
A Parallel Simulated Annealing Algorithm
for Generating 3D Layouts of Undirected Graphs*

Burkhard Monien, 1 Friedhelm Ramme, 2 Helmut Salmen 1

[bm] ram] hlmut] ~ uni-paderborn.de

1 Department of Computer Science, University of Paderborn, Germany
2 Paderborn Center for Parallel Computing (PC2),

University of Paderborn, Germany **

Abs t rac t . In this paper, we introduce a parallel simulated annealing al-
gorithm for generating aesthetically pleasing straight-fine drawings. The
proposed algorithm calculates high quality 3D layouts of arbitrary undi-
rected graphs. Due to the 3D layouts, structure information is presented
to the human viewer at a glance. The computing time of the algorithm is
reduced by a new parallel method for exploiting promising intermediate
configurations. As the algorithm avoids running into a local minimum of
the cost function, it is applicable for the animation of graphs of reason-
ably larger size than it was possible before.
Subsequent to the discussion of the algorithm, empirical data for the
performance of the algorithm and the quality of the generated layouts
are presented.

Keywords-" 3D graph layout, straight-line drawing, parallel simulated annealing

1 M o t i v a t i o n

During the last few years the problem of generating aesthetically pleasing layouts
of a given graph G = (V, E) has received an increasing amount of attention
[BETT94]. After transforming an abstract graph description into an appealing
drawing, a human viewer can, at a glance, derive additional information about
the properties of G which are inherent in the abstract description. Due to the
high complexity of the problem, which is Af t -ha rd and the small computational
power of the desktop workstations of the past, current layout programs are
mostly computing two dimensional straight-line drawings. Only a few authors
[FR91, CELR94, FPS94] have considered the challenge of calculating 3D layouts.
These kinds of drawings, however, are best suited to present inside information
to human viewers.
Modern workstations are equipped with fast graphic interfaces which allow the
user to rotate a 3D representation without visible disturbance and to create

* This work was partially supported by the ESPRIT Basic Research Action No. 7141
(ALCOM II)

*~ WWW: http : //www. uni-paderborn, de/f achbere ich/AG/monien/index, html
WWW: http ://www. uni-paderborn, de/pcpc/pcpc .html

397

virtual walk-through animations. However, the calculation of 3D layouts requires
a reasonable amount of computational power. For reducing the computing time
we will take advantage of a parallel computer system. Criteria like:

�9 reflect inherent symmetries �9 avoid edge crossings
�9 maximize angle resolution �9 keep edge lengths uniform
�9 distribute vertices evenly

should be optimized in order to get aesthetically pleasing drawings [KK89, FR91,
Tu93]. Unfortunately, some of them are competitive and there is no reasonable
way to assign absolute weights to them. Most of the known algorithms for solving
this problem can be classified into one of three groups:

The combined heuristics make use of heavy-duty preprocessing techniques to
determine graph characteristics like strongly connected components, planar sub-
graphs or minimal height breadth-first spanning trees [HS93, Tu93]. The final
layout is gradually obtained afterwards.
The spring embedder model for drawing undirected graphs was introduced by
Eades lEa84]. Using an analogy to physics, vertices are treated as mutually
repulsive charges and edges as springs connecting and attracting the charges.
Starting from an initial placement, the spring system is moved to a state with
minimal energy. Kamada and Kawai [KK89] refined the model of Eades. They
introduced the desirable length, a combined value of the shortest path between
two vertices and the desired length of a single edge in the display plane. There, a
partial differential equation system must be solved for each vertex in each itera-
tion to determine its new location. Fruchterman and Reingold [FR91], like Eades,
made only vertices that are neighbors attract each other, while all other vertices
repelled each other. Their layouts were determined during a fixed number of
iterations. The proposed algorithm calculates the effect of the attractive and re-
pulsive forces on each vertex and limits the total displacement by a temperature
value, afterwards. The temperature and its cooling schedule were borrowed from
the simulated annealing method. While all these spring embedders are quite fast,
they perform a gradual descent and converge at a local minimum of the energy
function. The algorithm presented in [FLM94] avoids this drawback by introduc-
ing a local temperature value to each vertex. It terminates after a fixed number
of rounds or if all local temperatures are below a certain threshold. Using a new
heuristic to detect rotations and oscillations during the computations it was
possible to outperform the speed of the algorithms presented in [KK89, FR91].
However, no statements could be made about the convergence behavior.
The third group of algorithms uses randomness to overcome the problem of
ending up in local minima. Its model, called simulated annealing (SA), is a
flexible optimization method, suited for large-scale combinatorial optimization
problems [DLS93, JAMS89-91]. To our knowledge, Davidson and Harel [DH93]
were the first who used an SA approach for calculating aesthetically pleasing
graph layouts. The graph drawing problem, especially, is characterized by large
configurations as well as a non-trivial neighborhood relation and a complex cost-
function. These properties seem to be highly responsible for the long computing
times required by the SA algorithm proposed. However, the resulting quality was
comparable to or even better than that of the spring embedders [FR91]. Due to
the considerable time requirement, even for graphs of small and medium sizes

398

and the large number of parameters, the SA algorithm of [DH93] is not suited to
draw larger graphs. A first parallel approach (implemented at a CM-2) for tack-
ling the drawing problem was presented in [KMS94]. However, it was reported
that the convergence rate was slow and that the network diagrams generated
had only small sizes.

Within this paper, we will present a parallel SA algorithm for generating
3D layouts of arbitrary undirected graphs. The required time is significantly
reduced compared to [DH93], by using the computing facilities of a modern MPP
system. For our algorithm, the assignment of four parameters is sufficient. All
others are either fixed or were made self-adjusting during runtime. This property
is essential for being applicable in practise. In Section 2 of this paper, we will
present the PARallel Simulated Annealing algorithm (PARSA) in details. Its
properties and some layout results will be discussed in Section 3. Additionally,
empirical performance data will be given.

2 T h e PARSA-Algorithm

SA has been applied successfully to many problems characterized by a large
discrete configuration space, too large for an exhaustive search, over which a
cost-function is to be minimized (or maximized). After picking some initial con-
figuration, most of the iterative methods continue by choosing a new configura-
tion at each step, evaluating it, and possibly replacing the previous one with i t .
This action is repeated until some termination condition is satisfied. In general,
the procedure ends up in a local minimum, rather than the desired global one.
SA tries to prevent this by allowing uphill moves with a certain probability. A
sequential SA algorithm 3 consist of two nested loops. Within the interior loop,
new configurations are continuously evaluated until an equilibrium of the cor-
responding cost-function .M is reached. A new configuration Ck is derived from
the previous one by choosing an arbitrary vertex of C~-1 and moving it to a ran-
domly chosen position. The maximum displacement is limited by a value which
is proportional to the temperature #. If an improvement is reached, the new con-
figuration is accepted. In case of deterioration, acceptance is probabilistic. After
an equilibrium is detected, the virtual temperature is reduced according to a
certain cooling:schedule. If a termination condition is fulfilled the final graph
layout is returned.

At the beginning of the SA algorithm, the configurations resembles a muddle.
This situation has to be resolved step by step afterwards. To attain a satisfac-
tory convergence behavior, it is important that a single vertex (or only a small
number of vertices) are moved at a time, and that each displacement is limited
by a temperature dependent factor. When using SA to generate 2D layouts the
second statement prevents single vertices to be placed at distant but reason-
ably better positions if the temperature is already lowered and a potential (or

3 We assume that the reader is familiar with the basic annealing techniques. Otherwise,
a good introduction can be found in [HRS86, JAMS89-91, OG89, DLS93] and the
references given.

399

cost-) barrier must be overcome. Therefore, quite often drawings of unpleasing
quality were returned. This effect can be reduced to a certain degree by using a
sophisticated cost-function [DH93]. The PARSA-algorithm, however, abolishes
this by generating 3D configurations directly. The additional dimension permits
single vertices to circumnavigate obstacles and to travel to a distant destination
at low temperature values and in situations where the intermediate configura-
tion is relatively stable. The resulting advantage is twofold. Firstly, a simple
cost-function speeds up the sequential algorithms. Secondly, the solution-space
allows for smooth transitions which results in a convinced convergence behavior
with high quality layouts, even if the graphs are going to become large.

To simplify reading, we kept the notation of the PARSA-algorithm (Fig. 1)
close to the sequential case. Thus, for the discussion of the common parts one
should ignore the lines 10-11, 13-15, 17, 21-23, 25, set I = 0, and assume that
the remaining algorithm is executed at a single processor.

2.1 C o s t - f u n c t l o n

The cost-function is one of the most critical parts of any SA algorithm. The qual-
ity of a desired solution must be well complemented by the values returned for
intermediate solutions rsp. configurations. As this function forms the compute-
intensive kernel of the algorithm, it should be possible to calculate its new val-
ues .M(Ck) very quickly and if possible incrementally from its previous val-
ues .Ad(Ck-1). The cost-function we have chosen consists of only three parts:
34 = .Ada + .M~ + Alp with A4a the angle-costs, Me the edge-costs, and
.Mp the pseudo-edge-costs. The new values of .Mi(Ck) (i e {a, e,p}) are deter-
mined by adding a fast computable term Ai(v) to ,Adi(Ck-1), with v being the
vertex moved within the transition Ck-1 b Ck.

Angle-costs: Each angle between neighboring edges of a vertex (,g) in the 3D
configuration space is associated with a cost value. The smaller an angle, the
higher its cost. An angle c~ larger than rr has costs equivalent to 2 r - a. Let)~a
be a scaling factor and ka a constant. Then, the angle-costs are determined by:

./Ma = ,Xa " ~ ~ ca(a) rr -- o~
,,~v a~A~ deg(v) with Ca(a) -- ka " c~ + 7r

and A~ = {,~(k,l) l k = { v , v i } , l = { v , v j } , k , l e E , i < j }

Edge-costs: This term evaluates the difference between the desired length Le of
an edge and its Euclidean length A in the 3D space. Best results were achieved
by using a twofolded function: A hyperbola if the length is below L, , and a
straight line otherwise. Let ike be a scaling factor and kel, ke2 some constants.
Then, the edge-costs are determined by:

Le �9 L'-'4 if .4 < L~
ca(A) with c~('4) = ~,, .a+L,

deg(u) + deg(,) M s
,=(-,~ otherwise

r E .l~ h e 2

400

- - k
- - Ck
-- J~

-- E

-- V

-- 0

- - N[0..h] :

number of accepted configurations
configuration under negotiation
value of the cost-function
mean value of 2v[
mean deviation of Ad
temperature value
with N[i] = (M , O, V) the current
cost-function, temperature, mean deviation at PE i
with i = 0 being this PE and 1 < i < h the neighbors
initially M = o o , 0 0 = 3 d , V = c ~

P A R S A (G = (V, E))

1 : BEGIN
2 : Co := random_initial_configuration 0 ;
3: calLinit (N[0], E);
4: k :----- 1;
5 : REPEAT
6: REPEAT
7: Ck := create.new_conf(Ck_l, N[0].0);
8: m := N [0] . A t ;
9: N[0]..M := A4(Ck);

10: I := i e {O..h} : N[i].A/[is minimal ;
11: IF short_subchain(Ck) THEN I : = 0 ; FI
12: IF (N[I].A4 < m) THEN
13: IF (I > 0) THEN Ck :=get_conf_from_neighbor (I);
14: N[0].A4 := N[I].Ad;
15 : FI
16: calc_new (E, N[0].V);
17: send_t o_all_neighbors (N[0]);
18: k := k + 1;
19 : ELSE

20: IF (e > rnd(0. .1)) THEN
21: IF (I > 0) THEN Ck :=get_conf_frommeighbor(I) ;
22: N[0I.A4 := NiI].A4;
23 : FI
24: calc_new (E, N[0].V);
25: send_to.all_neighbors (N[0]);
26 : k := k + 1;
27 : FI
28 : FI
29 : UNTIL equilibrium 0;
30 : N[O].O := temp.xeduction O;
31: UNTIL terminate 0 ;
32: RETURN (C~-1);
33: END ;

F ig . 1. The PARSA algorithm

401

Pseudo-edge-costs: Up to now, only those vertices were considered which are
directly connected by an edge. To get aesthetically pleasing layouts, we have to
consider all pairs of vertices. Instead of taking the original graph G we take the
square-graph G 2 = (Dr, E 2) with E 2 = E U { { i, j) [i, j 6 V, 3k 6 V: { i, k }, { k, j }

6 E) . Now, if all edges of its complementary graph G 2 = (Dr, E 2) with E 2 =
{{ i , j) [i , j E V, { i , j } q~ E 2} are imposed by additional costs, non-adjacent
vertices are placed distantly. When using G 2 instead of G a double evaluation
with the angle-costs at a vertex can be avoided. Especially when drawing large
graphs, the muddle resulting from the initial random layout is rectified very fast
by using the pseudo-edge-costs. Let Ap be a scaling factor, kpl, kp2 some con-
stants and d the expected diameter of the final graph layout (see 2.2). Then, the
pseudo-edge-costs are determined by:

kp l .d_ A
L~ �9 kp~.L,-bkpt.d if A < 3 d

,hdp = A v �9 E__ep(A) with cv(A) = 0 otherwise
p6E 2

2.2 C o o l i n g - s c h e d u l e

The number of intermediate configurations and the decrease of the tempera-
ture are controlled according to a cooling-schedule together with the function
equilibrium 0 (line 29 in Fig. 1). The choice of the cooling-schedule has great
influence on the convergence-behavior of the algorithm and its efficiency. To be
applicable in practice, it is essential that the schedule is self-adapting to the
parameters of a given problem instance [HRS86, DLS93].

Initial temperature: The initial temperature should be chosen depending on the
problem instance. It should be large enough for potentially spying out each
corner of the solution space. Taking three times the estimated diameter d of
the 3D configuration space was found to be sufficient. In order to estimate d, a
maximum plane graph with IV[vertices and f faces each having three corners is
considered. Using Eulers formula for plane graphs we get f = 2(IV I - 2). With
Le being the desired edge length, the area of a face can be approximated by
1 2 ~Le. If all faces are placed equally on the surface of a sphere, we get f - ~ = ~rd 2

and thus d = Le �9 ~/Y~l~. Now, we can set O0 = 3 d to get the initial value of
the virtual temperature.

Temperature reduction: The schedule proposed in [HRS86] reduces the tempera-
ture according to the length of the Markov chains, whereby the length of a chain
is redetermined at each temperature level. To keep the variations between two
consecutive levels lower than the standard deviation c~ of the cost-function, the

new value 0k+l is set to Ok �9 e - ~ with 0 < A < 1. As the reduction ratio de-
pends on •, large changes in the standard deviation resulting from short Markov
chains will have significant impact on the current schedule. This influence can
be alleviated by using the smoothing technique of [OG89] to approximate a by

s = (1 w) + w ~r~ ~ w i t h 0 < w < 1. (Tk+ 1 -- " (Tk+l " ' dk -- --

402

Equilibrium detection: The equilibrium detection is performed depending on the
number of accepted configurations and on the standard deviation of the cost,
function. It can be assumed [DLS93] that an equilibrium is reached, if the ratio
between the number of accepted configurations with cost values in a range of
=kJ -- �89 around the expected average value of the costs E, and if the total
number of generated configurations is convergent [HRS86].

Termination detection: In addition to the physical network of the MPP systems
the PARSA algorithm makes use of a virtual tree network [Parix] for initializa-
tion and termination detection. As each Processing Element (PE) of the system
computes its own SA algorithm, local annealing temperatures ~ and local cost-
values are provided at each node. Let E (V) be the approximated mean value
(mean deviation) of the cost-function. Then, the triple (~, E, V) is determined
successively from the leaves to the root of the virtual tree. Initial values are
gathered from short local pre-runs. The PARSA algorithm terminates if ~ falls
below of a given threshold or if V is less than three percent of E. The second
condition indicates that the single cost-values are in a relatively small range
around E so that a solution approaching the global minimum is reached with
high probability.

2.3 Para l le l iza t ion

The PARSA algorithm was evaluated on two partitionable MPP systems. A
GCPP consisting of 64 nodes with 64 MByte memory and two MPC 601 proces-
sors, and a GCel consisting of 1024 nodes with 4 MByte memory and single T8
processors. While T8 nodes can communicate with 20 Mbps per link, the commu-
nication speed of the MPC 601 nodes is four times higher. Each node performs
the algorithm of Fig. 1. The processors communicate solely by message-passing.

At the beginning, each PE starts with its own random layout configuration.
As the mean deviation and the annealing temperature at each PE is high, the
different SA runs are nearly independent. Thus, up to ~ PEs areas of the solution
space are explored simultaneously. Later on, this behavior is changed. If one PE
detects a promising intermediate configuration now, its neighbors can decide
to adopt this configuration for themselves and start an independent Markov
subchain on it. Thus, once a promising configuration is found, more and more
PEs can join the group to explore the surrounding solution space while others
still continue on their local chains. In this way, only little effort is wasted with
configurations of unpleasant quality. At the end of the computation, the only
Markov chain left is the one which had returned the final layout. This relationship
is illustrated in Fig. 2.

Talking about promising layouts: Each PE maintains a local data structure
g[0..h] with N[i] = (A4, d, Y). g[i]: 1 < i < h stores the cost-values, tem-
perature, and deviation of the i-th neighboring processor of the physical MPP
network. The local values are stored in N[0] and m is used to back-up the values
of the previous configuration. In line 10, the neighborhood of a PE is investi-
gated. If I > 0 but the local Markov subchain is still too short (line 11), or

403

$ $

pe2 r w - . - e , e ~ . - e , e D - . - e e ~ - . - e e n - . - - , < ' J - . - - , ~ - - - - , , ~ J I
i i

i i

~. # - r ~ - ~ . o o n f l g u r ~ t i o n

A

I -=I

Fig. 2. A sample run with six PEs

the local configuration has currently minimal costs, then the configuration Ch
is retained. Otherwise, the configuration from the neighbor PE I is ordered.
After some housekeeping, the local data (N[0]) are send to the neighborhood. In
case of increased costs (line 19) a configuration is accepted with the probability
determined in line 20:

Communication vs. computation: The messages send by the PARSA algorithm
can be divided into two classes: Configuration-transfer messages and others,
whereby the latter consist of only a small number of bytes. These short mes-
sages are send to the physical neighbors if a transition at a PE is completed
(line 17, 25). If an equilibrium is reached (line 29), or if the termination condi-
tion is fulfilled (line 31), they are send via a virtual tree network (see the virtual
topology library of [Parix]). The configuration transfer messages (replies to line
13, 21) depend on G and have a much larger size. In order to reduce the com-
putations necessary when a neighboring configuration is accepted, each vertex
in the configuration-transfer message is associated with its partial cost-values.
Thus, at the receiving PE, 3d(Ck) can be redetermined very fast. To prevent
PEs from continuously altering their configurations, a new external one can be
accepted only if the local Markov chain is of sufficient length (line 11). If few con-
figurations from neighboring PEs are accepted, many PEs may waste their time
by exploring inferior areas of the solution space. On the other hand, if too many
configurations from the neighborhood are adopted, the communication overhead
becomes dominating, and, because most PEs assume that their neighbors have
more promising configurations, significant computation and communication ef-
fort is of less value. This behavior is controlled by the procedure short_subchain 0
which checks for the minimum length of the local Markov chain. On our MPP
systems, good experiences were made with at least IV[transitions.

3 P r o p e r t i e s a n d L a y o u t R e s u l t s

Many SA algorithms are characterized by a large number of parameters. Finding
the set of values suited best is a highly time-consuming task, even for experts.
Thus, a central goal in the design of our algorithm was to keep the number of
user-controlled parameters as little as possible. At the end, we were left with
only four of those parameters: An, Ae, Ap of the cost-function and another one

404

to control the speed of the temperature reduction. The desired edge length Le
has only weak influence on the layout structure. All other parameters were ei-
ther fixed by a large number of experiments , or were made self-adapting to the
problem instance (see 2.2). Initial control values (e.g. ~, E, V) are gathered from
short pre-runs. This costs additional time, nevertheless, it is indispensable for
practical applications.

3.1 P r o p e r t i e s

A well designed cost-function is essential for each SA algorithm. It must be calcu-
lable very quickly, define a smooth solution space, and approximate the desired
aesthetics well. The latter aspect was studied by observing layout sequences of
different test-graphs with 'known' optimal layouts. For such graphs, the cost-
values of their optimal layouts can be compared to the values of the generated
layouts. Fig. 3 shows the result of a sample sequence. The 2% difference from
optimum of this sequence, and others, indicates that the algorithm is able to
approximate the minimum of the cost-function and the desired aesthetics quite
well. This result was confirmed by several other test-sequences, not shown in
this report.

(a:) (b:) (c:)

(d:) (el:) (e2:)

Fig. 3. (a-d:) 3D intermediate states of a 4x4x4-Cube
(el, e2:) final layout from different angles (2% from optimum)

The evolution of A4 and the temperature reduction gives further informa-
tion on the behavior of the algorithm. To study the former, an 'average' graph

405

~0000 800,0

180OOO .

eO0000.O 250 SO0 0,(

(a:) time [sec] (b:)

Fig. 4. Evolution of tile cost-function

600.0

i 400,0

200,0

. . . . 2~.0 6O.O
time [sec]

Temperature reduction

was chosen (see Fig. 5a) and M was investigated on the GCel system on dif-
ferent network sizes (Fig. 4). During the first 5 seconds, the cost-function drops
rapidly. Thus quite often an early impression of the layouts can be obtained
very quickly, while it takes much longer to get the required quality. As more
PEs can explore a broader area of the solution space simultaneously (Fig. 2), the
curves of the larger MPP networks are dropping below the curves of the smaller
ones right from the beginning (Fig. 4a). For the test-graph above, a cost-value
of about 5 000 is reached when the termination condition is fulfilled. Thus, the
advantage of the parallel approach, compared to the sequential case, is obvious.
Nevertheless, a limitation on the network size for this graph is clearly indicated.
By taking graphs of reasonable larger sizes (e.g. Fig. 8), up to 256 PEs can be
exploited successfully.
The limitation for the graph discussed is also confirmed by the temperature
reduction curves in Fig. 4b. While the temperature falls slowly at the one PE
computation it drops rapidly when exploiting the MPP system. The peaks in
the 9 and 64 PE curves result from adoptions of neighboring configurations with
a significant difference in the temperature level. These differences, however, be-
come negligible if the cost-function tends to converge.

3.2 Layout resul ts

Due to few objective criteria, it is difficult to evaluate graph drawing algorithms
in general. However, a number of test graphs currently substitute as a bench-
mark suite. They are used to 'measure' the aesthetics and the computation times
[KK89, FR91, DH93, Tu93, FLM94, Sa95]. Applying the PARSA algorithm to
these graphs, drawings similar to those presented by other authors (Fig. 1, 8, 12
of [DH93], Fig. 17, 18, 47-50, 64, 72 of [FR91] or Fig. 10, 11 of [FLM94]) were
obtained. Moreover, the generated 3D layouts of dense graphs can be impres-
sively animated on a computer screen. Our drawing of the common test-graph,
mentioned above, is shown in Fig. 5a. Due to the competing aesthetic criteria,
vertices were assigned to different levels of the third dimension (e.g. vertices
which belong to the inner square were assigned to the top-most level of Fig. 5).
Figure 5b shows a 3D layout of a two dimensional grid. These 2D-types of graphs
are difficult to draw for any 3D layout algorithm.

406

(al:) (a2:) (b:)
Fig. 5. (al,a2:) Drawing of Fig. 12 of [DH93] (Fig. 27 of [FR91], Fig. 19 of [FLM94])

(b:) 2D grid, layed out in three dimensions

Fig. 6. CCCs of dimension 3, 4 and 5

Fig. 6 shows 3D drawings of Cube-Connected-Circles (CCCs) of dimension
three, four and five. These drawings were generated in 7.6, 67 and 620 sec-
onds respectively (on a GCPP with 64 nodes). Within the second figure, the
encapsulated cubes with the circles at their corners are easy to recognize. How-
ever, for the animation of very complex graphs structures, such as the CCC 5
(IVI = 160; IEI = 240) the third dimension is indispensable. The CCCs and
other more irregular graphs (like the graph 'C' of the GD'95 competition), show
the ability of the PARSA algorithm to generate high quality layouts of large
graphs with different symmetry-regions. These types of graphs are a challenge
for any spring embedder.

Fig. 7. 3D layouts of soccer ball (al) and a modified CCC (bl);
and its plane projections (a2) and (b2), respectively

Other graphs with inherent 3D structure are the soccer ball (Fig. 7a) with
IV[= 60; [E[= 90) and the modified CCC (Fig. 75). The former was computed
in 58 seconds on average, the latter requires 24 seconds. Its plane projections
(Fig. 7 (a2, b2)) were obtained by placing the view-point very close to a face of

407

the 3D layouts of Fig. 7 (al, bl). Thus, getting a fish-eyes view of the drawing
from inside. Due to the 3D layout technique, plane representations for many
cubic drawings were attained without any additional effort.

For drawing significantly larger graphs than those presented so far, it is es-
sential that vertices with large distances in G are also placed at distant positions
of the layout area. This was achieved by the pseudo-edge-costs of .h~ (see 2.1).
Therefore, it was possible to generate much larger 3D drawings than before. An
impression of the aesthetic quality of such large graphs can be obtained from
the generated layouts shown in Fig. 8 which was calculated in only 6 minutes.
Depending on the characteristics of G speed-up values of up to 20 were measured.
This, however, is not the final run-time result. Further potential is expected by
moving to the subchain method [DLS93], for the final phase of the parallel SA
algorithm.

Fig. 8. 3D layout of a t0x20-Torus, computed in 6 minutes (IVI --- 200 ; IE] = 400

4 C o n c l u s i o n
\

The problem of drawing arbitrary undirected graphs has received an increasing
amount of attention during the last few years. However, only few of the published
algorithms seem to be applicable in practise. To our knowledge, all of them are
either restricted to special graph classes or limited to graphs of relatively small
size. In this paper, we have presented a parMlel SA algorithm for generating
3D straight-line drawings of arbitrary undirected graphs. Additional structure
information is given to human viewers via a simple front-end for 3D graph ani-
mations. Due to the cost-function developed and the extended possibilities using
a 3D configuration space, it was possible to generate drawings of very different
graphs and of much larger size than it was possible before. Because the cooling-
schedule and most parameters of the PARSA algorithm were made self-adapting,
the presented approach is of high interest for practical applications.

408

References

[BETT94] G.D. Battista, P. Eades, R. Tamassia, I.G. Tollis : Algorithms for drawing
graphs: An annotated bibliography, Report, Brown University, June 1994

[CELR94] R.F. Cohen, P. Eades, T. Lin, F. Ruskey : Three-Dimensional Graph Draw-
ing, Proc. of Graph Drawing '94, LNCS Springer, Vol. 894, pp. 1-11

[DH93] R. Davidson, D, Harel : Drawing graphs nicely using simulated annealing, Tech-
nical Report CS89-13, Department of Applied Mathematics and Computer Science,
Weizmann Institute of Science, Israel 1989, revised July 1993, to appear in Com-
munlcations of the ACM

[DLS93] R. Diekmann, R. Liiling, J. Simon : Problem Independent Distributed Sim-
ulated Annealing and its Applications, in: R.V.V.Vidal (ed.): Applied Simulated
Annealing, Lecture Notes in Economics and Mathematical Systems, Springer 1993,
No. 396, pp. 17-44,

[Ea84] P. Eades : A heuristic for graph drawing, Congressus Numerantium, 1984,
Vol. 42, pp. 149-160

[FPS94] P.W. Fowler, T. Pisanski, J. Shawe-Taylor : Molecular Graph Eigenvectors
for Molecular Coordinates, Proc. of Graph Drawing '94, LNCS Springer, Vol. 894,
pp. 282-285

[FLM94] A. Frick, A. Ludwig, H. Mehldau : A Fast Adaptive Layout Algorithm for
Undirected Graphs, Proc. of Graph Drawing '94, LNCS Springer, Vol. 894, pp. 388-
403

[FR91] T.M.J. Fruchtermann, E.M. Reingold : Graph drawing by force-directed place-
ment, Software-Practice and Experience, 1991, Vol. 21, No. 11, pp. 1129-1164

[HS93] D. Hard, M. Sardas : Randomized Graph Drawing with Heavy-Duty Preprocess-
ing, Technical Report CS93-16, Department of Applied Mathematics and Com-
puter Science, Weizmann Institute of Science, Israel Oct. 1993

[HRS86] M.D. Huang, P. Romeo, A. Sangiovanni-Vincentelli : An Efficient General
Cooling Schedule for Simulated Annealing, IEEE Int. Conf. on Computer Aided
Design 1986, pp. 381-384

[JAMS89-91] D.S. Johnson, C.R. Aragon, L. A. McGeoch, C. Schevon : Optimiza-
tion by Simulated Annealing: An Experimental Evaluation, Part I, "Graph Parti-
tioning", Operations Research Vol. 37, No. 6, pp. 865-892, 1989; Optimization by
Simulated Annealing: An Experimental Evaluation, Part II, "Graph Coloring and
Number Partitioning", Operations Research Vol. 39, No. 3, pp. 378-406, 1991

[KK89] T. Kamada, S. Kawai : An algorithm for drawing general undirected graphs,
Information Processing Letters, North-Holland 1989, Vol. 31, pp. 7-15

[KMS94] C. Kosak, J. Marks, S. Shieber : Automating the Layout of Network Diagrams
with Specified Visual Organization, IEEE Trans. on Systems, Man, and Cybernet-
ics, Vol. 24, No. 3, pp. 440-454

[OG89] O.E. Otten, L. van Ginneken : The Annealing Algorithm, Kluwer Academic
Publishers 1989

[Parix] Parsytec Computer Ltd. : Parix 1.3: Software Documentation, Aachen
[Sa95] H. Salmen : Dreidimensionale Auslegung beliebiger Graphen mittels parallelem

Simulated Annealing Methoden, Master Thesis, Univ. of Paderborn, 1995
[Tu93] D. 2-hnkelang : A layout algorithm for undirected graphs, In Graph Drawing

'93, ALCOM Int. Workshop, Paris 1993

