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A b s t r a c t .  As analogs to grid intersection graphs and rectangle inter- 
section graphs in the plane, we consider grid intersection graphs, grid 
contact graphs and box intersection graphs on the other two euclidean 
surfaces - the annulus and the torus. Our first results concern the in- 
clusions among these classes, and the main result is negative - there 
are bipartite box intersection graphs on annulus (torus), which are not 
grid intersection graphs on the particular surfaces (in contrast to the 
planar case, where the two classes axe equal, cf. Bellantoni, Hartman, 
Przytycka, Whitesides: Grid intersection graphs and boxicity, Discrete 
Math. 114 (1993), 41-49). We also consider the question of computa- 
tional complexity of recognizing these classes. Among other results, we 
show that recognition of grid intersection graphs on annulus and torus 
are both polynomial time solvable, provided orderings of both vertical 
and horizontal segments are specified. 

1 M o t i v a t i o n  

Intersection graphs of different types of geometric objects in the plane gained 
a lot of at tention in the past  years. One may  consider interval graphs, circle 
graphs, circular arc graphs, permutat ion graphs and string graphs, to mention 
just a few of such classes of graphs. At this point,  we want to pay closer a t ten-  
tion to grid intersection graphs (intersection graphs of vertical and horizontal 
straight line segments in the plane, such tha t  no two parallel segments of the 
representation overlap cf. [1], [4]), grid contact graphs (grid intersection graphs 
tha t  have a representation in which no two segments cross each other cf. [3]) 
and box intersection graphs (graphs of boxicity two, i.e. intersection graphs of 
isothetic rectangles in the plane cf. [7], [10], [4], [1]). 

The concept of vertical and horizontal directions translates natural ly to the 
other two orientable euclidean surfaces - the annulus and the torus, and our aim 
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is to study analogous classes of graphs on these surfaces. Our motivation stems 
from two results about the planar case, whose generalizations we question. 

First, Bellantoni et al. [1] proved that every bipartite graph of boxicity two is 
in fact a grid intersection graph. In other words, given a set of rectangles in the 
plane such that its intersection graph is bipartite, one can shrink the rectangles 
corresponding to the vertices of one color class into vertical segments, and the 
rectangles corresponding to the other color class into horizontal segments, while 
keeping the intersection graph itself unchanged. 

The second source of our motivation is the result of de Frayssiex et al. [3], 
which says that every planar bipartite graph is a grid contact graph. This result, 
which is based on visibility representations of general planar graphs [8, 9], was 
actually generalized to the torus by Mohar and Rosenstiehl [6]. 

The paper is organized as follows. In Section 2, we give exact definitions of the 
classes of graphs under consideration. Then, in Section 3, we present the inclu- 
sions among the classes (and reason about their strictness). In Section 4, we aim 
at the question of the computational complexity of recognizing the considered 
classes of graphs, in particular in the case when the coordinates of the segments 
are preordered. The last section contains final remarks and open problems. 

2 D e f i n i t i o n s  

It is usual to view the torus as a rectangle whose vertical and horizontal sides 
are unified. In this model, segments of horizontal and vertical lines correspond 
to segments of geodetic circles on the torus. Having this model in mind, we will 
work with a rectangle whose vertical sides are unified as a model of the annulus, 
and with ordinary rectangle as a model of the plane. (Since we will only consider 
finite graphs, restriction to bounded parts of annulus and plane are irrelevant.) 
We will refer to this rectangle as the base rectangle. We will use the abreviations 
pl, an and to for the plane, the annulus and the torus, respectively. For each 
of these three surfaces, we consider the following classes of graphs (note that 
in view of the theorems whose generalizations we question, we only consider 
bipartite graphs): 

GI(surface) = grid intersection graphs on the surface = graphs that have a 
representation by vertical and horizontal line segments on the surface, such 
that any two parallel segments are disjoint and two segments share a point 
if and only if the corresponding vertices are adjacent; 

GC(surface) = grid contact graphs on the surface =- graphs which have a rep- 
resentation by vertical and horizontal line segments on the surface, such 
that any two parallel segments are disjoint, no two segments cross and two 
segments share a contact point if and only ff the corresponding vertices are 
adjacent; 

BI(surface) = box interesection graphs on the surface = bipartite graphs that 
have a representation by isothetic rectangles on the surface such that two 
rectangles are disjoint if and only if the corresponding vertices are nonadja- 
cent; 
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EM(surface) = graphs embecldable in the surface = bipartite graphs that  allow 
a noncrossing drawing on the surface. 

As an illustrative example, a grid contact representation of K4,4 on the torus 
is shown in Figure 1. 

Fig.  1. h grid contact representation of K4,4 on the torus. 

We will view rectangles (boxes) as two-dimensional intervals, i.e., as products 
of intervals in the coordinates. In the case of the torus, both horizontal and 
vertical intervals that  determine a box may be wrapped around the sides of 
the base rectangle, i.e., the coordinate of the left endpoint may be greater than 
the coordinate of the right one. In the case of the annulus, only the horizontal 
intervals may be of this type, and in the planar case, all intervals must be 
proper. For the case of grid intersection and grid contact graphs, the segments 
will be viewed as boxes with one side of length zero. Since we only deal with 
finite graphs, we may assume without loss of generality tha t  the coordinates of 
the endpoints of the intervals that  determine the boxes of a representation are 
mutually distinct integers. 

It is well known that  a graph is a box intersection graph in the plane if and 
only if it is the intersection of two interval graphs, i.e., if it has interval dimension 
at most 2 [2]. Similarly, a graph is a box intersection graph on the annulus if 
and only if it is the intersection of an interval graph and a circular arc graph. 
Finally, a graph is a box intersection graph on the torus if and only if it is the 
intersection of two circular arc graphs, i.e., if it has circular arc dimension at 
most 2. 
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3 I n c l u s i o n s  a m o n g  t h e  c l a s s e s  

The following three propositions are straightforward: 

P ro pos i t i on  1. For any X E {EM, GI, GC, BI} ,  X(pl) C X(an) C X(to). 

Pro pos i t i on  2. For any X e {pl, an, to}, GC(X) C_ GI(X)  C B I ( X ) .  

Pro pos i t i on  3. For any X e {pl, an, to}, GC(X) C E M ( X ) .  

The last proposition is in fact a special case of a more general theorem which 
says that a contact graph of curves on any surface with at most two curves 
sharing a contact point is embeddable on that surface. 

EM(to) D GC(to) C_ GI(to) C BI(to) 
u[ ol u[ ol 

EM(an) D GC(an) C_ GI(an) C_ BI(an) 

ul ul ul ul 
EM(pl) ~ GC(pl) c OI(p]) c m(pl) 

Fig. 2. Inclusions among the classes. 

All these inclusions are depicted in Figure 2. It follows from the results of 
Bellantoni et al. [1] that GI(pl) = BI(pl). Another inclusion, in the bottom line 
reduces to equality due to the result of de Frayssiex et al. [3], namely EM(pl) = 
GC(pl). But every graph embeddable on annulus is planar (the cylinder is topo- 
logically equivalent to the plane with two point s removed), and hence EM(pl) 
= EM(an) = GC(an) = GC(pl). It is well known that e.g. 'Ks,3 is embeddable 
on torus and not in the plane, hence EM(an) C EM(to). Concerning the other 
inclusions, we have the following theorem: 

T h e o r e m  4. All other inclusions are strict, as depicted in Figure 3. 

EM(to) D GC(to) C GI(to) C BI(to) . 
U U U U 

EM(an) = GO(an) C GI(an) C BI(an) 
H IJ u u 

EM(pl) = GC(pl) C GI(pl) = BI(pl) 

Fig. 3. Inclusions among the classes. 
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Let us remark at this point that  the equality EM(to) = GC(to) "almost" 
holds - Mohar and Rosenstiehl proved that  every bipartite graph embeddable 
on the torus is indeed a grid contact graph on a skew torus (i.e., a torus whose 
horizontal and vertical grid directions are not parallel with the sides of the base 
rectangle). However, there are graphs embeddable on the torus that  are not grid 
contact graphs on the torus in our sense [5]. The strict inclusion GC(an) C 
GC(to) follows from the complete bipartite graph K3,3, the inclusions GC(X) 
C GI(X), X E {pl,an,to} follow from complete bipartite graphs as well. For 
the remaining inclusions, we use slightly more involved constructions of graphs 
that  have topologically unique intersection representations. We will give the 
corresponding constructions in the full version of the paper. 

4 R e c o g n i t i o n  o f  t h e  c l a s s e s  

The first author has proved in [4] that  recognition of grid intersection graphs 
in the plane (and hence also of graphs of boxicity 2) is NP-complete. By a 
straightforward reduction we can show the following theorem. 

T h e o r e m  5. Recognition of grid intersection and box intersection graphs on the 
annulus and torus are NP-complete problems. 

Sketch of the proof. Let G be a graph whose membership to GI(pl) we want to 
test. Take a nonplanar graph, say H,  embeddable on the torus and let H* be the 
graph obtained from H by subdividing its edges by sufficiently many vertices. 
Then H* can be represented as a grid intersection graph on the torus, but every 
face of any such representation is homeomorphic to a disk. Hence H* + G, the 
disjoint union of H* and G, is in GI(to) if and only if G E GI(pl). 

A slightly more involved construction works for the annulus. Here we start 
with a 3-connected planar graph H which has at least 3 faces. Again, we take 
the subdivided graph H*. To obtain a graph G ~, we place a copy of G in each 
of three chosen faces of H*, connected to the vertices of the faces by paths of 
suitable length. In any grid intersection representation of H* on the annulus, 
at least one of the three chosen faces bounds a region homeomorphic to a disk. 
Hence G ~ E GI(an) if and only if G E GI(pl). [] 

Other interesting questions arise if we consider grid intersection graphs with 
preordered color classes. To be precise, we consider the following problem: Let G 
be a bipartite graph with color classes V and H and let the vertices be ordered 
V = {vl, v2 , . . . ,  v,~}, H = {hi, h2 , . . . ,  hm}. We want to find a grid intersection 
representation for G in which each vertex vi will be represented by a vertical 
segment with endpoint coordinates [i, bi], [i, ui], and each vertex hj will be rep- 
resented by a horizontal segment with endpoints [l j, j], [rj, j]. (If bi < ui then 
the segment is proper, otherwise it wraps around the horizontal sides of the base 
rectangle. This is allowed only in the case of the torus. Similarly, if lj > rj ,  
then the corresponding horizontal segment wraps around the vertical sides of 
the base rectangle. This is allowed both in the case of the annulus and the 
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torus.) In the planar case, there is a very straightforward way to decide if such 
an assignment exists. For each "horizontal" vertex hi, obviously lj must be _< 
min{ilvih j E E(G)} and rj must be > max{ilvih j �9 E(G)}. Hence if an assign- 
ment exists, then assigning lj = min{i]vihj �9 E(G)}, rj = max{i[vihj �9 E(G)}, 
bi = min{j lv ihj  �9 E(G)}, ui = max{j lv ih j  �9 E(G)} yields an intersection rep- 
resentation, which is if and only if there are no indices il < i < i2, j l  < j < j2 
such that  vii hj, vi2 hi, vihjl ,  vihj2 are edges of G and vihj is not. This condition 
is actually much better seen from the bipartite adjacency matrix of G. This 
matrix AG is a matrix of type n x m, and (Ac) i j  = 1 if vihj �9 E(G)  and 
(AG)ij = 0 otherwise. The necessary and sufficient condition for the existence 
of ordered grid intersection representation descirebed above is restated as "the 
bipartite adjacency matrix AG does not contain a submatrix of the following 
form:" (1) 

1 0 1  
1 

This description straightforwardly yields a polynomial recognition algorithm for 
ordered grid intersection graphs in the plane. 

The situation is more interesting for grid intersection graphs on the annulus 
and the torus. Here we have: 

T h e o r e m  6. A bipartite graph with preordered color classes has an ordered grid 
intersection representation on the annulus if and only if its bipartite adjacency 
matrix does not contain a submatrix of the following type 

1 
1 0 1  

1 

(where the first two and/or the last two rows may be swapped or may coincide). 
Consequently, there is a polynomial algorithm that decides if a preordered bipar- 
tite graph has an ordered grid intersection representation on the annulus. 

Obviously, a finite number of forbidden submatrices can be read out from the 
pattern given in the theorem. On the other hand, we can prove that  in the case 
of ordered grid intersection representations on the torus, the number of minimal 
forbidden submatrices is infinite. Despite of this fact, we can prove: 

T h e o r e m  7. There is a polynomial algorithm that decides if a given bipartite 
preordered graph has an ordered grid intersection representation on the torus. 

Proof. Given a preordered bipartite graph G = (V U H, E), we will consider its 
adjacency matrix A. Every row (and column) of the matrix consists of continu- 
ous intervals of zeros separated by intervals of ones. Let Ii,1, I i ,2 , . . . ,  Ii,n~ (resp. 
Yj,1, Yj,2, �9 �9 �9 Yj, m~) be the continuous intervals of coordinates of zeros in the i-th 
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row (resp. j - th  column). (Note that  again, one of these intervals may be non- 
trivial, i.e. may have the left endpoint placed to the right of the right endpoint.) 
We say that  the horizontal segment [li, i][rl, i] representing a vertex hi m i s se s  
an interval Ii,j if Iid rh [li, ri] = 0, and we say that  this segment covers I id  if 
Ii,j C [li, ri]. The analogous notions for vertical segments and column-intervals 
are defined in obvious way. 

Note that  a general grid intersection representation may contain segments 
that  neither miss nor cover a particular interval of zeros. However, it is easy to 
argue that  if G has an ordered grid intersection representation, then it has a rep- 
resentation whose every horizontal (vertical) segment misses exactly one interval 
of zeros in the particular row (resp. column) and covers all the others. Such spe- 
cial representations can be easily described as instances of 2-SATISFIABILITY, 
a problem which is notoriously known to be solvable in polynomial time. 

For every interval Ii,j, we introduce a variable xi,j, and for every interval Yr,8, 
a variable Y~,8. The idea is to construct a formula which would be satisfied if and 
only if G has an ordered grid intersection representation, under a t ruth  valuation 
which encodes xid = true iff the segment representing hi misses the interval Ii,j 
(resp. yr,8 = true iff the segment representing vr misses the interval Yr, s). The 
requirement that  the segment representing hi misses at most one interval is then 
expressed by a subformula 

~ ' - -  A ( ~ , , ,  v - x , , ) .  
l <_j<k<nl 

The analogous requirement for vertical segment v~ is expressed by 

= A 
l < a < t < _ m .  

Any truth assignment that  satisfies all these subformulas will correspond to a 
grid intersection representation which will realize all necessary crossings of the 
segments (i.e., all ones of the adjacency matrix). To avoid undesirable crossings, 
we have to ensure that  for every zero in the adjacency matrix, at least one of the 
two intervals (vertical and horizontal) is missed by the coresponding segments 
of the representation. For a particular position i, r such that  Air = 0, r E Ii,j 
and i E Yr,s, this requirement is expressed by a subformula 

~Si,r = xi,j  V Yr,s. 

It is now clear that  G has an ordered grid intersection representation if and only 
if the following formula �9 is satisfiable 

m 

A 
i=1  r = l  i,r:A~.=O 

All clauses that  appear in �9 have size 2 and hence the ordered grid intersection 
representability problem is reduced to 2-SATISFIABILITY. [] 
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5 Concluding remarks 

The computational complexity of the ordered grid intersection problem is open 
if only one of the color classes comes preordered (and the vertices in the other 
color class can be permuted). For the planar case, this problem (which was first 
considered by the first author and J. Ne~ettil) appears in [4]. If one does not 
believe in existence of a polynomial solution to this problem, then the analogous 
problems for annulus and torus should be easier to be proved NP-complete. 

In the view of the nonequivalence of EM(to) and GC(to) [5], it would be very 
interesting to know a description of the class of grid contact graphs on the torus. 
In particular, is this class recognizable in polynomial time? 
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