ 
- 6 - 1 - 1 - 2  1 0 1 0 - 1  

-9 1 0 3 3 0 0 1  1 

-552 48-3600 21 8 000 !1 
529 -42 3450 4 0 - 7  4 1 0 -  

o 117 -3450 71 0 .8 71 0 1 
-49 483 49 323 1 1 0 0  1 

0 252 21 32 12-1 0 1 0-1 
-9108 9 3 3 0 0 0 1  1 
-1012 0 1 0 1 1 8 0  20  1 

-6 36 36 6 0 1 8 1 - 2 0 - 1  
6 0 9 9 0 2 7 0  31 1' 
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89 -4 0 4 1 1 0  10  1 
7832 11 88 85 8 8 0 1 - 1 0 - 1  

979-11 811 8 0 0  01  1 

-3 -2700310-18 30 11 
4 452201 3-30-  

-4 -990 4 4 0 0-18 18 1 

:21672,6 210 20 i 
-3 2 -322  3 3 0 1  - 2 0 -  

5376 16 16 0 0 21 1 

-60 500 0 41  600  160 1 
160 -400 16 16 0 -160 1 -16 0 -1 

1 0 525 9 9 0  600  211 

Afterwards a projection yields the required picture. The list of further prop- 
erties which the drawing should have is quite similar to those for graphs like a 
certain minimum distance of points, minimum angle between lines, good distri- 
bution of points in the picture etc. 

2.3 A p p r o x i m a t i v e  D r a w i n g s  

From a more practical point of view it is not that  bad if a configuration cannot 
be realized over the reals. Mathematically, this is a remarkable result but  it 
should not discourage us. If the main task of the drawing is to show clearly what 
exactly the hyperedges or lines are an approximative drawing is suitable as well. 

Figure 3 was produced in a paper of S. Kantor  of 1881 [10] where he published 
drawings of all 10 configurations 103. However, it was proved a few years later 
by E. Schroeter and after that  several times by other mathematicians that  the 
configuration 103 in Fig. 3 is the only one which is not realizable over the reals 
nor over any other field. In fact, the given drawing is not correct. It is not clear 
whether Kantor  himself knew about it. 
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Fig.3.The non-realizable cfz. 103 

But who cares ? It is not so easy to find out which of these 10 "lines" is no 
line at all. More important everybody will find this drawing very helpful to have 
an easy description of the hyperedges (or lines or subsets) of the hypergraph. 

2.4 Schemat ic  Drawings 

Even if there is one "curved" line contained in the picture it does not really 
disturb the drawing as we can see in Fig. 1. The above mentioned result of 
Steinitz makes it reasonable to look for such drawings of configurations v3 and 
to try to prove similar results for other classes of combinatorial structures. 

If the number of "curved" lines is relatively small, such a picture is still much 
clearer than a picture using Venn diagrams. 

2.5 Nice Drawings 

Apart from the above topics the problem remains to find a nice linear drawing 
if there is one at all. Perhaps a nice drawing containing a few "curved" lines is 
more acceptable than an ugly linear drawing. 
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3 O t h e r  C o m b i n a t o r i a l  S t r u c t u r e s  

The question of drawing hypergraphs is not restricted to configurations. They 
are just the best examples to introduce the topic because of their historical and 
geometric context. For many purposes in mathematics as well as in applications 
it is desirable to describe a certain structure by a drawing rather than by giving 
a list of points and lines. 

3 . 1  Linear Hypergraphs 

If the hypergraph is linear but not necessarily uniform or regular this does not 
change the problem discussed above very much. We can read through the above 
paragraphs and follow the same strategy again. In particular, it should be inves- 
tigated which linear hypergraphs can be drawn with straight lines only or with 
at most "quadratic" line in the sense of Steinitz. 

3.2 (r,1)-Designs and Linear Spaces 

Perhaps the problem with linear hypergraphs is that although they are defined 
in books on hypergraphs so far they have not been investigated very much in 
detail. 

A certain subclass, however, linear spaces and (r, 1)-designs have been enu- 
merated for small numbers of points and are an interesting data base. In the 
language of hypergraphs a linear space is a hypergraph where through two given 
points there is always a common hyperedge. An (r, 1)-design is an r-uniform 
linear space. 

Recently all small linear spaces and (r, 1)-designs have been constructed. For 
further information on all (r, 1)-designs with at most 13 points see [6], [7], and 
[9]. Moreover, all linear spaces with at most 11 points have been determined (see 
[12]). 

4 C o n c l u s i o n  

In my opinion the strategy to draw hypergraphs or at least linear hypergraphs by 
displaying the hyperedges as lines ( as far as possible ) will lead to drawings which 
in most cases will be better readable than traditional drawings. Moreover, this 

s trategy is closely related to an interesting theoretical background in geometry, 
combinatorics, and algebra having its roots back in the 19 th century. For further 
details the reader has to be referred to the references below. 

Of course, the drawing of hypergraphs is much more difficult than graph 
drawing. Perhaps this is the reason why so far it has not been attacked seriously. 
In particular, for lines of size greater than 3 the problem becomes very hard. For 
these hypergraphs only very few results have been obtained until now. I hope that 
this paper will start a more intensive research on the drawing of hypergraphs, 
from a theoretical and a practical point of view. 
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