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Abstract. In this paper we consider the problem of characterizing those 
graphs that can be drawn as minimum weight triangulations and answer 
the question for maximal outerplanar graphs. We provide a complete 
characterization of minimum weight triangulations of regular polygons 
by studying the combinatorial properties of their dual trees. We exploit 
this characterization to devise a linear time (real RAM) algorithm that 
receives as input a maximal outerplanar graph G and produces as output 
a straight-line drawing of G that is a minimum weight triangulation of 
the set of points representing the vertices of G. 

1 I n t r o d u c t i o n  

A widely used graph drawing standard represents vertices as points on the plane 
and edges as straight-line segments between points. Drawings tha t  follow such a 
s tandard are called straight-line drawings and the design of algori thms to produce 
such drawings is a field of growing interest. An extensive survey of results on 
straight-line drawings as well as on other graphic standards is provided by Di 
Bat t i s ta  et al. [3]. Recently, at tention has been devoted to a special type of 
straight-llne drawings, called minimum weight drawings, which have applications 
in areas including computat ional  geometry and numerical analysis. 

Let C be a class of graphs, let P be a set of points in the plane. Let G be a 
graph such that  

1. G has vertex set P ,  
2. the edges of G are straight-line segments connecting pairs of points of P ,  
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3. G E C, and 
4. the sum of the lengths of the edges of G is minimized over all graphs satisfying 

1-3. 

We call such a graph G a minimum weight representative of C. Given a graph 
G E C, we say that G has a minimum weight drawing if there exists a set P of 
points in the plane such that G is a minimum weight representative of C. For 
example, a minimum spanning tree of a set P of points is a connected, straight- 
line drawing that has P as vertex set and minimizes the total edge length. So, 
letting C be the class of all trees, a tree G has a minimum weight drawing 
if there exists a set P of points in the plane such that G is isomorphic to a 
minimum spanning tree of P. A minimum weight triangulation of a set P is a 
triangulation of P having minimum total edge length. Letting C be the class 
of all planar triangulations, a planar triangulation G has a minimum weight 
drawing if there exists a set P of points in the plane such that G is isomorphic 
to a minimum weight triangulation of P. 

The problem of testing whether a tree admits a minimum weight drawing is 
essentially solved. Monma and Suri [20] proved that each tree with maximum 
vertex degree at most five can be drawn as a minimum spanning tree of some set 
of vertices by providing a linear time (real RAM) algorithm. In the same paper 
it is shown that no tree having at least one vertex with degree greater than 
six can be drawn as a minimum spanning tree. As for trees having maximum 
degree equal to six, Eades and Whitesides [5] showed that it is NP-hard to decide 
whether such trees can be drawn as minimum spanning trees. 

Surprisingly, nothing seems to be known about the problem of constructing 
a minimum weight drawing of a planar triangulation. Moreover, it is still not 
known whether computing a minimum weight triangulation of a set of points in 
the plane is an NP-complete problem (see Garey and Johnson [6]). Several papers 
have been published on this last problem, either providing partial solutions~ or 
giving efficient approximation heuristics. A limited list of results includes the 
work by Meijer and Rappaport [19], Lingas [14, 16], Kirkpatrick [i0], Keil [9], 
Dickerson et al. [4], and Aichholzer et al. [1]. 

In this paper we examine the problem of characterizing those triangulations 
admitting a minimum weight drawing and answer the question for maximal 
outerplanar graphs. The contribution is twofold: 

1. Minimum weight triangulations for points that are vertices of a regular poly- 
gons are characterized. The characterization is based on the combinatorial 
structure of the dual tree of the minimum weight triangulations of such point 
sets. A consequence of the characterization is an optimal time algorithm for 
computing a minimum weight triangulation of a regular n-gon for any given 
n. Interestingly, it is not necessary to supply the algorithm with the actual 
points, only the size (number of vertices) of the polygon is needed. When ar- 
bitrary convex polygons are considered, the fastest known algorithms require 
O(n 3) time, where n is the number of vertices of the polygon (see Gilbert [7], 
Klincsek [11], and Heath and Pemmaraju [8]). 
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The triangulation produced by our algorithm turns out to be that which 
would result from the application of the greedy algorithm described by Lev- 
copoulos and Lingas [13]. Lloyd [17] has shown that the greedy triangulation 
of a convex polygon is not necessarily of minimum weight; lower bounds for 
the nonoptimality of the greedy triangulation are given by Manacher and 
Zobrist [18] and by Levcopoulos [12]. Lingas [15] shows that on average the 
greedy triangulation approximates the optimum by an O(log n) factor. 

2. We show that every maximal outerplanar graph G has a minimum weight 
drawing. This is done by exhibiting an algorithm that computes a mini- 
mum weight drawing of G in time proportional to the number of vertices 
of G, within the real RAM model of computation. The drawing algorithm 
exploits the combinatorial properties of the minimum weight triangulations 
of regular polygons and is based on a decomposition rule of minimum weight 
triangulations. 

2 P r e l i m i n a r i e s  

We assume familiarity with the basic terminology of graph theory and computa- 
tional geometry (see also Bondy and Murty [2], and Preparata and Shamos [21]). 
A graph G is outerplanar if it has a planar embedding such that all vertices lie 
on a single face. G is maximal outerplanar if G is outerplanar, but the addition 
of any new edge results in a non-outerplanar graph. In geometric applications 
graphs often arise as the result of selecting a set S of points in the plane and 
then connecting certain pairs to be joined by straight line segments which form 
the edge set of the graph. In this paper, we will be interested in triangulations 
of a point set S: planar graphs obtained from S by taking as edge set a maxi- 
mal number of mutually non-crossing straight line segments connecting pairs of 
points in S. In particular, a triangulation of a regular n-gon P is a triangulation 
obtained by adding n - 3 mutually non-intersecting diagonals connecting pairs 
of vertices of P. Every triangulation G of a regular n-gon gives a straight-line 
drawing of a maximal outerplanar graph on n vertices, such that the outer face 
forms a regular n-gon; similarly, every maximal outerplanar graph on n vertices 
gives rise to a unique triangulation of a regular n-gon. We will refer to any graph 
as a triangulation if the graph is isomorphic to a triangulation of some point set 
S. 

Given an embedded planar graph G, the extended dual tree (or e-dual) of G 
is a planar graph G ~ defined as follows. G ~ has a vertex for each internal face of 
G and a vertex for each of the edges on the external face of G. Two vertices u~ v 
of G ~ are adjacent either if they correspond to two internal faces of G that share 
an edge, or if u corresponds to an edge e of G and v to a face of G containing e. 

Note that if G is a triangulation of an n-gon, then G ~ is a tree with 2n - 2 
vertices, with the property that every non-leaf vertex has degree 3. In the rest of 
the paper we assume that the e-dual of the triangulation of an n-gon is rooted 
at a non leaf-vertex r. 
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Let G be a triangulation of an n-gon, and let T be the extended dual of of G 
having root r. Observe that there is a natural way to associate the edges of G 
to all but vertices of T other than r: Each leaf of T corresponds to an external 
edge of the triangulation; each non-leaf v ~ r of T will correspond to the third 
edge of the triangular face of G formed by v and its two children. Only r has no 
corresponding edge in G. 

A (non minimum weight) triangulation of a regular 15-gon and its e-dual 
are shown in Figure 1. The vertex of the dual labeled r is the root of the tree; 
vertices labeled z, y and z will be of use in the rest of the paper. 

Fig. 1. A triangulation and its e-dual. 

We will frequently be transforming rooted trees on the same number of ver- 
tices. It will be convenient to think of a given set V of vertices which has different 
trees defined on it. Each of these trees will be used to define several functions 
both on V and on subsets of V. 

A rooted tree T defined on a set V is a feasible tree if every non-leaf has degree 
3 and each subtree of the root has at most I VI/2 vertices. Clearly any e-dual of 
a triangulation of an n-gon is a feasible tree on 2n - 2 vertices. Conversely, any 
feasible tree on 2n - 2 vertices is an e-dual of some triangulation of a n-gon. 

Let T be a rooted tree defined on a set V. Two vertices ~ and y are incom.  
parable if neither x nor y is an ancestor of the other. 

If T is a rooted tree defined on V, the subtree of T with root v is denoted 
by T(v); the number of leaves in T ( v )  is denoted by IT(V). If x E V and z is an 
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ancestor of z in T, then the set of interior vertices on the pa th  in T f rom x to 
z (i.e., all vertices except x and z) is denoted by rr(x, z). Note that  if z is the 
parent of x then ~r(x, z) = ~. 

Let x and y be two vertices of a regular n-don of radius 1. Let I be the number  
of edges on a pa th  between x and y. Then the length of the diagonal f rom x to 
y is given by 2sin(~l). Note that  this formula holds regardless of whether we 
used the short or the long path  between x and y. 

Let T be a rooted tree defined on V. For any vertex v E V, the weight of v, 
WT(V), is defined to be 2sin(~IT(v)). Observe that  i f T  is the (rooted) e-dual tree 
of a tr iangulation G of an n-don, then WT(V) denotes the length of the edge of 
G corresponding to v. In particular,  wT (r) = 2sin(~n) = 0, which conveniently 
agrees with the earlier observation that  r does not correspond to any edge of G. 
Thus the weight of the triangulation G is given by the sum of the weights of the 
vertices of T. Moreover, for any X C V, we define the weight of X, WT(X), to 

be ~WT(V). Thus, for example, WT(V) is the weight of the triangulation. We 
vEX 

will also denote this value by W(T) and refer to it as the weight of T. Finally, 
we will also need to consider the related functions ~T(V) = 2cos(~lT (v)) and 

W T ( x )  = 
v E X  

The problem of finding a min imum weight tr iangulation of a regular n-don 
can be reformulated as follows: Given a set of 2n - 2 vertices, minimize W(T) 
over all feasible trees T. 

In the next section, we solve the min imum weight tr iangulation problem just 
mentioned. In Section 4, we exploit our results to prove that  every maximal  
outerplanar graph G admits  a minimum weight drawing; tha t  is, a drawing of G 
such tha t  the edges of the drawing are those of some min imum weight triangula- 
tion of the vertices of the drawing. The last section summarizes  our conclusions 
and mentions some open problems. 

3 M i n i m u m  W e i g h t  T r i a n g u l a t i o n s  o f  R e g u l a r  P o l y g o n s  

We begin by defining an operation on a feasible tree T defined on V, which 
transforms T to another feasible tree T t' on V. Let x and y be incomparable 
vertices of T and let z be the lowest common ancestor of z and y. A swap consists 
of two steps: 

1. The subtrees T(x) and T(y) are exchanged, resulting in a tree denoted by 
T I , 

2. If T ~ is feasible, then T "  = T ' ,  otherwiw T"  is constructed by choosing a 
new root for T I to make it feasible. 

Notice that  W(T') = W(T"). A swap is an improvement (or improving swap) if 
W(T') < W(T). 

Observe tha t  the only vertices of T j whose weights change as a result of 
Step 1 are those vertices in 7r(x, z) U ~r(y, z), since these are the only vertices v 
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such that 1T (v) ~ IT, (v). Thus, W(T')  - W(T)  = (WT, (~r(x, z)) - WT (~r(x, z)))+ 
( w r ,  (~(y, z)) - WT (~(y, z))) .  

L e m m a  1. Let T be a feasible tree and let x and y be incomparable vertices of 
T such that lT(x) r IT(y) and having lowest common ancestor z. The swap of 
T(x) a~d T(y) is an improvement if either Wr(lr(x ,  z)) - WT(lr(y, z))) = O, or 
(IT(X) -- IT(y))  x (Wr(lr(x, z)) - WT(r(y ,  z))) > O. 

Proof. Let  xi e ~r(z,z), y~ ~ r(y,z)  a n d  A l  = l T ( y ) -  IT(x). Observe  t h a t  
l r , ( ~ )  = lr (~; )  + zxl, and lr,(y~) = Ir(Vj) -- ZXZ. 

t k rn 
Now, W ( T  ) - W(T) = ~-]~i=l (WT,(Xi) -- wT(xi) ) + ~-]d=I (WT,(Yj ) -- wT(yj ) ). 
Using the definition of wTO and properties of the sine function, we have, 

(=~) = 2sin(�88 (=~)) WTe 

= 2sin(~(lT(xi)  + Al)) 

= 2sin( ~lT(z,))cos( ~ A l ) +  2cos(~lT(x,))sin(~ Al) 

= WT(Xl)cos(~Al)+ ~T(Xi)s in(~Al) .  

Similarly, WT, (yj ) = WT (yj )cos( ~ AI) -- ~T (yj )sin ( ~ Al). 
Thus, 

k 

i = 1  

m 

Z ( ( c o s ( ~ A I ) -  1)wT(yj) - s in(~Al)~T(Yj) )  
j = l  

= (cos(~zxl) - 1)(WT(~(~, z)) + WT(~(y, ~))) + 

The first term is negative since cos(~Al) - 1 < 0. The second term is non- 
positive since sin(~A1) has the same sign as Al, and since, by assumption, 
either WT(rr(x, z)) = WT(rr(y, z)) or A! has the opposite sign of WT(rr(x, z ) ) -  
WT(r(y ,  z)). Thus W(T')  - W(T) < 0 and the swap is improving. [] 

The preceding result is used to establish the following two corollaries. 

Corol la ry  2. Let T be a feasible tree and let x and y be incomparable non-leaf 
vertices o f T  having children ~', x" and y', y" respectively. If  lr(z ')  > lT(ff ) and 
IT(z") < IT(y"), then T admits an improving swap. 

Proof. Let z be the lowest common ancestor of z and y. The hypotheses of the 
corollary imply that lT(x') - lT(~) and IT(X") -- lT(y") have opposite signs. 
Therefore one of these two differences has the same sign as WT(r(x ' ,  z)) -- 
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WT(~r(y', z)). Since ~r(x',z) = ~r(x",z) and r ( y ' , z )  = Ir(y",z),  we can apply 
Lemma 1, to see that  either swapping Tx '  with Ty'  or swapping T x  ~' with Ty "  
must decrease the weight of the tree. Thus, we have made an improving swap. 
[] 

As an example, vertices x and y of Figure 1 are two incomparable non-leaf 
vertices for which there is an improving swap. 

C o r o l l a r y  3. Let T be a feasible tree and let z be a vertex having children x and 
y such that y has children y', y ' .  I f  IT (x) < lT (y'), then T admits an improving 
swap. 

Proof. Since the path from x to z is empty, W--'-T(~r(x, z)) = 0; also WT(~r(y', z)) = 
WT(~r(y" ,z) )  = ~T(Y)  >_ O, since the subtree rooted at y has at  most half 
of the leaves in the tree. Thus W----T(~r(x,z))- WT(~r(y ' , z ) )  < O. Therefore, if 
IT(x) -- lw(y') < 0, there is an improving swap by Lemma 1. [] 

We now have two operations which can be applied to feasible trees in order to 
decrease their weight. It turns out that  these two operations suffice to transform 
any feasible tree to a minimum weight tree. 

A weight-balanced tree is a feasible tree which admits no improving swaps. 
Clearly every minimum-weight tree is weight-balanced. The rest of this sec- 

tion consists in showing that  every weight-balanced tree is minimum-weight. 
To accomplish this, we show that  every weight-balanced tree can be put  into 

a standard form by repeatedly swapping left and right subtrees of vertices of 
the tree. Clearly swapping the left and right subtrees of a given vertex does not 
change the weight of the tree, since it does not change the weight of the vertex. 
Since every weight-balanced tree can be put  into this form, all weight-balanced 
trees on V must have the same weight. This weight must be minimum since all 
minimum weight trees are themselves weight-balanced. 

A weight-balanced tree T is sorted if, in a breadth-first, left-to-right traversal 
of T, the function IT 0 is not increasing. 

L e m m a 4 .  There is only one sorted weight-balanced tree T having 2n - 2 ver- 
tices. 

Proof. The vertices on each level are sorted by decreasing IT ()-value; if a level 
contains a leaf v, all vertices to the right of v on that  level are also leaves. Since 
all vertices on lower levels have lT ()-values no greater than lT (v), all vertices on 
the next level down are also leaves. Because all feasible trees on 2n - 2 vertices 
have exactly n leaves, this uniquely determines the structure of the tree. [] 

Let T be a weight-balanced tree. It is clear that  we can arrange T so that  
each vertex has its children sorted from left to right by decreasing/T0-value.  It 
turns out that,  once this is accomplished, the resulting tree is sorted. We show 
this in two steps. 
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L e m m a  5. Let T be a weight-balanced tree, and let x and y be incomparable 
vertices o f T  having children z z ,  xR and yL, yR respectively, such that IT(XL) > 
IT(T,R) and lr(YL) > IT(yR). I f l r (x  ) ~> IT(y), then lw(zR) >_ IT(yL). 

Proof. By assumption, IT(XL) + l~'(xR) = IT(x) > IT(y) = IT(yL) + lT(yR). 
So, if lT(XR) < 1T(YL), then it must be that  IT(XL) > lw(yR). Therefore, by 
Corollary 2, T admits an improving swap, contradicting the assumption that  T 
is weight-balanced. [] 

L e m m a  6. I f  T is a weight-balanced tree, such that the children of each vertex 
are sorted left-to-right by decreasing ITO-value, then T is sorted. 

Proof. The proof consists of two parts. 

1. We first show that vertices at same depth have lT ()-values decreasing from 
left to right. 

2. We then show that  the right-most vertex at depth k has IT ()-values at least 
as large as that  of the left-most vertex at depth k + 1. 

We prove the first claim by induction on the depth of vertices in the tree. 
The base case is simple, the vertices at depth one are simply the children of the 
root, and so are sorted by decreasing /T0-Value. Suppose now, that  all vertices 
at depth k - 1 are sorted by decreasing lT ()-value, and consider now the vertices 
at depth k. Let x and y be two consecutive vertices, in left-to-right order, at 
depth k - 1. By induction, IT(x) > l~.(y); by hypothesis, the children of x are 
in decreasing IT ()-value order, as are the children of y. Thus, by Lemma 5, the 
children of x and y together are in decreasing lT ()-value order. Since this holds 
for all pairs of consecutive vertices at depth k - 1, all vertices at depth k must 
also be sorted. 

We also prove the second claim by induction on the depth of vertices in the 
tree. The base case is easy to establish (by contradiction using Corollary 3), so 
we show only the induction step. Let xi and yi denote the left-most and right- 
most vertices at depth i respectively. Assume that,  for all i < k, Yi has IT ()-value 
at least as great as that  of xi+t. Thus ~T(x i+ t )  >_ wT(Yi). Let y = Yk be the 
right-most vertex at depth k, let x = xk+1 be the left-most vertex at depth k +  1, 
and let r be the root of T. Then WT(Tr(x, r)) > WT(Tr(y, r)), since ~T(Xl) > 0 
and ~T(Xi+l) > ~T(Yi) ,  for each i < k. Since T admits no improving swaps, by 
Lemma 1, it must be that  IT(x) g 1T(y). [] 

Lemmas 4-6 immediately yield the following result. 

T h e o r e m  7. A triangulation G of a regular n-gon is minimum weight if and 
only if its e-dual can be rooted so that it is weight-balanced. 

Figure 2 shows a minimum weight triangulation of a regular 15-gon; r desig- 
nates the root of the e-dual. 

We can use our understanding of the structure of weight-balanced trees to 
design an optimal algorithm for computing a minimum weight triangulation of 
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Fig. 2. A minimum weight triangulation of a regular 15-gon. 

a regular n-gon. Let T be the sorted, weight-balanced tree on 2n - 2 vertices. T 
induces a triangulation of the regular n-gon which, by Theorem 7 is a minimum 
weight triangulation. Observe that  the triangulation is the same as the one which 
would be obtained by an application of the greedy algorithm (always selecting 
the smallest segment which does not cross any of the segments selected so far). 
Moreover, this triangulation can be computed in time proportional to the size 
of T. We summarize this in the following: 

T h e o r e m S .  A minimum weight triangulation of a regular n-gon Can be com- 
puted in time proportional to the size of the triangulation produced. Furthermore, 
the triangulation obtained is the same as that obtained by the greedy algorithm. 

4 Minimum Weight Drawings of Maximal Outerplanar 
G r a p h s  

Before proving the main result of this section, we note a feature of minimum 
weight triangulations. 

Lemma 9. Let G be a minimum weight triangulation of a set P of points in the 
plane. Let Aabc be an interior face of G such that ab and ~-~ are on the outer 
face of G. Then E(G) - {ab, ~-~} is a minimum weight triangulation of P - {a}, 
where E(G) denotes the set of edges of G. 
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Using the e-dual of a embedded maximal outerplanar graph allows us to 
compute a minimum weight drawing of the graph. 

T h e o r e m  10. Let G be a maximal outerplanar graph on n vertices. A minimum 
weight drawing of G can be computed in O(n) time in the real RAM model. 

Proof. We begin by considering an embedded maximal outerplanar graph G with 
all vertices the outer face, and then computing the e-dual T of G. Let T ~ be any 
feasible weight-balanced tree containing T as a sub-tree, and let N be the number 
of leaves of T ~. T t gives rise to a minimum-weight drawing/" of a triangulated 
regular N-gon. A minimum weight drawing of G can now be obtained by repeated 
application of Lemma 9 to / ' .  Figure 3(b) shows an example of such construction, 
when the input is the graph of Figure 3(a). Observe that the drawing is a sub- 
triangulation of the minimum weight triangulation of a regular 15-gon. Dotted 
lines describe the parts of the triangulation (and of its e-dual) that are not part 
of the drawing. 

This establishes that any maximal outerplanar graph G admits a minimum- 
weight drawing. We now provide a linear-time algorithm for constructing a min- 
imum weight drawing F of G. We use the approach of the previous paragraph 
to choose a particular feasible tree T ~, namely, a complete feasible tree T t which 
contains T as a subtree. Let k be the height of T ~. Thus T ~ is the e-dual of a 
regular 3 �9 2 k- 1-gon. Clearly, the construction of the regular 3 �9 2 k- 1-gon corre- 
sponding to T ~ must be avoided if the algorithm is to be linear time. Observe 
that the vertices of the regular 3 �9 2 k-l-gon are evenly distributed around the 
circumference of a disk. thus the vertices of F are also distributed around the 
disk. We need only give a method for computing the location of these vertices. 
Recall that each edge of G corresponds to a non-root vertex of its e-dual T. 
Now, the length in a v of an external edge e of G having e-dual vertex x is given 
by WT,(Zt), where x~ is the vertex of T J corresponding to ~. Note that z' is not 
necessarily a leaf of T ~, even though z is a leaf of T. Observe also that the length 
of e is completely determined by IT, (z'), and that 1T,(~J) = 2 ~-d, where d is the 
depth of x (or ~1). Thus for each leaf ~ of T, the edge corresponding to z is a 
chord of length 2sin(~2 ~-~) connecting 2 vertices on the disk. 

So, to construct/~, do an inorder traversal of the leaves of T, drawing chords 
of the corresponding lengths on the disk. This gives a drawing of the outer face 
of G, which completely determines the location of all vertices; now draw all 
remaining edges as straight line segments. 

Note that if G happens to have an e-dual which is weight-balanced, then this 
e-dual can be used to directly produce a minimum weight drawing of G. 

5 C o n c l u s i o n s  a n d  O p e n  P r o b l e m s  

In this paper we have proved that every maximal outerplanar graph admits 
a straight-line drawing that is a minimum weight triangulation of the set of 
points representing the vertices in the drawing. We have also provided a complete 
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Fig. 3. (a) A maximal outerplanar graph and (b) its minimum weight drawing. 

characterization of the minimum weight triangulations of regular polygons. The 
general problem of determining which triangulations are drawable as minimum 
weight triangulations is still far from solved. As an intermediate step toward 
answering the question, we think it might be worth investigating the minimum 
weight drawability of special classes of graphs, like the 4-connected planar trian- 
gulated graphs or the maximal k-outerplanar graphs (a graph is k-outerplanar 
when it has an embedding such that all vertices are on disjoint cycles properly 
nested at most k deep). 
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