Portable Graph Layout and Editing

Brendan Madden, Patrick Madden, Steve Powers, and Michael Himsolt

Tom Sawyer Software, 1828 Fourth Street, Berkeley, CA 94710
info@TomSawyer.COM

Abstract. The Graph Layout Toolkit and the Graph Layout Toolkit are
portable, flexible toolkits for graph layout and graph editing systems.
The Graph Layout Toolkit contains four highly customizable layout al-
gorithms, and supports hierarchical graphs. The Graph Editor Toolkit is
a tightly coupled interactive front end to the Graph Layout Toolkit.

1 Introduction

The visualization of graphs has become very important over the last few years.
Some examples include project management, compiler and software development
tools, work-flow, and reverse engineering applications. Other applications include
those for network management, CAD and CASE, diagramming, and database
design.

Many graph layout and editing systems have been developed during the last
ten years, examples include D-ABDUCTOR, dag, dot, daVinci, Diagram Server,
EDGE, GEM, grab, GraphEd and vcg (for an overview, see [DETT95]). Research
projects generally have different design, documentation, packaging, and testing
goals than those of commercial software.

In addition, research systems usually have the freedom to experiment with
novel ideas with uncertain commercial value. However, our goals are often differ-
ent as a commercial vendor. Qur approach is generally to seek very high quality
layout algorithms that have general applicability to groups of markets.

In a commercial environment, it is usually better to avoid techniques that
have limited applicability. A novel approach to a graph drawing problem may
confuse, and sell poorly, if the solution does not match the traditions or expec-
tations of the particular customer. We have produced a family of layout styles
to try to anticipate the needs of diverse markets with varying requirements.

In production applications, it is unlikely that any restrictions on input graphs
such as planarity, maximum degree or biconnectivity will hold in general. In spite
of that, we try to adopt many useful techniques from graph drawing literature
into our framework when those techniques can be made generally applicable.
However, it seems to be very difficult, and perhaps impossible, to satisfy all of
the requirements of commercial applications.

Furthermore, the Graph Layout Toolkit and the Graph Editor Toolkit sup-
port a generalized framework to visualize information that spans across many
linked graphs. A programmer or user may navigate easily from one graph to an-
other, or many graphs may be interactively nested in the same plane if desired.
Each graph also maintains its own layout tailoring properties.



386

Additionally, it is very important that layout and editing systems are port-
able. Ideally, they should work with a number of different compilers, operating
systems, industry standard graphics class libraries, rapid application develop-
ment tools, and be easily embedded into other applications.

Tom Sawyer Software’s Graph Layout Toolkit and Graph Editor Toolkit are
mature software packages that provide many of the above-mentioned features.

2 The Graph Layout Toolkit

The Graph Layout Toolkit [GLT95a, GLT95b] currently supports four differ-
ent layout styles: circular, hierarchical, orthogonal, and symmetric. Each layout
style derives from a virtual function driven layout class hierarchy that is loosely
coupled with a graph management class hierarchy. This design allows the user
to flexibly switch between the installed layout styles at any time.

The graph class hierarchy supports directed and undirected graphs with mul-
tiedges and reflexive edges. There are no imposed implementation limits on the
size of a graph, its maximum degree, and no restrictions on the classes of graphs
that can be specified. All layout algorithms also support multiple connected com-
ponents, navigation, variable node dimensions, edges with bends, and reading
and writing of graphs and their drawings from and to disk.

Edges may either be drawn as straight lines or may be represented as a se-
quence of lines. An edge with bends owns a graph, i.e. a path, that is a sorted
chain of dummy nodes and edges. This technique ensures that paths can be
managed through standard graph operations. Each new layout algorithm ex-
tends the generic graph and layout services that are provided by the framework.
The virtual function interface and separate name spaces ensure that one layout
algorithm does not adversely affect another.

The Graph Layout Toolkit provides operations that make it easy to integrate
graph drawing techniques into various applications. It supports a number of
features for portable interactive editing such as continuously up-to-date drawing,
and cut, copy, paste, duplicate, and clear functionality. Users just plug in their
domain-specific graphics calls. It further supports graph and layout replication
features and subject/view relations where several objects may be attached to a
node or an edge and get notified of changes. Graphical queries can be applied to
graphs and displayed in different windows with minimal programming overhead.

The Graph Layout Toolkit also supports highly customizable Postscript ™
and Encapsulated Postscript™ output. It generates gray scale or color output
and can distribute a drawing over multiple pages of arbitrary size. It can also
optionally scale and rotate, insert crop marks, and insert page labeling and
numbering detail into the final drawing. It has an extensible design that enables
application developers to load icons into nodes, and to write application-specific
PostScript procedures.

The Graph Layout Toolkit is implemented in C++, and provides more than
six hundred functions for each of the C++ and ANSI C application programmer



387

interfaces. It has been ported to more than fifteen different compilers and runs
on all standard operating systems.

2.1 Circular Layout

The circular layout algorithm is designed for the layout of ring and star network
topologies. It is an advanced version of the one developed by Kar, Madden, and
Gilbert [KMG89]. It functions by partitioning nodes into logical groups based
on a number of flexible node grouping models. Each group of nodes is placed
on radiating circles based on their logical interconnection. The partitioning is
either performed with a pre-defined method, such as biconnectivity of the graph
or the degree of nodes, IP addresses, IP subnet masks or another domain specific
technique. It also supports manually configured clustering.

The algorithmn minimizes cluster to cluster crossings as well as crossings
within each cluster. In additions, it also employs tree balancing routines, and
has ring and star detection and placement techniques within each cluster. Figure
1 shows two sample drawings.

Fig. 1. Examples of circular layout.

2.2 Hierarchical Layout

The hierarchical layout algorithm is designed to lay out directed graphs. It has
applications in project management software, compiler and software develop-
ment tools, information management applications, work-flow, reverse engineering
applications, database schemata and network management applications. Figure
2 shows two examples of this style.



388

Fig. 2. Examples of hierarchical layout.

The hierarchical layout algorithm is a heavily optimized and extended ver-
sion of the standard algorithm by Sugiyama, Tagawa and Toda [STT81] that
organizes the nodes of a graph into levels, adds dummy nodes, as necessary, into
the drawing to produce a proper hierarchy and reduces the number of cross-
ings between levels. It supports both directed and undirected graphs and can
optimally resolve cycles in directed graphs.

A graph can be laid out either horizontally or vertically. Properties of the
drawing, such as edge to node attachment, node justification, the minimum
slope of an edge or the spacing between nodes and levels can be controlled by
the user, please refer to Fig. 10. Special tree balancing algorithms help to draw
class hierarchies tidy. Recently, a multi-pass placement engine has been written
to improve the placement of nodes that lack either parents or children. This
eliminates some shortcomings of traditional barycentric techniques.

Programmers of network applications often create bipartite graphs when
there is inherent semantic information in the graph, i.e. routers connecting to
networks. If one uses the standard layout techniques from [STT81] for directed
graphs, the layout that will result is usually an unreadable two-level hierarchy.

Therefore, we have extended the hierarchical layout style to unfold undi-
rected network structures in a number of novel ways. One method employs a
bipolar acyclic ordering for the biconnected components. Ethernet nodes typi-
cally have very high degree and variable width. Subtrees and end-nodes, i.e. ter-
minals and hosts, are selectively inverted around these possibly variable-width
Ethernet nodes, as shown in Figure 3.

These techniques have been applied to the Network Layout Assistant [NLA95]
which is an add-on for a network management software package from Sun Mi-
crosystems named Solstice SunNet Manager ™. In this system, Solstice SunNet
Manager ™ discovers devices on a network from which the Network Layout As-
sistant generates an intelligent drawing.



389

2.3 Orthogonal Layout

The orthogonal layout algorithm is based on papers by Biedl and Kant [BK94]
and Papakostas and Tollis [PT94]. Orthogonal layouts are specifically suited
for database design, object oriented analysis and design, and CAD and CASE
diagrams. Figures 4 and 5 show examples of drawings of this style.

The algorithm produces a constant number of bends per edge and has rel-
atively high performance in practice. It has further been extended by Bied!
and Papakostas at Tom Sawyer Software to produce more aesthetically pleasing
drawings than those of the currently published B/K and P/T algorithms. With
this algorithm, planar graphs can be drawn planar, and nonplanar graphs are
also easily supported. Support has been recently added for nodes with degree
greater than four and for row and column reuse. For high degree nodes, the
user has the choice to keep node dimensions fixed to their specified input which
implies decreasing the separation of grid lines. Alternatively, the user can allow
the node area to increase to allow high degree while keeping the separation of
grid lines fixed.

2.4 Symmetric Layout

The symmetric layout algorithm is generally designed to display networks. The
drawings stress symmetric and isomorphic substructures, and its uniform dis-
tribution of nodes and edges, in general, yields aesthetically pleasing drawings.
Both directed and undirected graphs are supported. Figure 6 shows two exam-
ples. The algorithm is originally based on work by Kamada and Kawai [KK89].

Several parameters of this algorithm are available in order to fine-tune the
heuristics and the termination conditions. These include the strength of the
spring constant and the numbers of iterations that are performed. Generally,
it produces relatively few edge crossings. We have also been able to more than
quadruple the performance over subsequent Graph Layout Toolkit releases. We
will try to continue this trend over coming releases to quickly lay out very large
graphs.

2.5 Hierarchical Graphs

Hierarchical graphs become important when information becomes too complex
to be modeled with a single graph, or. when information is more naturally
modelled hierarchically. The navigation manager realizes hierarchical relations
among graphs:

1. Node to graph navigation supports hierarchical relations from a node to a
graph. Figure 7 shows several examples of node to graph relationships. These
relations can be visualized by expanding the parent node so that it visually
contains the child graph.



390

'
h
WO -u-:

—— {0
B9 gen——twn

ol w0
h-——‘—-h | —wr
9B o

po

rrer L

Fig.3. A network drawing generated by the Network Layout Assistant. The
Network Layout Assistant is a plug-in module for Solstice SunNet Manager™
that draws networks with the Graph Layout Toolkit.

2

[

Fig. 4. Example of orthogonal layout.



391

Fig. 5. Example of orthogonal layout.

2. Edge to graph navigation supports hierarchical relations from an edge to a
graph. An edge (or node) to graph relation can be also be visualized by
displaying the target graph in with another window or another application
specific technique.

A navigation manager is organized as several graphs which model the hierar-
chical relation. One graph manages node to graph and edge to graph relations.
Another recalculation graph manages which graphs are dependent on which in
order to perform layouts in the correct order when graphs are nested. Arbitrarily
many graphs can be recursively nested within a navigation manager to create
large hypertext-like structures. Individual nodes and edges may also navigate to
many graphs; further, many nodes and edges may navigate to the same graph.

The Graph Layout Toolkit supports interactive collapse and expand oper-
ations with continuously up-to-date drawings to show and hide detail in large
structures. Nodes are scaled to fit around their contained graphs based on a
post-order traversal of the nodes in the graph that maintains the navigation re-
calculation information. Recalculation operations are extremely fast under small
changes to drawings as each graph maintains information that indicates whether
it needs to be laid out again.



392

Fig. 6. Examples of symmetric layout.

Fig. 7. An example of a hierarchical graph with several node to graph relations.
Note the graphical visualization where the parent nodes contain the children
graphs.

Each graph is laid out in an arbitrary world coordinate system and trans-
formed dynamically into the coordinate system of the bottom-most graph in the
drawing. This design helps to keep children graphs and their layouts invariant
under collapse and expand operations.

Since the layout algorithms process each graph separately, layout works faster
on hierarchically organized graphs than on flat graphs, and the structure is
preserved. Navigation operations are efficient enough to manage hundreds of
small graphs at the same time with an interactive graph editor.



393

3 The Graph Editor Toolkit

The Graph Editor Toolkit [GET95] is a portable front end for the Graph Layout
Toolkit. It provides a user interface to create, display and edit graphs. Figure 8
shows a screen capture of the editor. Figures 9 and 10 show two dialogs of the
editor. It is designed to be extended at the back end to tie it to various data
sources and to be customized at the front end to add application semantics.

The Graph Editor Toolkit derives its classes from Graph Layout Toolkit
classes and extends them with methods to handle user interface operations such
as dispatching user input and drawing nodes and edges. It consists of four inde-
pendent subsystems:

— The Engine is a portable module that determines how the editor reacts
to input. The engine extends the Graph Layout Toolkit’s classes into user
interface aware graph, node, and edge classes. Potential users of the editor
may extend these classes to adapt them for their own need.

— The DocView manager implements a document/view model that allows one
graph to be displayed in more than one window, but with different visual
representations.

— The Graphics manager can display nodes and edges as arbitrary graphic
widgets. Each node is represented by a matrix of graphic primitives. In the
standard cases, this is a 1 x 2 matrix that consists of a bitmap and a text
label. Databases may use 2 x n tables to display data entries.

— The Dialog manager interacts with the windowing system to generate win-
dows, menus, and dialogs.

Naturally, the Graphics and the Dialog manager depend on the underlying
toolkit and window system, and are less portable than the Engine and DocView
managers.

The Graph Editor Toolkit is currently available as a stand-alone application
or as a library for Borland ObjectWindows™ based programs for Microsoft
Windows 3.1, Windows ’95, and Windows NT.

4 Outlook

There are many improvements and extensions planned for the Graph Layout
Toolkit and the Graph Editor Toolkit. Extensions will include incremental and
interactive algorithms, constraint systems, enhanced navigation systems, and la-
beling systems. A Graph Editor Toolkit portable editor framework is being de-
veloped and the graphics portions are being ported to the Microsoft Foundation
Classes for Windows, Microsoft OLE, and OSF/Motif™ for UNIX platforms.



394

Fig. 8. The Graph Editor Toolkit for Microsoft Windows™ 3.1.

Fig. 9. This Graph Editor Toolkit dialog is used to set the basic layout options.



395

Fig. 10. This Graph Editor Toolkit dialog is used to set the options for the
hierarchical layout style.

References

[BK94] Biedl, T., Kant, G.: A Better Heuristic for Orthogonal Graph Drawings,
In: Proc. of the 2nd European Symp. on Algorithms (ESA 94), Lecture
Notes in Computer Science 855 Springer-Verlag (1994) 124-135.

[DETT95] Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Algorithms for draw-
ing graphs: An annotated bibliography. In Computational Geometry: The-
ory and Applications 4, (1994), 235-282.

[GET95] Tom Sawyer Software: Graph Editor Toolkit Manuals, Berkeley, CA (1995)
(to appear).

[GLT95a] Tom Sawyer Software: Graph Layout Toolkit User’s Guide, Berkeley, CA
(1992 - 1995).

{GLT95b] Tom Sawyer Software: Graph Layout Toolkit Reference Manual, Berkeley,
CA (1992 - 1995).

[KK89] Kamada, T., Kawai, S.: An Algorithm for Drowing General Undirected
Graphs, Information Processing Letters 31 (1989) 7-15.

[KMG89] Kar, G., Madden, B.P., Gilbert, R.S.: Heuristic Layout Algorithms for Net-
work Management Presentation Services, IEEE Network November (1988)
29-36.

[NLA95] Tom Sawyer Software: Network Layout Assistant User’s Guide (1993 -
1995).

[PT94] Papakostas, A., Tollis, I.G.: Improved algorithms and bounds for orthogonal
drawings, In: Proc. Graph Drawing '94, Lecture Notes in Computer Science
894, Springer-Verlag (1994) 40-51. (a revised version is in progress).

(STT81] Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of

hierarchical systems. IEEE Transactions on Systems, Man and Cybernetics
11 (1981) 109-125.



