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Abstrac t .  Several applications require human interaction during the 
design process. The user is given the ability to alter the graph as the 
design progresses. Interactive Graph Drawing gives the user the ability to 
dynamically interact with the drawing. In this paper we discuss features 
that are essential for an interactive drawing system. We also describe 
some possible interactive drawing scenaria and present results on two of 
them. In these results we assume that the underline drawing is always 
orthogonal and the maximum degree of any vertex is at most four at the 
end of any update operation. 

1 I n t r o d u c t i o n  

Graphs have been extensively used to represent various important  concepts or 
objects. Examples of such objects include parallel computer architectures, net- 
works, state graphs, entity-relationship diagrams, subroutine call graphs, au- 
tomata,  data-flow graphs, Petri nets, VLSI circuits, etc. In all of these cases, we 
require that  the graph be represented (or drawn) in the plane so that  we can 
understand and study its structure and properties. It is for that  reason that ,  
typically, drawing of a graph is accompanied by optimizing some cost function 
such as area, number of bends, number of edge crossings, uniformity in the place- 
ment of vertices, minimum angle, etc. For a survey of graph drawing algorithms 
and other related results see the annotated bibliography of Di Battista,  Eades, 
Tamassia and Tollis [4]. An orthogonal drawing is a drawing in which vertices 
are represented by points of integer coordinates and edges are represented by 
polygonal chains consisting of horizontal and vertical line segments. In this paper 
we focus our attention on interactive orthogonal graph drawing. 

In [17] and [19] it is shown that  every biconnected planar graph of maximum 
degree four can be drawn in the grid with 2n + 4 bends. If the graph is not 
biconnected then the total number of bends rises to 2.4n + 2. In all cases, no 
more than four bends per edge are required. The algorithms of [19] take linear 
time and produce drawings, such that  at most one edge may have four bends. 
Kant [9] shows that  if the graph is triconnected of maximum degree four, then 
i t  can be drawn on an n x n grid with at most three bends per edge. The total 
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number of bends is no more than [~nJ + 3. For planar graphs of maximum 
degree three it is shown in the same paper that a gridsize of (~ - 1) x ~ is 
sufficient and no more than ~ bends are required totally. In this case, no edge 
bends more than twice. Even and Granot [6] present an algorithm for obtaining 
an orthogonal drawing of a 4-planar graph with at most three bends per edge. 
If the embedding of a planar graph is fixed, then an orthogonal drawing with 
the minimum number of bends can be computed in O(n 2 log n) time [18]. If the 
planar embedding is not given, the problem is polynomially solvable for 3-planar 
graphs [5], and NP-hard for 4-planar graphs [8]. There is a lower bound of 2n - 2 
bends for biconnected planar graphs [20]. 

Upper and lower bounds have been proved in the case when the orthogonal 
drawing of the graph is not necessarily planar. Leighton [10] presented an infinite 
family of planar graphs which require area g2(n log n). Independently, Leiserson 
[11] and Valiant [21] showed that every planar graph of degree three or four has 
an orthogonal drawing with area O(n log 2 n). Valiant [21] showed that the or- 
thogonal drawing of a general (nonplanar) graph of degree three or four requires 
area no more than 9n 2, and described families of graphs that require area ~(n~). 
Sch~iffter [16] presented an algorithm which constructs orthogonal drawings of 
graphs with at most two bends per edge. The area required is 2n x 2n. A better 
algorithm is presented in [1] and [2], which draws the graph within an n x n 
grid with no more than two bends per edge. This algorithm introduces at most 
2n + 2 bends. 

Recently, we presented an algorithm that produces an orthogonal drawing of 
a graph of maximum degree four that requires area no more than 0.76n 2 [14]. 
This algorithm introduces at most 2n + 2 bends, while the number of bends that 
appear on each edge is no more than two. If the maximum degree is three, then 
there is another algorithm which produces an orthogonal drawing which needs 
maximum area (~ + 1) x ~ and -~ + 3 bends [14, 15]. In this drawing, no more 
than one bend appears on each edge except for one edge, which may have at 
most two bends. 

In all of the above, the drawing algorithm is given a graph as an input and 
it produces a drawing of this graph. If an insertion (or deletion) is performed on 
the graph, then we have a "new" graph. Running the drawing algorithm again 
will result in a new drawing, which might be vastly different from the previous 
one. This is a waste of time and resources from two points of view: (a) the time 
to run the algorithm on the new graph, and (b) the user had probably spent 
a significant amount of time in order to understand and analyze the previous 
drawing. We investigate techniques that run efficiently and introduce minimal 
changes to the drawing. 

The first systematic approach to dynamic graph drawing appeared in [3]. 
There the target was to perform queries and updates on an implicit represen- 
tation of the drawing. The algorithms presented were for straight line, polyline 
and visibility representations of trees, series-parallel graphs, and planar graphs. 
Most updates of the data structures require O(log n) time. The algorithms main- 
tain the planarity of the drawing. The insertion of a single edge however, might 
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cause a planar graph to drastically change embedding, or even to become non 
planar. An incremental approach to orthogonal graph drawing is presented in 
[13], where the focus is on routing edges efficiently without disturbing existing 
nodes or edges. 

In this paper we investigate issues in interactive graph drawing. We introduce 
four scenaria for interactive graph drawing, and we analyze two of them. These 
scenaria are based on the assumption that  the underlying drawing is orthogonal 
and the maximum degree of any vertex is four at the end of an update operation. 

We show that  in one scenario (Relative-Coordinates), the general shape of 
the current drawing remains unchanged after an update is performed. The co- 
ordinates of some vertices of the current drawing may increase or decrease by 
at most 3 units along the x and y axes. In another scenario (No-Change), we 
discuss an interactive algorithm for building an orthogonal drawing of a graph 
from scratch, so that any update inserts a new vertex and routes new edges in 
the drawing without disturbing the current drawing. Our algorithm guarantees 
that  the area of the drawing at any t ime t is no more than (n(t)+ n(t)4) 2, where 
n(t) is the total number of vertices at t ime t, and n(t)4 is the total number of 
vertices up to time t, that  had degree four when they were inserted. Apart from 
the area, our interactive algorithm has a good performance in terms of the total 
number of bends which are no more than 2.66n(t)+ 2, while introducing at most 
3 bends per edge. 

In Sect. 2 we give an example of some features that  an interactive drawing 
system should have. In Sects. 3 and 4 we present preliminary results on two 
interactive drawing scenaria. Section 5 presents conclusions and open problems. 

2 I n t e r a c t i v e  S c e n a r i a  

First, the software which supports interactive graph drawing features should be 
able to create a drawing of the given graph under some layout standard (e.g., 
orthogonal, straight line, etc.). Secondly, the software should give the user the 
ability to interact with the drawing in the following ways (other interactive 
features are possible too): 

- move a vertex around the drawing, 
- move a block of vertices and edges around the drawing, 
- insert an edge between two specified vertices, 
- insert a vertex along with its incident edges, 
- delete edges, vertices or blocks. 

The drawing of the graph that we have at hand at some time moment  t 
is called current drawing, and the graph is called current graph. The drawing 
resulting after the user request is satisfied is called new drawing. There are 
various factors which affect the decisions that  an interactive drawing system 
takes at each moment a user request is posted and before the next drawing is 
displayed. Some of these factors are the following: 
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- The amount  of control the user has upon the position of a newly inserted 
vertex. 

- The amount  of control the user has on how a new edge will be routed in the 
current drawing connecting two vertices of the current graph. 

- How different the new drawing is, when compared with the current drawing. 

Keeping these factors in mind, in this section we propose four different sce- 
naria for interactive graph drawing. They are the following: 

1. The Full-Control scenario. The user has full control over the position of the 
new vertex in the current drawing. The control can range from specifying 
lower and upper bounds on the x and y coordinates that  the new vertex will 
have, up to providing the exact desired coordinates to the system. The edges 
can be routed by the user or by the system. 

2. The Draw-From-Scratch scenario which is based on a very simple idea: every 
time a user request is posted, take the new graph and draw it using one of 
the popular drawing techniques. Apart from the fact that  this scenario gives 
very slow drawing systems, the new drawing might be completely different 
compared to the current one. 

3. The [lelative-Coordina~es scenario. The general shape of the current drawing 
remains the same. The coordinates of some vertices and/or  edges may change 
by a small constant because of the insertion of the new vertex (somewhere in 
the middle of the current drawing) and the insertion of a constant number 
of rows and columns. 

4. The No-Change scenario. In this approach, the coordinates of the already 
embedded vertices, bends and edges do not change at all. In order to achieve 
such a property, we need to maintain some invariants after each insertion. 

There is a close connection between the Full-Control scenario and global rout- 
ing in VLSI layout [12]. The reason is that  this approach deals with (re)location 
of vertices and (re)routing of edges using the free space in the current drawing. 
Also, the technique presented in [13] computes routes for new edges inserted in 
the graph without disturbing any of the existing vertices and edges. The Draw- 
From-Scratch scenario is not interesting since every time an update is requested 
by the user, the drawing system ignores all the work that  it did up to that  point. 
The major disadvantage here is that  the user has to "relearn" the drawing. In 
the rest of the paper, we discuss the other two scenaria and present preliminary 
results. 

3 T h e  R e l a t i v e - C o o r d i n a t e s  S c e n a r i o  

In this scenario, every time a new vertex is about to be inserted into the current 
drawing, the system makes a decision about the coordinates of the vertex and 
the routing of its incident edges. New rows and columns are inserted anywhere 
in the current drawing in order for this routing to be feasible. The coordinates of 
the new vertex (say v) as well as the locations of the new rows and/or  columns 
will depend on the following: 
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- v's degree (at the t ime of insertion). 

- How many of v's adjacent vertices Mlow the insertion of a new incident edge 
towards the same direction (i.e., up, down, right, or left of the vertex). 

- How many  of v's adjacent vertices allow a new incident edge towards opposite 
directions. 

- Whether  or not the required routing of edges can be done utilizing segments 
of existing rows or columns that  are free (not covered by an edge). 

- Our optimization criteria. 

Of course, there are many  different cases because there are many  possible 
combinations. It  is relatively easy to come up with various cases for each inser- 
tion. Instead of enumerating all of them in this section, we will give examples 
of some of the best and worst cases one might encounter. In the example shown 
in Fig. l a  vertices us and ul have a free direction (edge) to the right and up 
respectively. In this case no new rows/columns are needed for the insertion of 
vertex v and no new bends are introduced. On the other hand however, in the 
example shown in Fig. lb  all four vertices ul, us, u3 and u4 have pairwise op- 
posite free directions. The insertion of new vertex v requires the insertion of 3 
new rows and 3 new columns in the current drawing. Additionally, eight bends 
are introduced. As discussed above, single edge insertions can be handled us- 
ing techniques from global routing [12] or the technique of [13]. The easiest way 
to handle deletions is to delete vertices/edges from the data  structures without 
changing the coordinates of the rest of the drawing. Occasionaly, or on demand,  
the system can perform a linear-time compaction similar to the one described 
in [19], and refresh the screen. 

i v s I U2 

(a) (b) 

u4 

T u3 

0- -  

F i g .  1.  Insert ion of  v: (a) no new row or co lumn is required, (b)  three n e w  rows and 
three new columns are required. 
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The scenario that  is described in this section maintains the general shape of 
the current drawing after an update (vertex/edge insertion/deletion) takes place. 
The coordinates of the vertices of the current drawing increase or decrease by 
at most 3 units along the z and y axes. This scenario works well when we build 
a graph from scratch, or we are presented with a drawing (which was produced 
somehow, perhaps by a different system) and we want our interactive system to 
update it. In order to refresh the drawing after each update, the coordinates of 
every vertex/edge affected must be  recalculated. 

4 T h e  N o - C h a n g e  S c e n a r i o  

In this scenario, the drawing system never changes the positions of vertices and 
edges of the current drawing. It just increments the drawing by adding the new 
elements. This is useful in many cases where the user has already spent a lot of 
t ime studying a particular drawing and he/she does not want to have to deal 
with something completely different after each update. 

There is no work known which gives satisfactory answers to the above de- 
scribed scenario. In this section we present a simple yet effective scheme for 
allowing the insertion of vertices in an orthogonal drawing so that  the maximum 
degree of any vertex in the drawing at any time is less than or equal to four. 
In the description of our interactive drawing scheme, we assume that  we build a 
graph from scratch. If a whole subgraph needs to be drawn initially, we can draw 
it by simulating the above scenario, inserting one vertex at a time. We assume 
that  the graph is always connected. 

An embedded vertex v has a free direction to the right (bot tom) when the 
grid edge that  is adjacent to the right (bottom) of v is not covered by any graph 
edge. Let v be the next vertex to be inserted in the current graph. The number 
of vertices in the current graph that v is connected to, is called the local degree 
of v, and is denoted by local_degree(v). 

Since the graph is always connected, we only consider the case where an 
inserted vertex has local degree one, two, three or four, except for the first 
vertex inserted in an empty graph. In order to prove our results, as vertices are 
inserted in the drawing, we maintain the following invariants: 

- Every vertex of the current drawing of degree one or two has at least one 
free direction to the bot tom and at least one free direction to the right of 
the grid point where the vertex is placed. 

- Every vertex of the current drawing of degree three has a free direction either 
to the bot tom or to the right of the grid point where the vertex is placed. 

Figures 2a and 2b show the first two vertices inserted in an empty graph. 
Notice that  after vertices vl and v2 are inserted, they both satisfy the invariants 
set above. Different embeddings of the first two vertices are possible but the edge 
that  connects them always has to have one bend in the way shown in Fig. 2b. 
If a straight no-bend line is used to connect vl and v2, at least one of these two 
vertices will not satisfy the first invariant. 
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l 
V2 

(a) (b) 

Fig. 2. Inserting the first two vertices in an empty graph. 

Let us assume that vl is the next vertex to be inserted in the current drawing. 
We distinguish the following cases: 

_ 1  

" .... I - - - ;  
' , v  i 

i 

:V. 
; 1 

(a) (b) 

Fig.3.  The insertion of local degree one vertex v, requires one one column and one 
r O W .  

1. vi has local degree one. There are two cases which are shown in Figs. 3a and 
3b. At most one new column and one new row are required, and at most 
one bend is introduced. Notice that  this bend is introduced along an edge 
which is incident to vi and whose other end is open. In Fig. 3a the vertex 
will have one free direction to the bot tom and two to the right. The second 
free direction to the right (which is responsible for introducing an extra row 
and bend to the drawing) will be inserted in the drawing later and only if vi 

turns out to be a full blown degree four vertex. We take a similar approach 
for the second downward free direction of vi of Fig. 3b. 

2. vi has local degree two. There are four cases. We have shown two cases in 
Figs. 4a and 4b (the other two are symmetric and are treated in a similar 
fashion). At most one new row and one new column is required, and at most 
two bends are introduced along edges which are incident to vi and connect 
vi with the current drawing. 
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V. 
(a) (b) 1 

Fig. 4. (a) The insertion of local degree two vertex vi requires one column; (b) the 
insertion of vi now requires one column and one row. 

3. vi .has local degree three. There are nine cases. All cases, however, can be 
treated by considering just  two cases, as shown in Fig. 5: (a) all the vertices 
have a free edge in the same direction (right or down), and (b) two vertices 
have a free edge in the same direction (right or down) and the other vertex 
has a free edge in the opposite direction (down or right). The rest of the cases 
are symmetr ic  and are treated in a similar fashion. At most  one new row and 
one new column are required, and at most  three bends are introduced along 
edges which are incident to vi and connect vl with the current drawing. 

4. vi has locM degree four. There are sixteen cases. All cases, however, can be 
treated by considering just  three cases, as shown in Fig. 6: (a) all the vertices 
have a free edge in the same direction (right or down), (b) three vertices have 
a free edge in the same direction (right or down) and one vertex has a free 
edge in the other direction (down or right), and (c) two vertices have a free 
edge in the same direction (right or down) and the other two vertices have 
a free edge in the other direction (down or right). The symmetr ic  cases are 
treated in a similar fashion. At most  two new rows and two new columns 
are required, and at most  six bends are introduced along edges which are 
incident to vi and connect vl with the current drawing. 

As we described above, the easiest way to handle deletions is to delete ver- 
tices/edges from the data  structures without changing the coordinates of the rest 
of the drawing. Occasionaly, or on demand, the system can perform a linear-time 
compaction similar to the one described in [19], and refresh the screen. 

L e m m a  1. The total number of bends introduced by the algorithm for the "No- 
Change scenario" up to time t is at most 2.66n(t) + 2, where n(l) is the number 
of vertices at time t. 

T h e o r e m  2. There exists a simple interactive orthogonal graph drawing scheme 
for the "No-Change scenario" with the following properties: 

1. evc~j insertion operation lakes constant time, 
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I 

(a) (b) 

"V. 
1 

Fig. 5. (a) The insertion of local degree three vertex v, requires one column; (b) the 
insertion of v~ now requires one row and one column. 

e 
u 4 I 

;Tvi 
U 1 ~ i 

I 
. . . . . . . .  I 

U3~- 
u4= : 

I 

: i _ _,,, 

Tvi 
(a) (b) (c) 

Fig.6.  (a) The insertion of local degree four vertex v, requires two columns; (b) the 
insertion of v, requires two columns and one row; (c) the insertion of vi requires two 
columns and two rows. 

2. every edge has at most three bends, 
3. the total number of bends at any time t is at most 2.66n(t) + 2, where n(t) 

is the number of vertices of the drawing at time t, and 
~. the area of the drawing at any time t is no more than (n(t) + n(t)4) 2, where 

n(t)4 is the number of vertices of local degree .~ which have been inserted up 
to time t. 

The interactive scheme we just  described is simple and efficient. The area 
and bend bounds are higher than the best known [1, 2, 14, 15], but we have to 
consider that this is a scheme that  gives the user a lot of flexibility in inserting 
any node at any time. Moreover, any insertion takes place without disturbing 
the current drawing, since the insertion is built around it. Besides, n(t)4 is the 
number of vertices of local degree four which have been inserted up to time t, 
and not the total number of vertices of degree four in the graph. The area will 
be much smaller if the user chooses an insertion strategy which keeps n(t)4 low. 
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i~i . . . . . . . . .  I . . . . . . .  t T  . . . . . . . . . . . . .  t ,~. 

T 

Co) 

Fig. 7. (a) A regular graph of degree 4 with 13 vertices, (b) drawing the graph with 
the algorithm of the No-Change scenario 



429 

Notice that  it is possible to reuse rows and columns on which other vertices 
have been placed before. Although we cannot guarantee that  this will always 
happen, the interactive drawing program should be able to see if a reuse is 
possible during an insertion, and take advantage of it. 

Depending on the situation, we can make slight changes to the invariants 
to improve the quality of the drawing. In Fig. 7 we show an example of our 
technique when applied on a graph that  we know in advance. This is a regular 
degree 4 graph, has 13 vertices and is shown in Fig. 7a, together with an st- 
numbering for it. We simulate our algorithm for the No-Change scenario and we 
insert the vertices following the st-numbering, starting with an empty drawing. 
The final drawing has width 10 and height 11 and is demonstrated in Fig. 7b. 
Notice that the insertion of vertex 3 allowed vertex 2 to have two free directions 
to the bottom. In this way, we had a more efficient placement for vertex 4. 
Finally, the dotted boxes denote the current drawing at all intermediate steps, 
and we can see that  it always remains unaltered. 

5 Conclusions and Open Problems 

We presented some preliminary results on interactive orthogonal graph draw- 
ing. Our algorithm for the No-Change scenario guarantees that  the area of the 
drawing at any time t is no more than (n(t) + n(t)4) 2, where n(t) is the total 
number of vertices at t ime t, and n(t)4 is the total number of vertices up to time 
t, that  had degree four when they were inserted. In the same time, our algorithm 
guarantees no more than 3 bends per edge, while keeping the total number of 
bends at low levels (at most 2.66n(t) + 2). 

It would be interesting to analyze the Relative-Coordinates scenario and com- 
pare its performance with that  of the No-Change scenario. In the future we will 
study algorithms that  allow the degree to increase arbitrarily. Also, techniques 
for interactive graph drawing in other standards (straight line, polyline, etc.) are 
needed. Since it is counterproductive for the user to spend a significant amount  
of t ime to "relearn" the new drawing, the main target is to produce a drawing 
that  is as close to the drawing before the update as possible. 
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