
D r a w i n g  F o r c e - D i r e c t e d  Graphs  U s i n g  
Opt igraph  * 

Jovanna Ignatowicz 
Department  of Computer  Science 

Brown University 
j ai@cs .brown. edu 

A b s t r a c t .  Optigraph is an interactive, multi-threaded tool for force- 
directed graph drawing. The interface allows a user to construct an ar- 
bitrary graph made of edges, free vertices and fixed vertices, and then 
apply circular and orthogonal spring forces to the graph to achieve an 
optimal graph layout. The user can step through simulations, transform 
the graph and vary forces at any time making the application highly 
interactive and educational. 

1 Introduction 

The pr imary purpose of Optigraph is to provide an implementat ion based on 
classic force-directed algorithms that  encourages the user to experimental ly ap- 
ply various spring forces on a set of vertices and edges. The algorithms are based 
on work done by Eades, and Fruchterman and Reingold [1, 2]. Attract ing forces 
are polynomial and based on the actual and ideal distances between two neigh- 
boring vertices. Repelling forces are based on the inverse square law and also 
consider the ideal and actual distances of two vertices, but  are applied to non- 
neighboring vertices. An additional force is introduced to produce orthogonal  
drawings. It  is called an orthogonal spring and redefines the ideal distance be- 
tween two vertices. By this definition, two vertices are the ideal distance apar t  
if both their x and y components are that  distance apart .  

2 Use of Concurrency 

Optigraph achieves a high level of interactivity through the use of concurrency. It  
is written in Concurrent ML [4, 5], a high-level concurrent language that  provides 
constructs to dynamically create multiple threads within one process, establish 
channels of communication between threads and employ various synchronization 
primitives. EXene [3] is the multi- threaded interface toolkit that  is used on top 
of CML. It  is unique in that  the input to the interface is directed to the thread 
assigned to the user interface component associated with that  event. Therefore, 

* Research supported in part by the National Science Foundation under grant CCR- 
9423847 and by the U.S. Army Research Office under grant 34990-MA-MUR. 



334 

neither the application nor the interface is forced to wait for input to be handled 
by the other. 

To make the best use of the concurrency at its disposal, Optigraph is organized 
into several parts, each of which is dominated by one or more threads. The 
graphics server and thread sequencer, for instance, are two infinitely looping 
threads. The graphics server handles requests to store, retrieve and display vertex 
and edge data. The thread sequencer waits for the user to start a new simulation 
or step through an existing one. At each step of a simulation, it spawns one thread 
for each vertex. These threads then calculate their new position based on their 
location and the location of all other vertices. 

3 R e s u l t s  

The graphs produced by the circular spring forces greatly resemble those pro- 
duced by Eades and Fruchterman and Reingold, since the algorithm is based on 
their work. They tend to be very symmetrical with minimal edge crossings and 
optimal vertex placement. The graphs produced by the orthogonal springs are 
orthogonal drawings that would ordinarily be produced by other methods[6]. 

In figure 1, an initial tree layout is shown on the left. This tree is an example 
o f  a graph constructed entirely by the user. It contains no symmetries and has 
varied edge lengths. The graph on the right is the result of applying circular 
attracting forces to the initial tree while specifying some natural distance for 
the edges. Although the tree is not much more symmetric, it does have uniform 
edge lengths. The result of adding repelling circular forces to the right graph 
in figure 1 is shown in figure 2. Here, the symmetries of the tree are apparent 
while the edge lengths stay the same. Finally, figure 3 is the result of applying 
orthogonal attracting and repelling forces to figure 2 to achieve an orthogonal 
drawing of the tree. It is interesting to note that the edge lengths of the graphs 
in figures 2 and 3 are longer than those in the right graph of figure 1 although the 
same natural distance is specified. This is due to the fact that the repelling forces 
of the vertices are stronger than the attracting forces of the edges. Optigraph 
provides a slider so that the user can modify the ratio of these two forces while 
they are both being applied. 

A c k n o w l e d g e m e n t s  

I wish to thank Roberto Tamassia for his guidance and enthusiasm, Emden 
Gansner for introducing me to SML, CML and eXene, and Jeffrey Korn for his 
suggestions and technical support. 



335 

Fig. 1. Left- initial graph. Right- attracting circular forces 

Fig. 2. attracting and repelling circular forces 



336 

Fig. 3. attracting and repelling orthogonal forces 

References  

1. Eades, P,, "A Heuristic For Graph Drawing", Congressus Numerantium, 42, pp. 
149-160, 1984. 

2. Fruchterman, T., Reingold, E., Graph Drawing by Force Directed Placement, 
UIUCDCS-R-90-1609, Department of Computer Science, University of Illinois at 
Urbana-Champ~ign, Urbana, IL, 1990. 

3. Gansner, E. and Reppy, J., eXene, CMU Workshop on SML, 1991. 
4. Reppy, J ,  Concurrent Programming with Events . The Concurrent ML Manual, 

Department of Computer Science, Cornell University, Ithaca, NY, 1990. 
5. Reppy, J., "CML: A Higher-order Concurrent Language", Proceedings of the 51G- 

PLAN '91 Conference on Programming Language Design and Implementation, June 
1991, pp. 293-305. 

6. Sugiyama, K. and Misue, K., "A Simple and Unified Method for Drawing Graphs: 
Magnetic-Spring Algorithm", Proceedings of Graph Drawin# '9~, 1994, pp. 365-376. 


