
Grid Embedding of 4-Connected Plane Graphs

Xin He

Department of Computer Science, State University of New York at Buffalo, Buffalo,
NY 14260. The work was partially supported by NSF grant CCR-9205982.

Abs t rac t . A straight line grid embedding of a plane graph G is a draw-
ing of G such that the vertices are drawn at grid points and the edges
are drawn as non-intersecting straight line segments. In this paper, we
show that, if a 4-connected plane graph G has at least 4 vertices on its
exterior face, then G can be embedded on a grid of size W • H such that
W + g < n, W < (n +3)/2 and H < 2 (n - 1)/3, where n is the number
of vertices of G. Such an embedding can be computed in linear time.

1 I n t r o d u c t i o n

A s~raight line grid embedding of a n-vertex planar graph is a drawing where
the vertices are located at distinct grid points, and the edges are represented
by straight line segments. Such embeddings on reasonably small grids are very
useful in visualizing planar graphs on graphic screens [5]. Wagner [19], Fhry
[6], and Stein [17] independently showed that every planar graph has a straight
line embedding. Since then, many embedding algorithms have been reported
(e.g. [18, 1]). The earlier algorithms all suffer two serious drawbacks, as noted
in [7]. First, they require high-precision real arithmetic, and therefore cannot
be used even for a graph of moderate size. Second, in the drawings produced
by these algorithms, the ratio of the largest distance to the smallest distance
between vertices are so large (exponential in n) that it is very difficult to view
those drawings on graphic screens. In view of these drawbacks, Rosenstiehl and
Tarjan [12] posed the problem of computing a straight line embedding on a grid
of polynomial size. Schnyder [14] proved that every planar graph has a straight
line embedding on a (2n - 4) x (2n - 4) grid. Independently, de Fraysseix, Pach,
and Pollack showed that every planar graph has an embedding on a (2n - 4) •
(n - 2) grid, which can be computed in O(n log n) t ime [7]. The running t ime of
their algorithm was improved to O(n) [4]. Schnyder proved the existence of an
embedding on an (n - 2) x (n - 2) grid [13] and gave an O(n) t ime algorithm
to compute such an embedding [15]. Schnyder's algorithm can be implemented
in parallel in O(log n log log n) time with n~ log n processors on a PRAM [8]. It
was shown in [9] that every 3-connected planar graph G can be embedded on a
(2n - 4) x (n - 2) grid such that all internal faces of G are convex. The grid size
of such embedding is reduced to (n - 2) x (n - 2) in [2, 16].

There exists a plane graph G such that, for any straight line grid embedding
of G, each dimension of the grid needs to be at least [2 (n - 1) / 3] even if the other
dimension is allowed to be unbounded [7, 3]. It has been conjectured that every
planar graph can be embedded on a 2n/3 x 2n/3 grid. This conjecture remains

288

open. Chrobak and Nakano showed that every planar graph has a straight line
embedding on a ([2(n - 1)/3J) • (412(n - 1)/3J - 1) grid [3].

For the grid embedding problem, we can assume that all internal faces of G
are triangles. (If not, we can triangulate G and remove the added edges after an
embedding is obtained.) If all internal faces of G are triangles, it is an internally
triangulated plane graph. If the external face of G is also a triangle, then G is
a triangulated plane graph. A non-empty triangle of G is a triangle containing
some vertices in its interior. In th i spaper we show that if G is 4-connected and
has at least 4 vertices on its external face, then the above mentioned (2 n / 3 -
1) • (2n/3 - 1) lower bound on grid size does not hold. We will prove:

T h e o r e m 1. Every n vertex 4-connected plane graph G with at least ~ vertices
on the external face has a straight line embedding on a W • H grid such that
W + H <_ n, W < (n + 3)/2 and H < 2(n - 1)/3. Such an embedding can be
computed in linear time.

In Theorem 1, we assume G is given by its adjacency list representation,
where the neighbors of each vertex are given in clockwise order of embedding.
The 4-connectivity of G can be checked in linear time [10]. Every such a graph G
can be internally triangulated so that it has no non-empty triangles. From now
on, we only consider such internally triangulated plane graphs. The present paper
is organized as follows. In Section 2, we review some definitions and describe a
generic shift algorithm in [3], which is the basis of our algorithm. In Section 3,
we present our algorithm. In section 4, we prove Theorem 1.

2 P r e l i m i n a r i e s

The embedding algorithms in [7, 4, 3, 9] are based on the following concept [7].

D e f i n i t i o n 2 . Let G = (V, E) be a triangulated plane graph and 7r = vl, v2 . . . vn
an ordering of V such that the edge (vl, v2) is on the external face of G. Let Gk
be the subgraph of G induced by vl , . �9 vk and Ck be the external face of Gk.
7r is called a canonical ordering of G if the following hold for k = 3, . . . , n:
(col) Gk is 2-connected and all internal faces of Gk are triangles.
(co2) Ce contains the edge (vl, v2).
(co3) If k < n, then vk+l is in the external face of Gk and all neighbors of v~+l
in Gk belongs to Ck.
(co4) If k < n, then vk has at least one neighbor vj with j > k.

Every triangulated plane graph has a canonical ordering [7]. We will use -~
to denote the linear order of the canonical ordering. Fig 1 shows a canonical
ordering of G. By the contour of Gk we mean its external face Ck = (wa =
v l ,w2 , . . . ,w ,~ = v2). For a given k (3 < k _< n - 1), let wp, . . . ,Wq be the
neighbors o fv = vk+l in C~. When we add v to Gk, the edges (Wp, v) and (v, Wq)
become contour edges. We call (wp, v) a forward edge and (v, Wq) a backward edge.
All vertices and edges that disappear from the contour when we add v are said
to be covered by v. We denote indv(wi) = i - p + 1 and call it the index of wi

289

with respect to v. The in-degree deg-(v) of v is the number of children of v in
Ck, that is, deg-(v) = q - p + 1.

A contour vertex wi (1 < i < m) is called a valley vertex, i fwi-1 ~ wi -< wi+l;
a peak vertex, if wi-1 -4 wi ~- Wi+l. A vertex Vk+l r vl, v~, v3 is called: forward-
oriented, if wp -< Wp+l -4 . . . -4 Wq-1 -< wq; backward-oriented, if wp ~- wp+l ~.-
�9 .. ~ Wq-1 >- Wq; crossing-valley, if it covers a valley vertex wr (p < r < q);
crossing-peak, if it covers a peak vertex wr (p < r < q).

We next describe a generic shift algorithm in [3] which is the basis of the
algorithms in [2, 3, 4, 7, 9] and our algorithm. Given G with canonical ordering
7r, the algorithm works as follows: We add vertices one at a time according to
~r. At each step, the contour Ck satisfies certain contour invariants that involve
restrictions on the slopes of contour edges. When adding a vertex vk+l, we
determine its location in the grid and, if necessary, shift some vertices of Gk to
the right in order to preserve the contour invariants. We maintain a set U(v)
of vertices for each v G V. U(v) contains the vertices located "under" v that
need to be shifted whenever v is shifted. The shift operation on a contour vertex
wj, denoted by s h i f t (w) , is achieved by increasing the x-coordinate of each
u ~ U~=j U(wi) by 1.

G e n e r i c Sh i f t A l g o r i t h m :
Initially, place vt, v2, va at the points (0, 0), (2, 0), (1, 1), respectively. Let

u(v i) = {vi} (1 < i < 3).
Suppose Gk (3 < k < n - l) has been embedded, and we are about to add v =

vk+t. Let w p , . . . , wq be the children of v in the contour Ck. Define: U(vk+l) =
{Vk+l} Ui=p+lq-1 U(wi). Apply sh i f t (w i) to some of wl, . . . , wm (possibly none),
so that afterwards there exists at least one point (x ~, y~) satisfying the following
conditions, and that placing v at (x ~, yJ) preserves the contour invariants.

D e f i n i t i o n 3 . G e n e r i c sh i f t c o n d i t i o n s :
(gsl) X(Wp) < x' <_ x(wq);
(gs2) (x/, y/) is above Ck, i.e. the half line {(x~,z)[z >_ y~} does not intersect Ck;
(gs3) all vertices wp , . . . , Wq are visible from (x', y').

Place v at an arbitrary point (x', y') satisfying these conditions.

T h e o r e m 4 . [3] For all choices of shift operations and vertex coordinates, as
long as (gsl), (gs2), (gsS) are satisfied, the Generic Shift Algorithm produces a
correct straight line grid embedding.

3 D r a w i n g A l g o r i t h m

Our algorithm crucially depends on the following theorem (proved in [10]).

T h e o r e m 5 . Let G be a triangulated plane graph whose external face {vt, v2, vn}
is the only non-empty triangle. Then G has a canonical ordering 7r satisfying the
conditions (col), (co2), (coS), and the following:

290

(co4') Each vk (k < n - 2) has at least t w o neighbors vj with vj ~- vk; v,~-i has
one neighbor Vn with vn ~- Vn-1.

Moreover, 7r can be computed in linear time.

Lemma 6. vn is the only crossing-peak vertex of G with respect to ~r.

Proof. Toward a contradiction, suppose Vk+l (k + 1 < n) is a crossing-peak
vertex with respect to 7r. Let wp, . . . ,Wq be the children of vk+l in Ck. Then
vk+l covers a peak vertex wr (p < r < q). So vk+l is the only neighbor of wr
with wr -~ vk+l. This contradicts the condition (co4'). []

Let G be an (n - 1) vertex internally triangulated plane graph with no non-
empty triangles (obtained from triangulating a 4-connected plane graph). In
order to apply Theorem 5 to G, we add a new vertex v,~ in the external face F
and connect v,~ to all vertices on F such that {vl, v2, vn} is the external face. The
resulting graph G + is called the extended graph of G. Since G is 4-connected, the
only non-empty triangle of G + is {vl, v2, vn}. In the following, we will discuss the
embedding of G + by using the canonical ordering r of G + satisfying Theorem
5, with the understanding that vn needs not be embedded.

Let n! and nb denote the number of forward- and backward-oriented vertices
in G +, among v4, . . . , V n. Since v~ is a peak vertex, we have ny + n b < n - - 4.
Without loss of generality, we assume ny < rib. (If not, we vertically "flip" G +
and swap Vl and v2. A forward-oriented vertex in G + is a backward-oriented
vertex in the flipped graph and vice versa).

Direct each edge e (u, v) of G + from u to v, if u -~ v. Denote the resulting
directed graph by G +. Our algorithm needs a special canonical ordering 7rl~ft of
G + obtained as follows. The first three vertices of ~r~lt are vl, v2, v3. Suppose
the vertex vk of 7rl~yt has been defined. Consider a vertex v not in G +. If all
incoming neighbors of v are in the contour Ck, v is called a candidate vertex.
The incoming neighbors of a candidate vertex form a contiguous interval in Ck.
Define v~+l of lrz~yt to be the candidate vertex whose interval is the leftmost in
Ck. This completes the description of 7rz~ft. Clearly, rl~yt is a canonical ordering
of G +, which is called the leflmost canonical ordering. We use "<teSt to denote
the order defined by 7rz~ft. (Fig 1 shows the leftmost canonical ordering.)

We need the following concepts introduced in [3]. Each vertex v (v # v~, v2)
of G + is classified as either stable or unstable. With each v, we associate a
sequence DC(v) of vertices called its domino chain, and a vertex dora(v) called
its dominator. They are defined as follows. For vn, DC(v,~) = (v~), dorn(vn) is
undefined, and vn is stable. Consider v = vk+l (2 < k < n - 2). Let u be the
leftmost child of v in Ck. Let z be the vertex that covers the edge (u, v). Then:

D e f i n i t i o n 7. D o m i n o chain and dominator:
(dcl) If indz(v) = 2, then DC(v) = (v), dora(v) = z and v is unstable.
(dc2) If indz(v) > 4, then DC(v) = (v), dora(v) = z and v is stable.
(dc3) If ind,(v) = 3 and DC(z) = (z l , . . . , zi, z), then DC(v) = (z l , . . . , zi, z, v)
and dora(v) = dora(z). Also, v is stable if and only if z is stable.

291

unstable vertices: 3.4,5.6.7,8,12. t5
19 stable vertices: 9,tO, l l,[3,14,16.17.18,t9

4.5,6: (a2)
7: (bl)

i 9: (a8a)
10: (bl)
I l: (b2b)

~ ~ 4 ~ ~ 12: (b4) 13: (a7)
14: (b2a)
15: (a4a)
16: (b2a)
17: (bl)
18: (b2a)

l 2

Fig. 1. The leftmost canonical ordering and the grid embedding of G.

As in [3], an unstable vertex of in-degree 2 is called a room-shift vertex. The
intui t ion is tha t a stable vertex can be placed above its lef tmost child, while
an unstable vertex mus t be placed at least one z -coord ina te to the right of its
lef tmost child. If v is a room-shif t vertex, this can result in pu t t ing v directly
above its r ightmost child w and violating the contour invariants. In this case, we
have to shift w to the right in order to "make room" for v.

E x a m p l e : In Fig 1, DC(14) = (18, 14), dora(14) = 19. D e (9) = (10,9);
dora(9) = 11. DC(3) = (3); dom(3) = 4.

The slope of an contour edge e = (wi,wi+~) is denoted by slope(e). If
slope(e) = 0, then e is horizontal; If 0 < slope(e) < +oo, then e is upward;
If slope(e) = +c~ or - c o , then e is vertical; If - o o < slope(e) < 0, then e is
downward. We are now ready to describe our algori thm. It is a version of the
generic shift a lgori thm. Our contour invariants are as follows:

D e f i n i t i o n 8. C o n t o u r i n v a r i a n t s :
(cit) z(wl) < z(w) < . . . < < z(wm).
(ci2) Each forward edge (w~_t, w~) is either horizontal , or upward, or vertical. If
wi is unstable, then (wi - t , wi) mus t be horizontal or upward.
(ci3) Each b a c k w a r d edge (wi- t , wi) is either downward, or horizontal .

L e m m a 9 . Let wp, . . . , Wq be the children of v = vk+t in the contourCk. Assume
the contour invariants hold. Then z(wp) < z(wp+l). If deg-(v) > 2 and v is
unstable, *hen z(wp+) <

Proof. If el = (wp, wp+t) is a backward edge, then el cannot be vertical. I f el
is a forward edge, then wp+l is unstable and el cannot be vertical. In either
case, we have X(Wp) < z(wp+l) . Suppose deg-(v) > 2 and v is unstable. If
e2 = (wp+t,wp+2) is a backward edge, then e2 cannot be vertical. If e2 is a
forward edge, then since v is unstable and wp+2 is the third child of v, Wp+2 is
unstable. Hence e2 cannot be vertical. In either case, z(wp+l) < Z(Wp+2). []

Suppose we are about to add v = vk+l (3 < k < n - 2). Our a lgor i thm
must per form shift opera t ion on some contour vertex (if necessary), and place

292

v at a point (z(v), y(v)) satisfying the generic shift conditions and the contour
invariants. This is ensured if (z(v), y(v)) satisfies the following:

Definition 10. Placement requirements:
(prl) x(v) < X(Wq).
(pr2) x(v) >_ x(wp), if v is stable, x(v) > z(wp) + 1, if v is unstable.
(pr3) y(v) > max{y(wp), y(w~)}.
(pr4) (x(v), y(v)) is located above Ck, as defined in (gs2) of Definition 3.
(prh) all vertices wp , . . . , wq are visible from (x(v), y(v)).

The placement rules for v depend on: (a) the in-degree of v; (b) v is stable
or unstable; (c) v is forward-oriented, backward-oriented, or crossing-valley; (d)
the slope of the edges covered by v. Let W and H denote the width and the
height of the current grid. First consider the case deg-(v) = 2.

Case (al): deg-(v) = 2, V is unstable and forward-oriented, (wp, wq) is hor-
izontal, v is placed as in Fig 2 (al): z(v) = z(wp) + 1 and y(v) = y(wp) + 1. If
x(v) = Z(Wq) perform shift(wq). W is increased by < 1. H is increased by < 1.

Case (a2): deg-(v) = 2, v is unstable and forward-oriented, (wp, Wq) is up-
ward. v is placed as in Fig 2 (a2): x(v) = x(wp) + 1 and y(v) = y(wq). If
x(v) = X(Wq) then perform shift(wq). W is increased by < 1. H is unchanged.

Case (a3): deg-(v) = 2, v is unstable and backward-oriented, the edge
(wp, wq) is horizontal, v is placed as in Fig 2 (a3): x(v) = x(wp) + 1 and
y(v) = y(wp) + 1. If z(v) = x(wq) then perform shift(Wq). W is increased
by at most 1. H is increased by at most 1.

Case (a4a): deg-(v) = 2, v is unstable and backward-oriented, (wp, Wq) is
downward, v is placed as in Fig 2 (a4a): z(v) = z(wp) + 1 and y(v) = y(wp). If
z(v) = Z(Wq) perform shift(wq). W is increased by < 1. g is unchanged.

Case (a4b): Same as (a4a). Fig 2 (a4b) shows an alternative rule: z(v) =
x(wp) + 1 and y(v) = y(wp) + 1. If x(v) = x(q) then perform shiyt(wq). W is
increased by at most 1. H is increased by at most 1.

Case (ah): deg-(v) = 2, v is stable and forward-oriented, (wp,wq)is hori-
zontal, v is placed as in Fig 2 (ah): x(v) = z(wp) and y(v) = y(wp) + 1. W is
unchanged. H is increased by at most 1.

Case (a6): deg-(v) = 2, v is stable and forward-oriented, the edge (wp, Wq)
is upward, v is placed as in Fig 2 (a6): x(v) = Z(Wp) and y(v) = y(wq). W is
unchanged. H is unchanged.

Case (aT): deg-(v) = 2, v is stable and backward-oriented, (wp, Wq) is hor-
izontal, v is placed as in Fig 2 (a7): x(v) = x(wp) and y(v) = y(wp) + 1. W is
unchanged. H is increased by at most 1.

Case (a8a): deg- (v) = 2, v is stable and backward-oriented, (wp, Wq) is down-
ward. v is placed as in Fig 2 (a8a): x(v) = x(wp) + 1 and y(v) = y(wp). If
x(v) = z(wq) then perform shift(Wq). W is increased by < 1. H is unchanged.

Case (a8b): Same as (a8a). F ig 2 (aSh) is an alternative placement of v:
z(v) = x(wp) and y(v) = y(wp) + 1. W is unchanged, g is increased by < 1.

Next consider the case deg- (v) > 3. By Lemma 6 and the contour invariants,
v's children are embedded as a V-shaped polygonal line P. The vertex among wp
and wq with larger y-coordinate is called the high-end vertex of v. Let (wi, w~+l)

293

w; -% w~
(a l) (a2)

v

(a3)

"v'

wq
(a4a)

wq
(a4b) (a5) (a6) (a7)

v v
v

%

(a8a) (a8b) (bl)

v

wp v % w p ~ %

(b2a) (b2b)

v v .%

wP~'~ wq w p ~ q - ,

wez
(b3) (b4)

Fig. 2. The placement rules.

be the last downward edge in P. (If no such edge exists, let wi = wp). Let
(Wj-l, wj) be the first upward or vertical edge in P. (If no such edge exists, let
wj = wq). Consider any point (z(v), y(v)) such that:

(i) x(wi) <_ z(v) < z(wj), if either (wj - l ,wj) or (wj,wj+ 0 is vertical; z(wi) <_
z(v) <_ x(wj), if neither (wj-t , wj) nor (wj, wj+ 0 is vertical.

(ii) y(v) >_ max{y(wp), y(Wq)} + 1, if the edge adjacent to the high-end vertex
of v is horizontal; y(v) > max{y(wp),y(wq)}, if the edge adjacent to the
high-end vertex of v is not horizontal.

It is easy to see that such a point satisfies (pr3), (pr4), and (prh). In the following
placement rules, the coordinate x(v), y(v) satisfies the conditions (i), (ii), (prl)
and (pr2). Note that n o shift operation is needed for any contour vertex.

Case (bl): deg-(v) > 3, the edge covered by v and adjacent to the high-end
vertex of v is horizontal, v is placed as in Fig 2 (51) (two examples are shown):
Let y(v) = max{y(wp), y(Wq)} + 1 and determine z(v) as follows. (a) v is stable:
Let z(v) = x(w O. (b) v is unstable: If wi = w e, let x(v) = Z(Wp) + 1. If w~ :~ wp,
let x(v) = z(wi). W is unchanged. H is increased by at most 1.

Case (b2a): deg-(v) > 3; the edge covered by v and adjacent to the high-
end vertex of v is not horizontal; wp is the high-end vertex of v; and z(wj) >

294

x(wp)+2, v is placed as in Fig 2 (b2a): Let y(v) = y(wp) and x(v) = max{x(wv)+
1, x(wi)}. W is unchanged. H is unchanged.

Case (b2b): Same as in (b2a). Fig 2 (525) shows an alternative rule: Let
y(v) = y(wp) + 1, and x(v) = max{x(wv) + 1, x(wi)}. W is unchanged. H is
increased by at most 1.

Case (b3): deg-(v) > 3; the edge covered by v and adjacent to the high-
end vertex of v is not horizontal; wp is the high-end vertex of v; and x(wj) =
x(wv) + 1. v is placed as in Fig 2 (b3). In this case, the first edge (wp, Wp+l)
covered by v is downward and all other edges covered by v are vertical. So v
must be stable. Let y(v) = y(wp) + 1 and x(v) = x(wp). W is unchanged. H is
increased by at most 1.

Case (b4): deg-(v) > 3; the edge covered by v and adjacent to the high-end
vertex of v is not horizontal; Wq is the only high-end vertex of v. v is placed as
in Fig 2 (b4): Let y(v) = y(Wq). If v is stable, let x(v) = x(wi). If v is unstable,
let x(v) = max{x(wp) + 1, x(wi)}. W is unchanged. H is unchanged.

In the cases (a4), (a8), and (b2), two alternatives are given. They are chosen
as follows: Suppose that v -- V~+l (k + 1 < n - 1) satisfies the conditions of the
rule (a4) (or (a8) or (52), resp.) Let u be the vertex that covers the edge (wp, v).
Let zl, z2, z3 be the first, second, and third child of u. If the following conditions
hold, we must place v by using the rule (a45), (or (aSb) or (b2b), resp.)

D e f i n i t i o n 11. A v o i d - h o r i z o n t a l - f o r w a r d - e d g e cond i t ions :
(1) deg-(u) > 3;
(2) (wp, v) is the last edge covered by u;
(3) either of the following two conditions hold: (3a) the edge (zl, z2) is upward;
or (3b) zz # v, the edge (z2, z3) is upward, and y(zl) < y(wv).

R e m a r k 1: The rules (a4a), (a8a) and (52a) are the only rules that create
horizontal forward edges. By using the rules (a4b), (a8b) and (525), this can be
avoided. More precisely, if v is placed by using the rules (a4a), (a8a) or (b2a),
the edge (wv, v) is horizontal and v is not a peak point (see Fig 3(1)). If v is
placed by using the rules (a4b), (a8b) or (b2b), the edge (wp, v) is either upward
or vertical, and v is a peak point (Fig 3 (2)).

U U V

Z 1 Z 1
1 1

Z 2 Z 2

(1) (2)

Fig. 3. The avoid-horizoantal-forward-edge conditions.

)
R e m a r k 2: By the definition of 7rleyt, zl, z2, z3 are embedded before v. So the

avoid-horizontal-forward-edge conditions can be checked when v is embedded.

295

For a vertex v satisfying the conditions of the rule (a4) (or (b2), respectively),
if the avoid-horizontal-forward-edge conditions do not hold, then we place v
by using the rule (a4a) (or (b2a), respectively). For a vertex v satisfying the
conditions of the rule (aS), if the avoid-horizontal-forward-edge conditions do
not hold, v is called a free-lance vertex. A free-lance vertex can be placed by
using either the rule (a8a) or (aSb). We use this freedom to adjust the height
and the width of the embedding as follows. Let nr be the number of room-shift
vertices. Let d = (n / 2 - 1) - n~. We place the first (at most) d free-lance vertices
by using the rule (aSh). All other (if any) free-lance vertices are placed by using
the rule (aSb). This completes the description of our algorithm.

E x a m p l e : The graph G in Fig 1 is embedded by using our algorithm. (Recall
v. = 19 is not embedded). The rule used for each vertex is as indicated. The free-
lance vertex 9 is placed by using the rule (a8a). The vertex 11 is placed by using
the rule (b2b) since it satisfies the avoid-horizontal-forward-edge conditions.

4 B o u n d i n g t h e G r i d S i z e

Let W and H be the width and the height of the final grid. If v is placed by using
the rule (hi) (i = 1, 2, 3, 4a, 45, 5, 6, 7, 8a, 8b) or the rule (hi) (i -- 1,2a, 25, 3, 4),
we call v an (hi) or a (hi) vertex. Let ai be the number of (hi) vertices and
bl be the number of (hi) vertices. A vertex that is the first one reaching a new
y-coordinate is called a height-increasing vertex. A height-increasing vertex must
be either an (hi) vertex (for i = 1, 3, 4b, 5, 7, 85), or a (bi) vertex (for i = 1, 2b, 3).
A height-increasing vertex of type (hi) or (hi) is called an (a'i) or a (b'i) vertex.
Let a~ and b~ be the number of (a'i) and (b'i) vertices, respectively. We have:

' ' ' ' ' ' + (1) H = 1 + a 1 + a 3 + a4b + a s +a~ +ash +b~ +bsb

If the placement of v increases W, v is a width-increasing vertex. A width-
increasing vertex must be an (hi) vertex for i = l, 2, 3, 4a, 4b, 8a. Let a~' (i =
1, 2, 3, 4a, 4b, 8a) be the number of (hi) vertices that are n o t width-increasing:

\ / a l l i i i i i i i i i i
W : 2 -b (a l n ua2-f fa3q-a4a q-a4b q - a 8 a) - [1 q-a2 q-a3 q-a4a q -a4b+asa) (2)

Since vl, v2, v3 are neither (hi) nor (hi) vertices and v~ is not embedded, we
have:

alq-asq-a3q-a4aq-a4bq-aDq-a6q-aTq-asaq-asbq-blq-b2aq-b2b-t-b3q-b4 ---- n - 4 (3)

B o u n d on H + W: From equations (1), (2)~ and (3), we have:
W q- H -- 3 q- (a~ -t- a2 4- a3 4- a4~ -t- a4b q- a 5 q- a6 q- a~7 4- as~ + a~Sb -~ b~ + b2a

+b b + + 54) + (a l + + a b) - (a0 + b:o + 54) -
H a~ I I I I

(ai' + as + + + + a o)
_< (n - 1) + (a t q- a~3 + a~4b) -- (a6 + bsa q- b4) -

l / I I
(a t' q- a s -I- a 3 q- a~4'a n u a~b + a~a) (4)

Let D denote the set of (al), (a3), (a4b) vertices; D' the set of (a ' l) , (a'3),
(a'4b) vertices; and J the set of (a6), (b2a), (54) vertices. Thus ID'I = a 1' q-a3q-a4b' '

296

and IJI = a6 + b2a + b4. A vertex in D I may increase both W and H by 1. A
vertex in J increases neither W nor H. We will show ID~[< [J[. Define:

If = {vlv is unstable and (wp, v) is upward, where wp is the leftmost child of v}

Note that D ~ C D C K. For each v E K, we define a sequence of vertices
S(v) = (xo = v, x l , . . . , xk, u) (possibly k = 0) such that:
(1) For each i (1 < i < k), xi is an (a2) vertex and covers the edge (wp, xi-1).
(2) u is either an (a6), (54), (b2a), or (b2b) vertex and covers the edge (wp, xk).

S(v) is defined as follows. Start with S = (x0 = v). Suppose that xi has
been defined. Let u be the vertex that covers the edge (wp, xi), where wp is the
leftmost child of xi. There are three cases:

Case 1: deg-(u) = 2 and u is unstable. Define xi+l = u, and continue. Note
tha t (wp, xi) is upward. By our rules, xi+l must be an (a2) vertex.

Case 2: deg-(u) = 2 and u is stable. Let k = i and u be the last vertex of
S(v) and we are done. (Since (wp, xk) is upward, u must be an (a6) vertex).

Case 3: deg- (u) > 3. Let k = i and u be the last vertex of S(v) and we are
done. Since u covers the edge (wp, xk) and xk is unstable, there are two subcases:

Case 3A: indu(xk) = 2. Since the edge (wp,x~) is upward, u is forward-
oriented (Fig 4(1)). By the avoid-horizontal-forward-edge conditions, the last
edge covered by u is either upward or vertical. So u is a (54) vertex.

Case 3B: indu(xk) = 3 and u is unstable. Let el = (tl, Wp) and e 2 = (t2, t3)
be the first and the last edge covered by u (see Fig 4(2)).

(i) Suppose deg-(u) > 3 and y(tl) < y(t2). By" the avoid-horizontal-forward-
edge conditions, e2 is upward or vertical and t3 is the only high-end vertex of u.
So u is placed as a (b4) vertex.

(ii) Suppose deg-(u) > 3 and y(tt) > y(t2). If e2 is horizontal, then t~ is the
only high-end vertex of u and el is not horizontal. If e2 is upward, then neither
et nor e2 is horizontal. So u is either a (b2a), or (b2b), or (54) vertex.

(iii) Suppose deg-(u) = 3. Then (wp, xk) = (t2, t3). Depending on which of
t l and t3 is the high-end vertex of u, u is either a (b2a), (525) or a (b4) vertex.

u u '13 u

% ~ %r %

(1) (2) (3)

x
Fig. 4. The last vertex u in the sequence S(v).

Note that in S(v) = {x0 = v, X l , . . . , Xk, i t} , the vertices x l , . . . , xk (if any)
are uniquely determined by v. On the other hand, a vertex u can be the last
vertex of S(vl) and S(v2) for two distinct vertices vl, v2 E K, where u satisfies
Case 3A for S(vl) and Case 3B for S(v~). (See Fig 4(3)).

297

We construct a directed forest F such that the following hold: (a) The node
set of F is a subset of the vertices of G+; (b) The set of leaf nodes in F is the
set D; (c) Each non-root internal node of F is a (b4) vertex, and has exactly
two children; (d) Each root node of F is either a (b2b) vertex or in J , and has
exactly one child.

The forest F is constructed as follows. We keep a set Q c K. For each v E Q,
we find the sequence S(v) and define paren t (v) to be the last vertex u of S(v) .
When a vertex v is put in Q, paren t (v) is identified. At any moment , for each
vertex v E Q, paren t (v) is the root of a tree. Initially, let Q = D.

By the remark above, at most two vertices vl, v2 in Q can have the same
parent n. In this case, u must be unstable and the edge (wp, u) (where w v is the
leftmost child of u) is upward. (See Fig 4 (3)). So u is a (54) vertex and is also
in K. In this case, we remove vl, v2 from Q and put u into Q.

Repeat this until all vertices in Q have distinct parents. Now the parents of
the vertices in Q are the roots of the trees of the forest F to be constructed. I t
is easy to check that F satisfies all above conditions.

Consider a tree T in F. Let L e a f (T) and [n t (T) be the number of leaf
nodes and internal nodes in T, respectively. Clearly, L e a f (T) = I n t (T) . Let
D (T) , D'(T) , and Or(T) be the number of nodes in T that are in D, D ' , and J ,
respectively. We will show D ' (T) < or(T).

If the root of T is in J , then D ' (T) _< D (T) = L e a f (T) = I n t (T) = J (T) .
Suppose the root of T is a (b2b) vertex. Let v be the leaf node in T that has
the smallest y-coordinate among all leaf nodes in T. Then v is not a height-
increasing vertex. Thus v is in D but not in D' . Hence, D ' (T) <_ D (T) - 1 =
L e a f (T) - 1 = I n t (T) - 1 = J (T) .

Since each vertex in D / corresponds to a distinct leaf node in F and D~(T) <
J (T) holds for every tree T in F, we have: ID[' < [JI. By (4), this gives:

ii ii it II +air ~ _ w + H < (n - 1) - + + + a4o + < (n - 1) (5)

B o u n d on t h e w i d t h W: We first bound n~ (the number of room-shift vertices).
Each room-shift vertex v is associated with a vertex dora(v). It was shown in
[3] that , for two distinct room-shift vertices vl and v2, d o m (v l) # dora(v2). By
the definition of the dominator, only the forward-oriented vertices and v , can
be dominators of room-shift vertices. By our assumption on canonical ordering,
we have n] < rib. Hence:

nr = al + a2 + a3 + a4a + a4b < n] + l < (n - - 4) / 2 + 1 = n / 2 - - 1

Thus d = (n /2 - 1) - nr > 0. Our algorithm places at most d free-lance vertices
by using the rule (aSh). So ash < d. From equation (2), we have:

W < 2+(a]-l-a2--Pa3-}-a4a+a4b)-}-asa < 2 4 - n r 4 - (n / 2 - - 1) - - n r : n/2-t- 1 (6)

B o u n d o n t h e h e i g h H: First suppose the number of free-lance vertices is at
least d = (n /2 - 1) - nr. Then our algorithm places ash = d of them by using

298

the rule (a8a). So al + as + a3 + a4a + a4b + ash = nr + d = n /2 - 1. By (2) and
(5), we have:

H < (. - 1) - (a ~ ' + a " a~ " - - _ 2 + +at4'a+a4b+a'sa) W = (n 1) - (2 + a l + a 2 +

a3 --~ a4a -{- a4b "-~ a 8 a) : (71 - - 1) - (- 1 2 + 1) < 2(n - 2)/3 (7)

Next suppose the number of freeqance vertices is less than d. Then no free-
lance vertices are placed by using the rule (a8b). So all (a8b) vertices satisfy the
avoid-horizontal-forward-edge conditions.

Let A denote the set of (a ' l) , (a'3), (a'5), (a'7), and (b ' l) vertices; B the set
of (a'4b), (a'Sb), (b'2b) vertices; and C the set of (b'3) vertices. From equation
(1), we have: H = 1 + IAI + I B I + IC[. For each v E A O B O C, we define a
vertex mate(v) as follows. Consider a vertex v E A. v covers a horizontal edge
(x, y) with y-coordinate y (v) - 1. (See Fig 5(1)). Define mate(v) to De the vertex
among x and y that is not a height-increasing vertex.

V V

x y

Z

(1) (2) (3)

Fig. 5. The definition of the mate vertices.

Consider a vertex v E B. Let y be the first child of v. Let z be the vertex
that covers the edge (y, v) (Fig 5(2)). v is a peak point and (z, v) is horizontal.
So x is not height-increasing. Define mate(v) = x.

Consider a vertex v E C. Let wp and Wq be the leftmost and the rightmost
child of v, respectively (Fig 5(3)). By the rule (53), we have y(wp) >_ y(Wq). By
the definition of 7q~it, we have wp ~l~ft wq. Thus there is a vertex z such that
z -<left wp -<~St Wq and y(z) -- y(wq). So Wq is not height-increasing. Define
mate(v) = wq.

Define: Mate = {mate(v) I v e A U B U C}. From the definition, it is easy to
check that: (i) If x E Mate, then x is not in A U B U C. (ii) If x = mate(v) for a
vertex v E C, then x cannot be mate(v') for any v' • v. (iii) A vertex x can be
the mate vertex for at most two vertices: one v E A and another v' E B. Hence
each vertex in Mate corresponds to at mos t two vertices in A tO B tO C. Thus:

I A I + I B I + I C [~ 2lMate[

The vertices v,, v=, v3, v n are neither in A U B U C nor in Mate. Thus: IAI+ IBI+
]el + IMatel < (n - 4). So {AI + [B I + [CI < 2(n - 4)/3. From (1), this gives:

H = 1 + (IA[+ IB[+ IOI) _ 1 + 2(n - 4) / 3 < 2(n - 2) /3 (8)

299

Recall that G + has n vertices, and the original graph G has n - 1 vertices.
So the bounds in (5), (6), (7), (8) imply the bounds on size in Theorem 1.

I m p l e m e n t a t i o n o f t h e a l g o r i t h m : The graph G + can be constructed f rom
G in linear time. The canonical ordering ~r can be computed in O(n) t ime [10].
The leftmost canonical ordering 7r1~/t can be computed from ~r in linear t ime by
using the method in [11]. After ~rz~/~ is known, the algori thm can be implemented
by using the method in [3]. So the algorithm takes linear time. This completes
the proof of Theorem 1.

References

1. N. Chiba, T. Yamanouchi, and T. Nishizeki, Linear algorithms for convex drawings
of planar graphs, in Progress in Graph Theory, J. A. Bondy and U. S. R. Murty
(eds.), 1982, pp.153-173.

2. M. Chrobak and G. Kant, Convex grid drawings of 3-connected planar graphs,
Tech. Rep. RUU-CS-93-45, Dept. of Comp. Sci. Utrecht University, 1993.

3. M. Chrobak and S. Nakano, Minimum-width grid drawings of planar graphs, in
Proc. Workshop on Graph Drawing'94, Princeton, N J, Oct. 1994.

4. M. Chrobak and T. Payne, A linear time algorithm for drawing planar graphs on
a grid, TR UCR-CS-89-1, Dept. of Math. and Comp. Sci., UC at Riverside, 1989.

5. G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, Algorithms for drawing
graphs: an annotated bibliography, Comput. Goem. Theory Appl. Vol 4, 1994, pp.
235-282.

6. I. Fs On straight line representation of planar graphs, Acta. Sci. Math. Szeged,
l l , 1948, pp. 229-233.

7. H. de Fraysseix, J. Pach and R. Pollack, How to draw a planar graph on a grid,
Combinatorica 10, 1990, pp. 41-51.

8. M. Fiirer, X. He, M. Y. Kao, and B. Raghavachari, O(nloglog n)-work parallel
algorithms for straight line grid embeddings of planar graphs, SIAM J. Disc. Math
7(4), 1994, pp. 632-647.

9. G. Kant, Drawing planar graphs using the lmc-ordering, in Proc. 33th Ann. IEEE
Syrup. on Found. of Comp. Science, Pittsburgh, 1992, pp. 101-110.

10. G. Kant and X. He, Two algorithms for finding rectangular duals of planar graphs,
in Proc. 19th on Graph-Theoretic Concepts in CS, 1993, LNCS 790, pp. 396-410.

11. F. Preparata and R. Tamassia, Fully dynamic techniques for point location and
transitive closure in planar structures, in Proc. 29th FOCS, 1988, pp. 558-567.

12. P. Rosenstiehl and R. Tarjan, Rectilinear planar layouts and bipolar orientations
of planar graphs, Discrete & Computational Geometry 1, 1986, pp. 343-353.

13. W. Schnyder, Embedding planar graphs on the grid, Abs. AMS 9, 1988, p. 268.
14. W. Schnyder, Planar graphs and poset dimension, Orders 5, 1989, pp. 323-343.
15. W. Schnyder, Embedding planar graphs on the grid, in Proc. of the 1st Annual

ACM-SIAM Symp. on Discrete Algorithms, 1990, pp. 138-147.
16. W. Schneider and W. Trotter, Convex drawings of planar graphs, Abstracts of

AMS 13 (5), 1992.
17. S. K. Stein, Convex maps, in Proc Amer Math Soc, Vol. 2, 1951, pp. 464-466.
18. W. T. Tutte, How to draw a graph, Proc. London Math. Soc. 13, 1963, pp. 743-768.
19. K. Wagner, Bemerkungen zum Vierfarben problem, Jahresbericht Deutsch Math

46, 1936, pp. 26-32.

