
Constraint-Based Spring-Model Algorithm for Graph

Layout

Thomas Kamps and Joerg Kleinz
Institute for Integrated Publication and Information Systems (GMD-IPSI)

Dolivostr. 15, D-64293 Darmstadt, Germany, {kamps,kleinz} @darmstadt.grad.de
John Read

Department of Combinatorics and Optimization
University of Waterloo, Ontario N2L 3G1, Canada, jread@orion.uwaterloo.ca

Abstract
In this paper we will discuss the question of how to develop an algorithm for automatically designing
an optimal layout of a given constraint graph. This automatic layout algorithm must observe certain
aesthetic principles, which facilitate the user's interpretation of the graph. The constraint graph is
generated by the visualization algorithm AVE (Automatic Visualisation Engine) which decides in
this case that the object relation between the objects which are to be graphically represented must be
visually realized by lines. The constraints describe how subsets of objects are geometdcaUy repre-
sented relative to each other. We require that each individual object be of fixed size throughout the
algorithm, but we allow for each of these sizes to differ one from another. This automatic layout algo-
rithm is developed along the lines of a (spring) force model, a method which has its roots in such
works as [Earle]. As a measure of any particular layout's fidelity to our aesthetic principles, we have
developed a function which assigns a real value to each possible layout. We have insured that this
function has good differentiability properties, in order that we may exploit gradient descent methods
to arrive at a layout that minimizes this function. Any such layout is then by definition the optimal
layout we seek. These gradient methods are integral in assuring that the algorithm we develop can
efficiently implement the aesthetic principles so that we obtain a very fast routine.

Introduction
In cooperation with Macmillan Publishers Ltd. the department PaVE (Publication and
Visualisation Environment), as part of GMD-IPSI, has developed a prototype version
of the electronic Dictionary of Art. In this application scenario an art historian, as a user
of the interactive electronic refence work, queries a semantic network for information.
The semantic network represents knowledge about the domain of art. The relations of
that network establish facts between domain objects, e.g., "Frank Lloyd Wright's pro-
fession was architect" or "Applied Arts is a broader term of Graphic Design". In order
to support the user in the process of information access we have built the system AVE
(Automatic Visualisation Engine) that is able to automatically design diagrams as a
visualisation of the query result. We refer the reader to [Reich] for detailed information
concerning the generative theory underlying AVE's approach and to [Golo] for its im-
plementation. In the following section we present a brief summary of AVE's features
in order to explain the overall environment in which our spring-model algorithm is ap-
plied.

AVE's Approach
We follow a functional notion of aesthetics (see [Kamp94a]) and thus our approach to
automatic data visualisation is based on the idea that the diagram should mirror the in-
herent characteristics of the data. As mentioned above we consider data to be repre-
sented as relations between objects. We interpret the relational properties as the charac-
teristics, or the regularities, of the data and see the aggregations of properties,
establishing the relation types, as a sensible way to type the data. To exploit data regu-

350

larities is in analogy to many graph layout approaches. A bibliography of algorithms
that graphically realize such properties ('tree', 'symmetric', 'hierarchy', et.) as line dia-
grams is given in [DiBa]. What makes the difference for us are requirements coming
from our application. In the semantic network there are different sorts of relation types.
Not all of them are sensibly visualized using the graphical resource 'line' as can be seen
from the examples presented in figure 2. In order to integrate these different visuliza-
tions we think a rich classification of the data is inevitable. To describe these relations
we use the Smalltalk Frame Kit (SFK) [Fisch], an object-oriented, frame-based repre-
sentation language. SFK implements the theory of binary relations in order to describe
the semantics of the relations in terms of their mathematical properties. We use the fol-
lowing incomplete but for our purposes sufficient classification schema for binary rela-
tions:
Relation (unqualified)

Symmetric Relation (symmetric)
Acyclic Relation (acyclic)

Tree Relation (tree)
Irreflexive Order Relation (irreflexive, transitive, asymmetric)

Irreflexive Tree Order Relation 0rreflexive-order, tree)
Discrete Linear Order Relation (irreflexive-tree-order, linear, discrete domain)
Continuous Linear Order Relation (irreflexive--tree--order, linear, cont. domain)

Bipartite Relation (bipartite)
Function (functional)

figure 1: classification schema for binary relations

Our philosophy is thereby to separate data and data analysis strictly from visualization
decisions. [Kosa] proposed an approach in which they define subgraphs, e.g., ' T -
Shapes' and 'Hub-Shapes' 'Axial Symmetry', etc., to be the regularities. We see these
regularities not as an alternative to the ones we use but as an extension (a relation which
is of order relation type may contain T-Shapes). However we would not make 'Axial
Symmetry' a regularitiy because this is a purely geometric property and thus should be-
come the result of a visualization decision. As a result of this discussion our aim is, simi-
larly to that of [Kosa], to integrate results from the field of graph drawing but also form
the field of information visualization for which we only representatively mention
[Mack] and [Roth] who proposed approaches that mainly dealt with the visualization
of functional relationships among data.
Using the above mentioned modeling language we can qualfiy relations with appropri-
ate relation types on the class level. It depends on the application which types are as-
signed to which data relations. This is in accordance with the conformance criteria gi-
ven by [Lin], which say that the visualization should be adaptable to the application.
In our approach we decompose the given semantic subnet into binary relations and ana-
lyse them to find out whether their types can be refined on the instance level. It might
turn out that a relation which is defined to be of order relation type on the class level
is of a more specific type, say tree order, on the given instance level. This strongly af-
fects the visualization. We will explain this below. In order to decide how to assign
graphical resources to the given relations we also rank them based on their specificity
in the classification schema and based on the quantitative share that a binary relation
has in the overall subnet. The first criterion is justified by the assumption that a specific
relation type organizes the data more effectively than a more general type. For instance,
a linear order relation organizes the data in a stronger way than an irreflexive order rela-

351

tion because in the case of linearity all elements are pairwise comparable whereas in
the other case this is not true. The second criterion makes sure that a more specific rela-
tion type does not get the best graphical resources a priori.
To generate expressive diagrams (in analogy to [Mack]) means to map the relations and
their properties onto graphical relations that match these properties. One graphical rela-
tion is the 'line' relation that connects arbitrary sorts of shapes (see figure 2, examples
b) and c)). This graphical resource is very general and can thus be applied to any relation
type. Another one, the 'inclusion' graphical relation constructs rectangles that include
each other (see example d)). It can only be applied for tree order relations because it
exactly matches the tree order properties. Relative position relations, such as 'object
A sits below object B', can be applied to represent discrete linear orderings, for instance
lists of elements. However, we use this graphical resource also in combination with the
'line' relation in which case it constrains the possible positions of the shapes in one di-
mension. The "line" relation that is constrained in such a way can visualize order rela-
tion type. Together with a legend' attributes' can be used to represent bipartite relations
(see examples a) and b)) and in the more specific case of a qualitative function its values
can be visualised using the 'colour' resource. 'Length of box' can be used to represent
quantitative function values such as time spans (see example). These examples show
that we do the graphical binding at the relation types. Although this list of graphical
relations is not complete it shows, by examples, how we assign graphical resources to
the data. For a more detailed discussion of the assignment of graphical means of expres-
sion to the relation types we refer the reader to [Reichen].
The assigment of graphical relations to the types is not unique. Thus, in a given situation
AVE has to decide what graphical relation, among those that are expressive for a certain
data relation, is assigned to it. However, this can only be done in the context of the over-
all subnet to be visualized because the graphical means of expression are limited and
because of that the different data relations have to compete with each other in a resource
allocation process (see [Golo]). This process is constructive on the relation level. The
variety of diagrams which is presented in figure 2 illustrates the different possible out-
come of AVE's constructive design process. Thus, in example b) the 'continuous dis-
tance' graphical resource is combined with the 'line' graphical resource and this
constructs the diagram. We do not have an explicit notion of a 'time-line' template or
'line' template that have to be combined in the process.
The aim of this paper is to discuss the final positioning algorithm by which the graphical
elements are displayed given that a relation is visualised using the graphical relation
'line'. In order to do that we first sketch the interface between the overall visualisation
system AVE and the spring-model algorithm. Then, we outline the constraints, that
may be established during the resource allocation process. They affect the size, the posi-
tion and the colour of the graphical objects. In this paper we only introduce the position
constraints. After that we discuss the objective function which is succeded by a descrip-
tion of our gradient descent algorithm. Then we illustrate the results by presenting eight
example layouts together with their computation times. Finally, we outline possible im-
provements.

The Interface to AVE
Assume we are given the connected graph D = (V, E), where V is the set of nodes and
E is the set of unordered edges . .{vjY~l E E for vi, vj E V. We further assume a set of
constraints (as defined below) for the set of nodes. We let N be the total number of nodes
to be represented in our graph, and in order to preserve the legibility of our layout, we

352

~ n e

i~ Pier Zwart

[] illustrator
g designer
Q painter

I I I I I I
1850 1875 1900 1925 1950 1975

a)

Aoolied Arts
!

/
Product Design J

c)

VI Herbert Bayer
t'l John nartfield m

Jan Tschichold
emerged from

tw~oerapher

~AKl~rgraphic designer

~ advertising artist
i

sign oainter I

~ l.~ advertising copyeditor

di~.nlny dP.~ionar

I I I I I I
Arehlt~etur~ 1850 1875 1900 1925 1950 1975

I !

Buildin~ Design Jlr~n Planing

~la~iech~ ~fn,tprn~

Impressionism

I Pointillism I]
I I

Kubism
[I

Futurism
d) I !

! !

I~tarlnr I~clo n
! I /

~ Furniture Dejsign

Expressionism
Fauve

I !
Die Bracke

! I

Blauer Reiter
I I

figure 2: some example diagrams
artificially assume N is less than or equal to 40 (neverthless, our algorithm may also
handle graphs with a larger number of nodes). As already noted, each node (or object)
is represented by a rectangle of fixed size (in contrast to taking them as points of a zero
area). Thus, for each node we give three coordinates, "the left upper comer", "the right
lower comer" and the "center". That is, vi = {(x~,yi~,(x~,y~),(xC, yC)} where
x/L --- x c < xf und y/B _ yC _ yr. Each rectangle contains a core area that represents
a domain object the name of which is printed above this area. We take the center of the
core area as the center of the overall rectangle. Therefore, the center of the ith rectangle
does not correspond in general to the midpoint of the ith rectangle. Again, we allow for
the size of each rectangle to differ from one another. We define d(vi, vj) E N to be the
topological distance between the two nodes vi and vj and this is simply the number of
edges in the shortest path between the two nodes. Finally, we assume that the graph is

to be represented in the square [- 1 ,1] x [- 1 ,1] with origin at (0, 0),

The visualization machine AVE, in which our spring model algorithm is embedded,
gives a set of geometrical constraints which we now list. As we have mentioned before,

353

the constraints we consider here are means to express data relations geometrically.
Thus, they are an important means for the communication of the data and their charac-
teristics into graphics.
Fixed Positions Certain node positions can be fixed in either the x or y components.
Thus, there is a (possibly empty) subset P ['- V such that for each vi = (xi, Yi) ~- P
there exists p~ or p~ ~ R with xi = p~. or Yi = P~. The reader should note that by writ-
ing vi = (x~, Yi) we are being intentionally vague as to what is being fixed, that is wheth-
er we are fixing xiL, x~C or x c. This is certainly, of little importance since we require that
each individual object be of fixed size throughout the algorithm. Thus, x c - x~ and
x~ - x c are both positive constants throughout.
Fixed Distances The distance between certain pairs of nodes can be fixed in either the
x or the y direction. Thus, there is a (possibly empty) subset D __. V • V such that for
each (vi, vj) (F_ D there exists d~ or d y E R with xi = xj + d~ or Yi = Yj + dr'o Here

vi = (xi, Yi) and vj = (xj, yj).
Relative Positions A node can be restricted to lying above (below) to the right of (to
the left of) another node. Thus, there is a (possibly empty) subset R _C V x V such that
for each (v~, vj) ~ R we have x~ <- xj or y~ < yj.
Orientation Two nodes can have a natural vertical or horizontal positioning relative
to one another. Thus, there are (possibly empty) subsets Oh C_ V • V and Ov ___ V x V
such that for each (vi, v j) E Oh (Ov) the orientation between vi and vj is horizontal (ver-
tical). We will set O = Oh tJ O~.
The Fixed Position and Fixed Distance constraints reduce the dimension of the problem
from 2Nto a smaller number depending on the magnitude of the sets P and D. The Rela-
tive Position constraint serves to restrict the domain of the objective function, which
we will introduce below. The Orientation constraints are not absolute and will be incor-
porated in this objective function.

State of the Art in Spring Model Algorithms
[Eade] proposes a spring-model based algorithm which meets two aesthetic principles:
firstly, all edges ought to have same length and secondly the layout should display as
much symmetry as possible. He considers the graph that is laid out as a mechanical sys-
tem in which the vertices of the graph represent steel rings and the edges represent
spring forces. The input is a random initial placement of the vertices. His iteration pro-
cess involves computing in each step the resultant force of the springs acting on each
steel ring, which provide a force field whose action on the ring-spring system tends to
move this system to a new position of lower potential energy. This is then repeated until
a state of minimal energy is achieved.
The paradigm of the approach taken by Kamada [Kama] is the same as the one proposed
by Eades. Here, the energy potential of the underlying mechanical system is given ex-
plicitly as an objective function

E = ~ ~ l (, p i _ p j , _ lij)2
iffil j f f i i + l

x y x y that is to be minimised. In this formula Pi (Pi,Pi) and pj = (p~,p~) denote the posi-
tions of node i and node j and l O. denotes the optimal distance between the two nodes.
The aesthetic goal is that the Euclidean distance between any pair of nodes matches
their topological distance. To realize this, Kamada implemented an optimization meth-
od which always finds a local minimum for E. An important difference to Eades' ap-
proach is that whenever a node is moved to another position all other nodes are frozen.

354

This is due to the 2n interdependent non-linear equations that they obtain from the
minimisation condition (see [Kama]).
Both, Eades and Kamada, applied their algorithms to undirected graphs. The advantage
of this technique is that it preserves symmetry without explicitly requiring knowledge
of the automorphism group of the graph, a problem which is computationally expen-
sive. Davidson and Harel [Davi] proposed a simulated annealing approach in which the
energy potential of a system is described in terms of vertex distribution, nearness to bor-
ders, edge-lengths, and edge crossings. Fruchterman and Reingold [Fruc] presented an
effective modification of Kamada's model. Sugiyama [Sugi] extended the spring model
approach by introducing different sorts of magnetic forces that are applied in conjunc-
tion with the distance forces. One sensible way to apply magnetic forces is, e.g., to as-
sign different edge types different orientations.
In contrast to the approaches we have discussed in this section our algorithm must con-
sider a set of geometric constraints as introduced above. In our model, nodes are not
just points in the plane, but rather are rectangles having varying x-and y-dimensions
extents. Since our nodes are inhomogeneous, seeking a minimum distance between the
centers of two nodes is not sufficient for the to minimization of overlapping. Therefore,
in addition to 'distance forces', we introduce 'node-node repulsion forces' which serve
to assure that the overlapping area of two nodes is minimized. Finally, we employ 'angle
forces' in order to incorporate the Orientaion Constraints into the objective function.
In our first prototype [Klei] we extended Eades' approach by the additional forces
introduced in the last paragraph. The algorithm we obtained this way was successful
but rather slow. However, being a part of an interactive system, a major requirement
any algorithm must meet is that diagrams should be laid out and displayed within inter-
action time. In order to satisfy this goal we now employ a gradient descent algorithm
for the minimization of the objective function, which measures how well any given lay-
out can be interpreted by the user.

The Objective Function
In the implementation of the objective function we take into account the "forces" aris-
ing due to the distance between pairs of nodes. Further, as we already mentioned we
incorporate the "forces" arising from the predetermined orientation between pairs of
nodes (vi, vj) ~ O. The distance forces are calculated in such a way that this force is
inversely proportional to the topological distance between pairs of nodes. We will adopt
the following notation ~i~ = Ix c - xCl and rhj = lyc - yCl. Using this notation we can
write the objective function for the 'distance forces' between the nodes v~ and v j, similar
to the formulation in [Kama], as

~ + q~j2

po(v) -- 1 d (v . vj) �9 a

where alpha is the optimal distance between two nodes connected by a single edge. The
optimal edge length would be, in the best of all possible cases, twice as long as the "stan-
dard" node. This length is approximated by the assumed average length of the string
representing the object name. This is in contradistinction to [Kama] in which this opti-
mal length is determined from the topology of the graph.
As we have indicated, the orientation constraints impose a natural horizontal or vertical
positioning on any pair of nodes in the set O. The angle between the x-axis and the line
through the nodes v i a n d v j is given by the formula

355

f _ t / Y ~ - YCl ~r ;t]

Then the deviation angles for any pair (v~, vj) ~ V x V is

if x c ;~ x c

ifx c = x c

t'i)t)'~h'v" = ,j if (vivj) E O h
otherwise

and

O~(v) = 0 - ~ if (v~v~) E Ov

otherwise

These are the objective functions which, upon differentiating, generate the 'angle
forces' between the nodes v~ and v i in the vertical direction and the horizontal direction,
respectively. Now in as much as our nodes carry information for the user, we must insure
that they do not overlap, thereby blocking part of that information from view. In order
to achieve this, we consider the following functions

i f x ~ + x ~ < x ~ + 4

i f x ~ + x ~ <x/L+x/R

i fy i n + y r < y B + y r

if Y7 + x~ < y/S + y/r

- x ,O}

a,j(v) = [max{4 x ,0}

fmax{y r - y~,0}

: [max{yy
We take the product of aij and flij as the objective function for the 'node-node repulsion
forces' between the nodes vi and vj and write Wij(v) = ao(v) �9 flij(v)
Upon a closer examination it is clear that Wg~ is at least as large as the square of the area
of the overlap of the i-th and j-th nodes. Further, if this pair of nodes do not overlap
then V/,j = 0. With this notation we obtain the j-th term of our objective function, given
by

x--', [1 2 h2 ~2 /
/ i < j x ~

We have multiplied the square of the deviation angles by the scaling factor to 1, which
in actual calculations was always set equal to 0.05 and we have multiplied the overlap
function ~Po by the factor to2. In order to weaken the forces between node pairs con-

nected over topologically long paths, we have included the factor 1 d(v~, v~) 2" For the sake

of keeping the formula of the partial derivatives of f~(v) simple we first define the partial
derivatives for its composites (we present only the derivatives in x) as

I~ - 4pu �9 ~j
6pu(v) = " - - - ~ %

(v,, vj) �9 x/ ~o rl~
c~x~

if x~ < xj

otherwise

356

0 v C
0 o (Y~ - y~

~Oq~(v) if xi > = (x~ - x ~ ~ + (y~ - yiC) 2 xy

otherwise

doijh(y) ij (yC _ y ~
= (xj~ _ x/C): + (y] _ y ~ : if xi > yj

otherwise

a 0 i f x ~ + x f - < x ~ + x f andx~i >-x~

~Pii(v------2) = , - a i i if x~ + x~ < x~ + x~ and x] > x~

bxi 0 otherwise

Thus, we can write the partial derivative of f/(v) in the following way
~/Xv) _ ~pXv) + + +

6x~ ~x~ 6x~ 6x~ 6x~
~fXv) _ ~pj(v) + + +

8yi 8yi 8yi 8yi 8yi
N

by summing over j we get the objective function f (v) = Zf j (v) whose gradient a!'ld
j= l

is constructed from the partial derivatives in the obvious way.

The Algorithm
Let us now consider an algorithm which will minimize the value of the objective func-
tion as defined in the previous section. We begin by reminding the reader that the gradi-
ent descent method can be applied successfully to any smooth function f over R",
which grow at infinity. Given an initial starting position ff~, one calculates Tf(p~) and
defines ~ as the smallest positive value which minimizes the function
q~(v) := f(ffi - vVf(p-~)). We then define P i + l = ~ -- z'iVf(P~)" Iterating over i E N
gives us a sequence (p~) which converges to a (local) minimum. We have modified this
theoretically satisfying model in order to speed convergence and avoid problems one
might encounter due to local minima. First we let

mj,, V ~ ~] ~ ~ / for 1 _< j _< N be the movement of node vj in it-

eration i. Then, similar to the approach of [Fric], we define # E [0, ~] to be the open-

ing angle for oscillation detection and we let ~:~ be the angle between the vectors given
by the positions of node vj during the i-2nd and i - 1st iteration. Given these definitions,
we call

+ r0 * cos(st/) iflcos(l~i)l > cos(u)

= ~ otherwise (
the oscillation factor of node vj for i > 2 and r0 ~ [0, 1]. In contrast to their approach,
we call the product Tj,~ = Oj,~ * mi,~ of the oscillation factor with the movement of an
arbitrary node vj the temperature of this node. To give a formula for v~ we need to define
Tk,i = max{Tj,i : 1 < j ~ N} as the maximum temperature of the nodes in the ith itera-

357

Zk,i
tion and from this we obtain the ratio qi = Tk,~_l that describes the maximum change

of temperature between two consecutive iterations. Then we set

I c i f i - 2

~i = ~ * f otherwise
t ~ i - 1

Ct in which c = ~-. The factor

fl
+ w * (1 - q i) i f q < 1, w E [0,0.5]

f = otherwise

describes the correction of the ri with respect to the change of temperature. Such a
choice of c and f, respectively, and hence ri have proven in practice to lead quickly to
a very pleasing layout, and help control oscillations that can cause such an algorithm
to become very inefficient. As a consequence, convergence is obtained if Tk.i < E for
some i which means that it depends only on the given graph and its characteristics and
is not enforced by an artificial damping function nor by a limitation on the number of
iterations. After the application of the above algorithm, it might be necessary to rescale
the results so that the optimal layout is neither too large nor too small. We define the
quantities

RL = min{x/ql < i --< N}, RR = max{x/q1 < i <- N},
Rr = min{yrll < i -_- N}, Ra = max{yfll < i <__ N}.

that determine the bounding box of the graph.
Then we set lma~ = max{IRR - RLI, IRr - RBI}, which we use as a scaling factor.

1 , Thus, we redefine the scaling factor S/+l = si �9 ~ fors0 = 1 and translate the

center of the bounding box to the origin in order to recenter the graph.

Results

In this section we will discuss example layouts that were generated by our spring-model
algorithm. Along the first three diagrams we demonstrate how the semantics of the data
may affect their visualization. Then, we present a couple of other example layouts some
of which are taken from the literature. For each diagram we give the computation time
which was measured on SPARCstation 20. The algorithm is implemented in ANSI-C.
The three diagrams in figure 3 have the same topology if one abstracts from the di-
rectedness of the edges. Example a) represents a relation which is called 'work togteth-
er'. It is defined on the set of 'artists' and it has the relation type Symmetric Relation.
Therefore it is visualized using lines. Example b) represents the terminology relation
'broader term of ' which is defined on the set of art concepts. It is qualified as an order
relation on the class level but in the given instance it forms a tree-order relation. Ac-
cording to our model included rectangles would best visualize this graph. However,
here we chose the 'arrow' resource in order to demonstrate the algorithm described in
this paper. Thus, AVE decides to use the graphical relation 'below', which is defined
on the y - coordinates, to constrain the positions of the nodes in the y-dimension. This
way, we guarantee that the transitivity of the 'broader term of ' relation is expressively
visualized. In this case the Orientation constraints require the sons of a node to be verti-
rally positioned relative to the father node. Example c) represents an organization chart

358

in which additionally the nodes on the same level have a fixed zero distance in the y
coordinate.

work together with

a) O.18sec

r

ms ~ narrower term
graphic arts

b) O.19sec

pencil dr. planographic
. ~ ~ i " 'g I ink rel~ ~ ~ n

~ ~ " division2
part of

c) 0.19 sec

figure 3: Three graphs with the same topology but different relation types

In figure 4 we present additional examples of layouts. Example a) and b) are uncon-
strained which implies that only the distance forces work which is in analogy to the al-
gorithms of Eades and Kamada. The lattice in example c) is of order relation type visu-
lized using arrows and 'below' constraints. Example d) the x-extents are determined
by time intervals and thus we obtain fixed x-positions. In example e) we have defined
'below' constraints and fixed distance constraints for hierarchic subgraph whereas the
remaining subgraph is not constrained at all.

Summary and Future Work
In this paper we have presented a force directed placement routine which is an extension
of the model originally proposed by [Eade]. Since we apply this routine in the context
of the visualization algorithm AVE, we had to add two additional forces to the 'distance
forces': the 'node-node repulsion force' that minimizes the overlapping area of two
nodes and the 'angle force' that graphically realize a relative vertical (horizontal) posi-
tioning of two nodes to one another. Apart from the additional forces which we have
modeled, a set of geometric constraints that are generated by AVE have to be integrated

359

a) example from [Eade]. 0.55 sec

c) example lattice, 0.50 s e c

b) example from [Kama], 0.89 s e c

e) example from [Deng], 0.41 s e e

| !

, . . . ~

q i

d) with arrows connected time-line example, 0.11 s e c

figure 4: additional examples

into the graph layout process. Since a major requirement from the application is to in-
sure interactivity the computation time was a crucial issue for us. This led us to the
construction of an objective function with good differentiability properties in order ex-
ploit gradient descent methods and thus obtain a very fast algorithm producing expres-
sive line diagrams effectively. However, we still encountered some problems which we
consider should be solved in the future.
As can be seen in figure 4 example e), patterns such as the T-Shape template and the
Hub-Shape template in the approach of [Kosa] may be visually realized just by using
geometric constraints, that is, without explicitly having a notion of these patterns. How-
ever, this does not mean that the algorithm always preserves such patterns, for example,
in the particular case when parts of the pattern are connected to other structures which
themselves work against a construction of patterns. As mentioned before we consider
the integration of such structural regularities as an important extension of our approach.
However, this means to extend AVE's data analysis process in order to detect such regu-
larities in the data and to assign them visualization templates.
Another problem occurs when the node extents are very inhomogeneous. In this case
the ideal length of the edges between two nodes, which now relies on the size of the ideal
node's extent, is no more a good measure. For this more general case we still have find
a sensible notion of distance.

References
[Davi] Davidson R. Harel D., Drawing Graphs Nicely Using Simulated Annealing.
Technical Report CS89-13, Department of Applied Mathematics and Computer
Sciences, Weizman Institute Of Sciences, Israel, July, 1989.
[DiBa] Di Battista G. Eades P. Tamassia R. Tollis G., Algorithms for Drawing Graphs:
an Annotated Bibliograpy, Brown University, Department of Computer Science, Tech-
nical Report, 1993.

360

[Deng] Dengler E. FriedeU M. Marks J., Constraint-Driven Diagram Layout, Proceed-
ings of the IEEE Symposium on Visual Languages, 1993.
[Eade] Eades E, A Heuristic Graph Drawing, Congressus Numerantium, 42, 1984.
[Fisch] Fischer D. H. Rostek L., SFK: A Smalltalk Frame Kit, Concepts and Use, To
appear as GMD Report.
[Fric] Frick A. Ludwig A. Mehldau H., A fast Adaptive Layout Algorithm for Undi-
rected Graphs (Extended Abstract and System Demonstration, in Graph Drawing, DI-
MACS International Workshop, GD '9.4, Princeton New Jersey, Ovtober 1994, Lecture
Notes in Computer Science, Springer Verlag.
[Fruc] Fruchterman T. Reingold E., Graph Drawing by Force-Directed Placement. In
Software Practice and Experience, 21(11), November 1991.
[Golo] Golovchinsky G. Kamps T. Reichenberger K, Subverting Structure: Data-driv-
en Diagram Layout, accepted at IEEE Visualization '95, Atlanta, October 30-Novem-
ber 1 1995.
[Kamp94a] Kamps T. Reichenberger K. (1994a), Automatic Layout as an Organization
Process, GMD Report, No. 825, Sankt Augustin 1994.
[Kamp94b] Kamps T. Reichenberger K. (1994b), Automatic Layout Based on Formal
Semantics, in Catarci, T. et.al. (Eds.), Proceedings of the Workshop of Advanced Visual
Interfaces, AVI '94, June 1194, Bail, Italy.
[Kama] Kamada T. Kawai S., An Algorithm for General Undirected Graphs, in Infor-
mation Processing Letters 31 (1989). Elsevier Science Publishers B.V. (North Holland).
[Kosa] Kosak C. Marks J. Shieber S., Automating the Layout of Network Diagrams
with Specified Visual Organization, in IEEE Transactions On Systems. MAn and Cy-
bernetics, Vol 24, No. 3, March 1994.
[Klei] Kleinz J., Entwicklung eines constraint-gesteuerten 2D-Positionierungsverfah-
rens, to appear as GMD report.
[Lin] Lin T. Eades P., Integration of Declarative and Algorithmic Approaches for Lay-
out Creation, in Proceedings of DIMACS International Workshop, GD '94 Princeton,
New Jersey, USA, October 1994, Tamassia R. Tollis G. (Eds.), Lecture Notes in Com-
puter Science 894,1994.
[Mack] Mackinlay J. (1986) Automating the Design of Graphical Presentations of Rela-
tional Information, in ACM Transactions on Graphics, 5(2).
[Reich] Reichenberger K. Kamps T. Golovchinsky G., Towards a Generative Theory
of Diagram Design, accepted at IEEE Symposium on Information Visualization (Info-
vis '95), Atlanta, October 31 1995
[Roth] Roth S. E Hefley W.E. Intelligent Multimedia Presentation Systems: Research
and Principles, in Mark Marbury (Ed.) Intelligent Multi-Media Interfaces, AAAI Press,
1993.
[Sugi] Sugiyama K. Misue K. A Simple and Unified Method for Drawing Graphs: Mag-
netic-Spring Algorithm, in Proceedings of DIMACS International Workshop, GD '94
Princeton, New Jersey, USA, October 1994, Tamassia R. Tollis G. (Eds.), Lecture Notes
in Computer Science 894,1994.

