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Abs t rac t .  In this paper, we introduce a parallel simulated annealing al- 
gorithm for generating aesthetically pleasing straight-fine drawings. The 
proposed algorithm calculates high quality 3D layouts of arbitrary undi- 
rected graphs. Due to the 3D layouts, structure information is presented 
to the human viewer at a glance. The computing time of the algorithm is 
reduced by a new parallel method for exploiting promising intermediate 
configurations. As the algorithm avoids running into a local minimum of 
the cost function, it is applicable for the animation of graphs of reason- 
ably larger size than it was possible before. 
Subsequent to the discussion of the algorithm, empirical data for the 
performance of the algorithm and the quality of the generated layouts 
are presented. 
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1 M o t i v a t i o n  

During the last few years the problem of generating aesthetically pleasing layouts 
of a given graph G = (V, E) has received an increasing amount  of attention 
[BETT94]. After  transforming an abstract graph description into an appealing 
drawing, a human viewer can, at a glance, derive additional information about 
the properties of G which are inherent in the abstract description. Due to the 
high complexity of the problem, which is Af t -ha rd  and the small computational 
power of the desktop workstations of the past, current layout programs are 
mostly computing two dimensional straight-line drawings. Only a few authors 
[FR91, CELR94, FPS94] have considered the challenge of calculating 3D layouts. 
These kinds of drawings, however, are best suited to present inside information 
to human viewers. 
Modern workstations are equipped with fast graphic interfaces which allow the 
user to rotate a 3D representation without visible disturbance and to create 
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virtual walk-through animations. However, the calculation of 3D layouts requires 
a reasonable amount of computational power. For reducing the computing time 
we will take advantage of a parallel computer system. Criteria like: 

�9 reflect inherent symmetries �9 avoid edge crossings 
�9 maximize angle resolution �9 keep edge lengths uniform 
�9 distribute vertices evenly 

should be optimized in order to get aesthetically pleasing drawings [KK89, FR91, 
Tu93]. Unfortunately, some of them are competitive and there is no reasonable 
way to assign absolute weights to them. Most of the known algorithms for solving 
this problem can be classified into one of three groups: 

The combined heuristics make use of heavy-duty preprocessing techniques to 
determine graph characteristics like strongly connected components, planar sub- 
graphs or minimal height breadth-first spanning trees [HS93, Tu93]. The final 
layout is gradually obtained afterwards. 
The spring embedder model for drawing undirected graphs was introduced by 
Eades lEa84]. Using an analogy to physics, vertices are treated as mutually 
repulsive charges and edges as springs connecting and attracting the charges. 
Starting from an initial placement, the spring system is moved to a state with 
minimal energy. Kamada and Kawai [KK89] refined the model of Eades. They 
introduced the desirable length, a combined value of the shortest path between 
two vertices and the desired length of a single edge in the display plane. There, a 
partial differential equation system must be solved for each vertex in each itera- 
tion to determine its new location. Fruchterman and Reingold [FR91], like Eades, 
made only vertices that are neighbors attract each other, while all other vertices 
repelled each other. Their layouts were determined during a fixed number of 
iterations. The proposed algorithm calculates the effect of the attractive and re- 
pulsive forces on each vertex and limits the total displacement by a temperature 
value, afterwards. The temperature and its cooling schedule were borrowed from 
the simulated annealing method. While all these spring embedders are quite fast, 
they perform a gradual descent and converge at a local minimum of the energy 
function. The algorithm presented in [FLM94] avoids this drawback by introduc- 
ing a local temperature value to each vertex. It terminates after a fixed number 
of rounds or if all local temperatures are below a certain threshold. Using a new 
heuristic to detect rotations and oscillations during the computations it was 
possible to outperform the speed of the algorithms presented in [KK89, FR91]. 
However, no statements could be made about the convergence behavior. 
The third group of algorithms uses randomness to overcome the problem of 
ending up in local minima. Its model, called simulated annealing (SA), is a 
flexible optimization method, suited for large-scale combinatorial optimization 
problems [DLS93, JAMS89-91]. To our knowledge, Davidson and Harel [DH93] 
were the first who used an SA approach for calculating aesthetically pleasing 
graph layouts. The graph drawing problem, especially, is characterized by large 
configurations as well as a non-trivial neighborhood relation and a complex cost- 
function. These properties seem to be highly responsible for the long computing 
times required by the SA algorithm proposed. However, the resulting quality was 
comparable to or even better than that of the spring embedders [FR91]. Due to 
the considerable time requirement, even for graphs of small and medium sizes 
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and the large number of parameters, the SA algorithm of [DH93] is not suited to 
draw larger graphs. A first parallel approach (implemented at a CM-2) for tack- 
ling the drawing problem was presented in [KMS94]. However, it was reported 
that the convergence rate was slow and that the network diagrams generated 
had only small sizes. 

Within this paper, we will present a parallel SA algorithm for generating 
3D layouts of arbitrary undirected graphs. The required time is significantly 
reduced compared to [DH93], by using the computing facilities of a modern MPP 
system. For our algorithm, the assignment of four parameters is sufficient. All 
others are either fixed or were made self-adjusting during runtime. This property 
is essential for being applicable in practise. In Section 2 of this paper, we will 
present the PARallel Simulated Annealing algorithm (PARSA) in details. Its 
properties and some layout results will be discussed in Section 3. Additionally, 
empirical performance data will be given. 

2 T h e  PARSA-Algorithm 

SA has been applied successfully to many problems characterized by a large 
discrete configuration space, too large for an exhaustive search, over which a 
cost-function is to be minimized (or maximized). After picking some initial con- 
figuration, most of the iterative methods continue by choosing a new configura- 
tion at each step, evaluating it, and possibly replacing the previous one with i t .  
This action is repeated until some termination condition is satisfied. In general, 
the procedure ends up in a local minimum, rather than the desired global one. 
SA tries to prevent this by allowing uphill moves with a certain probability. A 
sequential SA algorithm 3 consist of two nested loops. Within the interior loop, 
new configurations are continuously evaluated until an equilibrium of the cor- 
responding cost-function .M is reached. A new configuration Ck is derived from 
the previous one by choosing an arbitrary vertex of C~-1 and moving it to a ran- 
domly chosen position. The maximum displacement is limited by a value which 
is proportional to the temperature #. If an improvement is reached, the new con- 
figuration is accepted. In case of deterioration, acceptance is probabilistic. After 
an equilibrium is detected, the virtual temperature is reduced according to a 
certain cooling:schedule. If a termination condition is fulfilled the final graph 
layout is returned. 

At the beginning of the SA algorithm, the configurations resembles a muddle. 
This situation has to be resolved step by step afterwards. To attain a satisfac- 
tory convergence behavior, it is important that a single vertex (or only a small 
number of vertices) are moved at a time, and that each displacement is limited 
by a temperature dependent factor. When using SA to generate 2D layouts the 
second statement prevents single vertices to be placed at distant but reason- 
ably better positions if the temperature is already lowered and a potential (or 

3 We assume that the reader is familiar with the basic annealing techniques. Otherwise, 
a good introduction can be found in [HRS86, JAMS89-91, OG89, DLS93] and the 
references given. 
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cost-) barrier must be overcome. Therefore, quite often drawings of unpleasing 
quality were returned. This effect can be reduced to a certain degree by using a 
sophisticated cost-function [DH93]. The PARSA-algorithm, however, abolishes 
this by generating 3D configurations directly. The additional dimension permits 
single vertices to circumnavigate obstacles and to travel to a distant destination 
at low temperature values and in situations where the intermediate configura- 
tion is relatively stable. The resulting advantage is twofold. Firstly, a simple 
cost-function speeds up the sequential algorithms. Secondly, the solution-space 
allows for smooth transitions which results in a convinced convergence behavior 
with high quality layouts, even if the graphs are going to become large. 

To simplify reading, we kept the notation of the PARSA-algorithm (Fig. 1) 
close to the sequential case. Thus, for the discussion of the common parts one 
should ignore the lines 10-11, 13-15, 17, 21-23, 25, set I = 0, and assume that  
the remaining algorithm is executed at a single processor. 

2.1 C o s t - f u n c t l o n  

The cost-function is one of the most critical parts of any SA algorithm. The qual- 
ity of a desired solution must be well complemented by the values returned for 
intermediate solutions rsp. configurations. As this function forms the compute- 
intensive kernel of the algorithm, it should be possible to calculate its new val- 
ues .M(Ck) very quickly and if possible incrementally from its previous val- 
ues .Ad(Ck-1). The cost-function we have chosen consists of only three parts: 
34 = .Ada + .M~ + Alp with A4a the angle-costs, Me  the edge-costs, and 
.Mp the pseudo-edge-costs. The new values of .Mi(Ck) (i e {a, e,p}) are deter- 
mined by adding a fast computable term Ai(v) to ,Adi(Ck-1), with v being the 
vertex moved within the transition Ck-1 b Ck. 

Angle-costs: Each angle between neighboring edges of a vertex (,g) in the 3D 
configuration space is associated with a cost value. The smaller an angle, the 
higher its cost. An angle c~ larger than rr has costs equivalent to 2 r  - a. Let )~a 
be a scaling factor and ka a constant. Then, the angle-costs are determined by: 

./Ma = ,Xa " ~ ~ ca(a) rr -- o~ 
,,~v a~A~ deg(v) with Ca(a) -- ka " c~ + 7r 

and A~ = {,~(k,l) l k = { v ,  v i } , l = { v ,  v j } , k , l e E ,  i < j }  

Edge-costs: This term evaluates the difference between the desired length Le of 
an edge and its Euclidean length A in the 3D space. Best results were achieved 
by using a twofolded function: A hyperbola if the length is below L, ,  and a 
straight line otherwise. Let ike be a scaling factor and kel, ke2 some constants. 
Then, the edge-costs are determined by: 

Le �9 L'-'4 if .4 < L~ 
ca(A) with c~('4) = ~,, .a+L, 

deg(u) + deg(,) M s  
,=(-,~ otherwise 

r E .l~ h e 2  
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- -  k 
- -  Ck 
-- J~ 

-- E 

-- V 

-- 0 

- -  N[0..h] : 

number of accepted configurations 
configuration under negotiation 
value of the cost-function 
mean value of 2v[ 
mean deviation of Ad 
temperature value 
with N[i] = ( M ,  O, V)  the current 
cost-function, temperature,  mean deviation at  PE i 
with i = 0 being this PE and 1 < i < h the neighbors 
initially M = o o ,  0 0 = 3 d ,  V = c ~  

P A R S A  (G = (V, E)) 

1 : BEGIN 
2 : Co := random_initial_configuration 0 ; 
3: calLinit (N[0], E);  
4: k :----- 1; 
5 : REPEAT 
6: REPEAT 
7: Ck :=  create.new_conf(Ck_l,  N[0].0); 
8: m :=  N [ 0 ] . A t ;  
9: N[0]..M :=  A4(Ck); 

10: I := i e {O..h} : N[i].A/[ is minimal ; 
11: IF  short_subchain(Ck) THEN I : = 0 ;  FI  
12: IF (N[I].A4 < m) THEN 
13: IF (I  > 0) THEN Ck :=get_conf_from_neighbor (I);  
14: N[0].A4 :=  N[I].Ad; 
15 : FI  
16: calc_new (E, N[0].V); 
17: send_t o_all_neighbors (N[0]); 
18: k :=  k + 1; 
19 : ELSE 

20: IF ( e ....... > rnd(0. .1) ) THEN 
21: IF  ( I  > 0 )  THEN Ck :=get_conf_frommeighbor(I) ;  
22: N[0I.A4 := NiI].A4; 
23 : FI  
24: calc_new (E, N[0].V); 
25: send_to.all_neighbors (N[0]); 
26 : k := k + 1; 
27 : FI 
28 : FI 
29 : UNTIL equilibrium 0; 
30 : N[O].O := temp.xeduction O; 
31: UNTIL terminate 0 ; 
32: RETURN (C~-1); 
33: END ; 

F ig .  1. The PARSA algorithm 
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Pseudo-edge-costs: Up to now, only those vertices were considered which are 
directly connected by an edge. To get aesthetically pleasing layouts, we have to 
consider all pairs of vertices. Instead of taking the original graph G we take the 
square-graph G 2 = (Dr, E 2) with E 2 = E U { { i, j )  [ i, j 6 V, 3k 6 V:  { i, k }, { k, j }  

6 E) .  Now, if all edges of its complementary graph G 2 = (Dr, E 2) with E 2 = 
{{ i , j )  [ i , j  E V, { i , j }  q~ E 2} are imposed by additional costs, non-adjacent 
vertices are placed distantly. When using G 2 instead of G a double evaluation 
with the angle-costs at a vertex can be avoided. Especially when drawing large 
graphs, the muddle resulting from the initial random layout is rectified very fast 
by using the pseudo-edge-costs. Let Ap be a scaling factor, kpl, kp2 some con- 
stants and d the expected diameter of the final graph layout (see 2.2). Then, the 
pseudo-edge-costs are determined by: 

kp l .d_  A 
L~ �9 kp~.L,-bkpt.d if A < 3 d 

,hdp = A v �9 E__ep(A) with cv(A ) = 0 otherwise 
p6E 2 

2.2 C o o l i n g - s c h e d u l e  

The number of intermediate configurations and the decrease of the tempera- 
ture are controlled according to a cooling-schedule together with the function 
equilibrium 0 (line 29 in Fig. 1). The choice of the cooling-schedule has great 
influence on the convergence-behavior of the algorithm and its efficiency. To be 
applicable in practice, it is essential that the schedule is self-adapting to the 
parameters of a given problem instance [HRS86, DLS93]. 

Initial temperature: The initial temperature should be chosen depending on the 
problem instance. It should be large enough for potentially spying out each 
corner of the solution space. Taking three times the estimated diameter d of 
the 3D configuration space was found to be sufficient. In order to estimate d, a 
maximum plane graph with IV[ vertices and f faces each having three corners is 
considered. Using Eulers formula for plane graphs we get f = 2(IV I - 2). With 
Le being the desired edge length, the area of a face can be approximated by 
1 2 ~Le. If all faces are placed equally on the surface of a sphere, we get f - ~  = ~rd 2 

and thus d = Le �9 ~/Y~l~. Now, we can set O0 = 3 d to get the initial value of 
the virtual temperature.  

Temperature reduction: The schedule proposed in [HRS86] reduces the tempera- 
ture according to the length of the Markov chains, whereby the length of a chain 
is redetermined at each temperature level. To keep the variations between two 
consecutive levels lower than the standard deviation c~ of the cost-function, the 

new value 0k+l is set to Ok �9 e -  ~ with 0 < A < 1. As the reduction ratio de- 
pends on •, large changes in the standard deviation resulting from short Markov 
chains will have significant impact on the current schedule. This influence can 
be alleviated by using the smoothing technique of [OG89] to approximate a by 

s = ( 1  w) + w  ~r~ ~ w i t h 0 < w <  1. (Tk+ 1 -- " (Tk+l " ' dk -- -- 
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Equilibrium detection: The equilibrium detection is performed depending on the 
number of accepted configurations and on the standard deviation of the cost, 
function. It can be assumed [DLS93] that an equilibrium is reached, if the ratio 
between the number of accepted configurations with cost values in a range of 
=kJ -- �89 around the expected average value of the costs E, and if the total 
number of generated configurations is convergent [HRS86]. 

Termination detection: In addition to the physical network of the MPP systems 
the PARSA algorithm makes use of a virtual tree network [Parix] for initializa- 
tion and termination detection. As each Processing Element (PE) of the system 
computes its own SA algorithm, local annealing temperatures ~ and local cost- 
values are provided at each node. Let E (V) be the approximated mean value 
(mean deviation) of the cost-function. Then, the triple (~, E, V) is determined 
successively from the leaves to the root of the virtual tree. Initial values are 
gathered from short local pre-runs. The PARSA algorithm terminates if ~ falls 
below of a given threshold or if V is less than three percent of E. The second 
condition indicates that the single cost-values are in a relatively small range 
around E so that a solution approaching the global minimum is reached with 
high probability. 

2.3 Para l le l iza t ion  

The PARSA algorithm was evaluated on two partitionable MPP systems. A 
GCPP consisting of 64 nodes with 64 MByte memory and two MPC 601 proces- 
sors, and a GCel consisting of 1024 nodes with 4 MByte memory and single T8 
processors. While T8 nodes can communicate with 20 Mbps per link, the commu- 
nication speed of the MPC 601 nodes is four times higher. Each node performs 
the algorithm of Fig. 1. The processors communicate solely by message-passing. 

At the beginning, each PE starts with its own random layout configuration. 
As the mean deviation and the annealing temperature at each PE is high, the 
different SA runs are nearly independent. Thus, up to ~ PEs areas of the solution 
space are explored simultaneously. Later on, this behavior is changed. If one PE 
detects a promising intermediate configuration now, its neighbors can decide 
to adopt this configuration for themselves and start an independent Markov 
subchain on it. Thus, once a promising configuration is found, more and more 
PEs can join the group to explore the surrounding solution space while others 
still continue on their local chains. In this way, only little effort is wasted with 
configurations of unpleasant quality. At the end of the computation, the only 
Markov chain left is the one which had returned the final layout. This relationship 
is illustrated in Fig. 2. 

Talking about promising layouts: Each PE maintains a local data structure 
g[0..h] with N[i] = (A4, d, Y). g[i]: 1 < i < h stores the cost-values, tem- 
perature, and deviation of the i-th neighboring processor of the physical MPP 
network. The local values are stored in N[0] and m is used to back-up the values 
of the previous configuration. In line 10, the neighborhood of a PE is investi- 
gated. If I > 0 but the local Markov subchain is still too short (line 11), or 
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~. # - r ~ - ~  . o o n f l g u r ~ t i o n  

A 

I . . . .  -=I 

Fig. 2. A sample run with six PEs 

the local configuration has currently minimal costs, then the configuration Ch 
is retained. Otherwise, the configuration from the neighbor PE I is ordered. 
After some housekeeping, the local data (N[0]) are send to the neighborhood. In 
case of increased costs (line 19) a configuration is accepted with the probability 
determined in line 20: 

Communication vs. computation: The messages send by the PARSA algorithm 
can be divided into two classes: Configuration-transfer messages and others, 
whereby the latter consist of only a small number of bytes. These short mes- 
sages are send to the physical neighbors if a transition at a PE is completed 
(line 17, 25). If an equilibrium is reached (line 29), or if the termination condi- 
tion is fulfilled (line 31), they are send via a virtual tree network (see the virtual 
topology library of [Parix]). The configuration transfer messages (replies to line 
13, 21) depend on G and have a much larger size. In order to reduce the com- 
putations necessary when a neighboring configuration is accepted, each vertex 
in the configuration-transfer message is associated with its partial cost-values. 
Thus, at the receiving PE, 3d(Ck) can be redetermined very fast. To prevent 
PEs from continuously altering their configurations, a new external one can be 
accepted only if the local Markov chain is of sufficient length (line 11). If few con- 
figurations from neighboring PEs are accepted, many PEs may waste their time 
by exploring inferior areas of the solution space. On the other hand, if too many 
configurations from the neighborhood are adopted, the communication overhead 
becomes dominating, and, because most PEs assume that their neighbors have 
more promising configurations, significant computation and communication ef- 
fort is of less value. This behavior is controlled by the procedure short_subchain 0 
which checks for the minimum length of the local Markov chain. On our MPP 
systems, good experiences were made with at least IV[ transitions. 

3 P r o p e r t i e s  a n d  L a y o u t  R e s u l t s  

Many SA algorithms are characterized by a large number of parameters. Finding 
the set of values suited best is a highly time-consuming task, even for experts. 
Thus, a central goal in the design of our algorithm was to keep the number of 
user-controlled parameters as little as possible. At the end, we were left with 
only four of those parameters: An, Ae, Ap of the cost-function and another one 
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to control the speed of the temperature reduction. The desired edge length Le 
has only weak influence on the layout structure. All other parameters were ei- 
ther fixed by a large number of experiments , or were made self-adapting to the 
problem instance (see 2.2). Initial control values (e.g. ~, E, V) are gathered from 
short pre-runs. This costs additional time, nevertheless, it is indispensable for 
practical applications. 

3.1 P r o p e r t i e s  

A well designed cost-function is essential for each SA algorithm. It must be calcu- 
lable very quickly, define a smooth solution space, and approximate the desired 
aesthetics well. The latter aspect was studied by observing layout sequences of 
different test-graphs with 'known' optimal layouts. For such graphs, the cost- 
values of their optimal layouts can be compared to the values of the generated 
layouts. Fig. 3 shows the result of a sample sequence. The 2% difference from 
optimum of this sequence, and others, indicates that the algorithm is able to 
approximate the minimum of the cost-function and the desired aesthetics quite 
well. This result was confirmed by several other test-sequences, not shown in 
this report. 

(a:) (b:) (c:) 

(d:) (el:) (e2:) 

Fig. 3. (a-d:) 3D intermediate states of a 4x4x4-Cube 
(el, e2:) final layout from different angles (2% from optimum) 

The evolution of A4 and the temperature reduction gives further informa- 
tion on the behavior of the algorithm. To study the former, an 'average' graph 



405 

~0000 800,0 

180OOO . . . . . . . . . . . . . . . . . . . . . . . . . .  

eO0000.O 250 SO0 0,(  

(a:) time [sec] (b:) 

Fig. 4. Evolution of tile cost-function 
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was chosen (see Fig. 5a) and M was investigated on the GCel system on dif- 
ferent network sizes (Fig. 4). During the first 5 seconds, the cost-function drops 
rapidly. Thus quite often an early impression of the layouts can be obtained 
very quickly, while it takes much longer to get the required quality. As more 
PEs can explore a broader area of the solution space simultaneously (Fig. 2), the 
curves of the larger MPP networks are dropping below the curves of the smaller 
ones right from the beginning (Fig. 4a). For the test-graph above, a cost-value 
of about 5 000 is reached when the termination condition is fulfilled. Thus, the 
advantage of the parallel approach, compared to the sequential case, is obvious. 
Nevertheless, a limitation on the network size for this graph is clearly indicated. 
By taking graphs of reasonable larger sizes (e.g. Fig. 8), up to 256 PEs can be 
exploited successfully. 
The limitation for the graph discussed is also confirmed by the temperature 
reduction curves in Fig. 4b. While the temperature falls slowly at the one PE 
computation it drops rapidly when exploiting the MPP system. The peaks in 
the 9 and 64 PE curves result from adoptions of neighboring configurations with 
a significant difference in the temperature level. These differences, however, be- 
come negligible if the cost-function tends to converge. 

3.2 Layout resul ts  

Due to few objective criteria, it is difficult to evaluate graph drawing algorithms 
in general. However, a number of test graphs currently substitute as a bench- 
mark suite. They are used to 'measure' the aesthetics and the computation times 
[KK89, FR91, DH93, Tu93, FLM94, Sa95]. Applying the PARSA algorithm to 
these graphs, drawings similar to those presented by other authors (Fig. 1, 8, 12 
of [DH93], Fig. 17, 18, 47-50, 64, 72 of [FR91] or Fig. 10, 11 of [FLM94]) were 
obtained. Moreover, the generated 3D layouts of dense graphs can be impres- 
sively animated on a computer screen. Our drawing of the common test-graph, 
mentioned above, is shown in Fig. 5a. Due to the competing aesthetic criteria, 
vertices were assigned to different levels of the third dimension (e.g. vertices 
which belong to the inner square were assigned to the top-most level of Fig. 5). 
Figure 5b shows a 3D layout of a two dimensional grid. These 2D-types of graphs 
are difficult to draw for any 3D layout algorithm. 
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(al:) (a2:) (b:) 
Fig. 5. (al,a2:) Drawing of Fig. 12 of [DH93] (Fig. 27 of [FR91], Fig. 19 of [FLM94]) 

(b:) 2D grid, layed out in three dimensions 

Fig. 6. CCCs of dimension 3, 4 and 5 

Fig. 6 shows 3D drawings of Cube-Connected-Circles (CCCs) of dimension 
three, four and five. These drawings were generated in 7.6, 67 and 620 sec- 
onds respectively (on a GCPP with 64 nodes). Within the second figure, the 
encapsulated cubes with the circles at their corners are easy to recognize. How- 
ever, for the animation of very complex graphs structures, such as the CCC 5 
(IVI = 160; IEI = 240) the third dimension is indispensable. The CCCs and 
other more irregular graphs (like the graph 'C' of the GD'95 competition), show 
the ability of the PARSA algorithm to generate high quality layouts of large 
graphs with different symmetry-regions. These types of graphs are a challenge 
for any spring embedder. 

Fig. 7. 3D layouts of soccer ball (al) and a modified CCC (bl); 
and its plane projections (a2) and (b2), respectively 

Other graphs with inherent 3D structure are the soccer ball (Fig. 7a) with 
IV[ = 60; [E[ = 90) and the modified CCC (Fig. 75). The former was computed 
in 58 seconds on average, the latter requires 24 seconds. Its plane projections 
(Fig. 7 (a2, b2)) were obtained by placing the view-point very close to a face of 
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the 3D layouts of Fig. 7 (al, bl). Thus, getting a fish-eyes view of the drawing 
from inside. Due to the 3D layout technique, plane representations for many 
cubic drawings were attained without any additional effort. 

For drawing significantly larger graphs than those presented so far, it is es- 
sential that vertices with large distances in G are also placed at distant positions 
of the layout area. This was achieved by the pseudo-edge-costs of .h~ (see 2.1). 
Therefore, it was possible to generate much larger 3D drawings than before. An 
impression of the aesthetic quality of such large graphs can be obtained from 
the generated layouts shown in Fig. 8 which was calculated in only 6 minutes. 
Depending on the characteristics of G speed-up values of up to 20 were measured. 
This, however, is not the final run-time result. Further potential is expected by 
moving to the subchain method [DLS93], for the final phase of the parallel SA 
algorithm. 

Fig. 8. 3D layout of a t0x20-Torus, computed in 6 minutes ( IVI --- 200 ; IE] = 400 

4 C o n c l u s i o n  
\ 

The problem of drawing arbitrary undirected graphs has received an increasing 
amount of attention during the last few years. However, only few of the published 
algorithms seem to be applicable in practise. To our knowledge, all of them are 
either restricted to special graph classes or limited to graphs of relatively small 
size. In this paper, we have presented a parMlel SA algorithm for generating 
3D straight-line drawings of arbitrary undirected graphs. Additional structure 
information is given to human viewers via a simple front-end for 3D graph ani- 
mations. Due to the cost-function developed and the extended possibilities using 
a 3D configuration space, it was possible to generate drawings of very different 
graphs and of much larger size than it was possible before. Because the cooling- 
schedule and most parameters of the PARSA algorithm were made self-adapting, 
the presented approach is of high interest for practical applications. 
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