
Automatic Drawing of Compound Digraphs

for a Real-Time Power System Simulator

Gilles Paris
IREQ (Insfitut de recherche d'Hydro-Qu6bec)

1800, mont~ Sm4utie. Varennes (Qu6bec) Canada J3X 1S1

Abstract. Two implemented versions of a compound digraph algorithm using an
object-oriented approach are shown for use in the field of automatic drawing of
electrical circuit diagrams. One is a test version with minimal user interface, the
other a full-fledged editor part of a graphical user interface project currently
under development. Orthogonal drawing of edges and interactive implosion and
explosion of compound vertices are key features of the application.

1 Introduction
This demonstration shows two implementations of the algorithm published in [1] for
the automatic drawing of compound digraphs (directed graphs that have both inclusive
and adjacent relations among vertices). This algorithm is to be included in IGSIM [2],
a graphical user interface for IREQ's real-time power system simulator. The work pre-
sented here is still preliminary and will evolve along with IGSIM.

2 Application Context and Justification
2.1 The Hybrid Real-Time Power System Simulator
The existing simulator is constructed with both digital and analog components, and so
has hardware control panels, but the next version, still a prototype, will be fully digital,
and will rely mostly on software control panels and graphical user interface.

Although well equipped with control, database and plotting software, the simula-
tor is lacking a schematic-based user intexface, so that general-purpose text-processing
software has to be used to prodtw, e diagrams as documentation only.

2.2 Single-Line Electrical Diagrams
The main type of diagram used in power studies is the single-line schematic diagram
where vertices are either electrical symbols or stretchable bars, while edges are usually
represented orthogonaliy. More general electronic circuit schematics may also be used
at a lower level, but they are not considered as part of the automatic drawing, and are
represented as a fixed-content compound vertex. This facility is supported but not yet
sufficiently developed to be discussed further.

2.3 Other Types of Diagrams
Block diagrams are used frequently in power system analysis, so representations of a
type similar to [1] are also possible with this automatic drawing facility. The imple-
mentation currently is in one of two modes: block diagram or single-line diagram.

432

2.4 Use of Circuit Analysis Programs
An important part of power system design is done with highly specialized software
tools such as the ElectroMagnetic Transients Program (EMTP), MatLab, and Stability
Study Program, some of which have low-level interface, so there is a need for an auto-
matically generated schematic derived from the many existing input files.

2.5 Why Directed Graphs?
Electrical circuits are undirected by nature, but there is a tendency, because 0~ the
topographical characteristics of o~tr network, to order components from generating to
consuming centers. This feature may be used to specify the layout in a mostly directed
way. Remaining cycles in the graph are automatically resolved by the algorithm itself.

2.6 High Performance Requirements
Any interactive change to a compound digraph forces a total re, drawing, so care was
taken to implement the algorithm efficiently, using inline functions, pointers and
integer arithmetic as much as possible, as well as minimizing structure traversals and
recomputations. Iteration limits may also be set as compromise between speed and
readability.

3 Reusable Object-Oriented Implementation Using C++
3.1 Independence of Graphical User Interface Development
One goal of this approach was to separate this work from IGSIM development.

3.2 Independence of Drawing Primitives
An alternative goal was to isolate in a separate C++ class the drawing primitives, so
that specific classes may be derived for integration in any program written in C++.
This is shown by the two different versions of the algorithm in this demonstration.

3.3 Independence of Input Formats
A third goal was to remain independent of any specific input format for graph descrip-
tion. This goal was met by designing a simple tree language using overloaded C++
operators. This feature, along with C++ stream operators, means that a graph (or com-
pound vertex) specification may reside in memory, be directly coded as an expression
in the application, or be input from a file.

4 Ex tens ions to the Or ig ina l A l g o r i t h m

The direction of edges may be vertical or horizontal. In the following discussion, verti-
cal direction is assumed. The metrical layout portion of [1] has been modified as fol-
lows to support the single-line style.

4.1 Separation of Multiple Input and Output Connections to Vertices
In single-line mode, a vertex having multiple input and/or output edges connected to it
is stretched horizontally and edges are ordered according to the x position of connected
vertices.

433

4_2 Orthogonai Edge Drawing
Oblique edges generated by [1] are drawn with three orthogonal segments. A separate
horizontal corridor is allocated for each vertex at the same compound level and edges
connected to a vertex are laid out in it. This also stretches the drawing vertically.

5 The First Version: An RPC-Based Test Implementation
This version draws directly on an event-driven canvas and receives interactive com-
mands from a separate process using Remote Procedure Calls (RPC). Vertices are
drawn as simple labeled rectangles. Positions are in pixels.

5.1 Goal
The goal was to have an independent test-bench for the algorithm along with a method
of exercising interactive operations without having to write a proper user interface.
Fast unstructured graphics isolate the performance of the algorithm from the drawing
itself and thus ease subjective performance evaluation with interactive operations.

5_2 Interactive Commands
Commands consist of a single letter followed by arguments which may be simple
integers, strings, or arbitrary length constructor expressions of the input language. Pos-
sibilities are creation~destruction of lists of edges and of sub-trees or single vertices,
implosion~explosion and visibility of compound vertices, structural changes of the
inclusion relation, direction and mode of drawing. A number of built-in test graphs
may also be constructed by invoking the corresponding fimction name.

Commands may be used to change the size and labeling of rectangles, vary itera-
tion limits and distances separating rectangles in and between cc~npound levels.

6 The Second Version: Integration with an Unidraw-Based Editor
6.1 A Snapshot of Work in Progress for IGSIM
This editor is based on Unidraw [3]. Because IGSIM is undergoing changes, a snaps-
hot version was taken for this implementation, and does not include control panels. It
is a generic schematic editor.

1 ,~ , I

" @ - -

i~-.'.~: P 1 "- 1

i!i . ! =)

~ Lk__J

Fig. 1. Two views of H rdro-Qu6bec's 735 kV network automatically drawn in the editor

434

6.2 Integration of Automatic Drawing Classes
All classes implementing the automatic drawing algorithm were first included without
changing the editor. Code was then added to by the author to reimplement the drawing
class by repositiming or modifying elements created with the editor.

A special menu was added to control the automatic drawing function. These exer-
cise the same functions as the RPC-based version, except that selection is done
directly on the drawing instead of referencing elements by their number.

Edges which are conceptually made of multiple line segments have to be reimple-
mented as a single multiline in the editor. Unidraw's concept of a generic multiline
modified by a transformation matrix poses some distortion problems with orthogonal
edge redrawing when moving connected objects. A temporary fix was included.

6.3 Structured Versus Unstructured Graphics
The use of hierarchical structured graphics is essential for picking objects, and UUI-
draw's implementation pays great attention to optimization of redrawing, but it is quite
apparent that a loss of performance appears when repositiouing large graphs.

7 Further Work
7.1 Filter Programs
A filter program transforming EMTP files in the input language is the next step.

7.2 Better Orthogonal Routing of Edges
Orthogonal drawing of edges adds too much vertical stretch to the drawing. Better use
of each corridor must be made without impairing performance. The barycenter heuris-
tic also creates ambiguities in some vertical paths for complex graphs by the ali~ment
of unrelated vertices. These ambiguities do not appear with oblique edges.

7.3 Bidirectional Edge Drawing
A more difficult task is automatic drawing of edges in both directions. A simple way to
approach this is by having the direction local to a compound vertex, but direction
changing poses non-trivial problems which must first be addressed theoretically.

8 Conclusion
Although incomplete, this work is a first step in introducing automatic drawing teclmi-
ques in the field of electrical network diagrams at IREQ.

References

1. Kozo Sugiyama and Kazuo Misue: Visualization of StructuralInformation: Automatic Draw.
ing of Compound Digraphs. IEEE Transactions on Systems, Man and Cybernetics, Vo121,
No. 4, July/August 1991.

2. Marie Rochefort, Nathalie De Guise and Luc Gingras, IREQ: Development of a graphical
user interface for a real-time power system simulator. Presented at ICDS '95, first Interna-
tional Conference on Digital power system Simulators.

3. John M. Vlissides, Mark A. Linton: Unidraw: A FrameWork for Building Domain-Specific
Graphical Editors, Stanford University, 1989.

