
A Fast Heurist ic for Hierarchical M a n h a t t a n
Layout

G. Sander (sander@cs. un i -sb , de)

Universits des Sa~rlandes, FB 14 Informatik, 66041 Saarbriicken

Abstract. A fast heuristic for the layout of directed graphs according to
Manhattan convention is presented. Nodes are placed into layers. Edges
consist of sequences of vertical and horizontal segments. Sharing of seg-
ments is allowed in certain situations. The algorithm is an extension of
the hierarchical layout method [11, 15] that includes crossing reduction
and emphasis on a uniform edge orientation. Compared to the original
algorithm, the time overhead is O(n-4-ek) where n, e and k are the num-
ber of nodes, of edges, and the maximal number of line rows between
two layers of nodes. It produces drawings where each edge has at most
four bends.

1 I n t r o d u c t i o n

We address the problem of constructing drawings of graphs from the viewpoint
of compiler construction where these drawings are used for demonstration, de-
bugging and documentation of algorithms and data structures. Typically, these
data structures are large and dense, while the construction of the drawing should
be fast enough to support online debugging and algorithm animation.

In Manhattan drawings all edges consist of sequences of line segments which
have a strict horizontal or vertical orientation. Manhattan layout (also called
orthogonal layout) is widely used in VLSI design [1, 16]. However, the focus of
VLSI design is different to our applications: First, in VLSI design, normally the
nodes (terminals) have a fixed place, while only the edges (wires) need to be
routed. Secondly, the cost, correctness and usability of the VLSI circuit (e.g.,
the minimizing of wire length [3]) has much more importance than the speed
of the layout process. Typical VLSI routing times for the wires range up to lh,
while in interactive data structure visualization, the user should never wait more
than a minute for the positioning of both nodes and edges.

There are good solutions for subclasses of graphs, mostly for grid embed-
dings. Vijayan and Wigderson [14] discuss the straight line embedding of graphs
with n nodes in a square grid without edge crossings in time complexity O(n2).
They also give a classification, which planar graphs can be handled. Tamassia's
algorithm [12] allows edge bendings, thus it is suitable for all planar graphs with
nodes of maximal degree 4. It runs in O(n21og n) and produces a layout with
minimal number of bends. A linear algorithm for 4-ary planar graphs is pre-
sented by Tamassia and Tollis [13], where the number of bends is not minimal
but restricted by the upper bound 2.4n + 2. Biedl and Kant [4] describe a linear

448

time method to draw an undirected graph without loops or multiple edges, but
with maximal node degree 4, in an n x n area with at most 2n -t- 2 bends. This
method is based on st-numbering. Nodes are drawn as points, i.e. have size zero.
Even and Granot [5] present a similar approach for the case that nodes are struc-
tures of nonzero size. Orthogonal layouts for general graphs can be obtained by
the layout method of Batini et M. [2]. Here, the graph is embedded in an or-
thogonal grid according to several aesthetics like minimization of edge crossings,
of edge bends, of edge lengths, of the area, and placement of specified nodes
on the external boundary. Since some of the aesthetics are contradicting, and
some of the subproblems in this algorithm are NP-hard (e.g., the planarization
problem to minimize edge crossings [8]), the layout method is a heuristic. This
approach is perfectly suitable for undirected graphs. It is Mso applied to directed
graphs, however it does not emphasize a uniform edge orientation. Protsko et
al. [9] present a similar approach. They further sketch the idea how the uniform
edge orientation can be specified by additional constraints.

Our preconditions are very special: We have large directed graphs (not neces-
sarily planar or 4-ary). Nodes have nonzero size and different shapes. The layout
should emphasize a uniform edge orientation and allow the grouping of nodes
into the levels of a hierarchy. This implies a strong restriction of the y-position
of the nodes to discrete coordinates, but there are only weak constraints to the
x-position of the nodes. The layout algorithm should be very fast. Reducing
the number of edge crossings, the number of bends in edges or the area of the
drawing is useful, but has not the first priority.

Why do we prefer orthogonal edge segments: Manhattan layout gives a very
uniform aesthetics which is in particular of interest for annotated control flow
graphs (Fig. 1). Most of hand drawn control flow diagrams in the literature
use Manhattan convention, thus programmers are familiar with this aesthetics.
Edges tend to be bundled like busses such that it is easy to follow chains of long
edges. The visual resolution is very high even if the graphs are very dense.

~ l , n -

Fig. 1. Annotated CFG by VCG Manhattan Layout

4 4 9

Our algorithm is implemented in the VCG tool [10]. It is an extension of our
variant of the hierarchical layout methods of Warfield [15] and Sugiyama et al.
[11] which are known to be suitable for large directed graphs. It runs fast: we
show that the overhead of Manhattan layout compared to normal hierarchical
layout is O(n + ek) where n is the number of nodes, e is the number of edges
in the proper hierarchy, and k is the maximal number of line rows between two
layers of nodes. Note that k is very small for most layouts. It produces drawings
where each edge has maximally four bends.

In the next section, we explain the drawing rules for our variant of the Man-
hattan layout. Section 3 shortly sketches well known results about edge crossing
reduction. Section 4 presents the segment ordering graph needed for the calcu-
lation of node positions. Section 5 deals with the adjustment of positions to a
grid. Then, we describe the algorithm for the routing of edges, and finally, we
show some statistics and experiences.

2 M a n h a t t a n D r a w i n g C o n v e n t i o n s

We define the drawing conventions of our applications:

1) Nodes are placed in a hierarchy of layers and never overlap.
2) Edges are drawn as a sequence of horizontal or vertical line segments.
3) An edge segment never crosses a node.
4) A horizontal segment of one edge and a vertical segment of another edge

may share a point (i.e., we have an edge crossing, Fig. 3, Sit. b).
5a) Two horizontal segments of different edges never share a point.

6) Vertical segments of different edges may share subsegments, if and only if
the segments are adjacent to a node (i.e., they must be the first or the last
segment of the edge, Fig. 2, Sit. b).

7) Horizontal segments should have a minimal vertical distance dh. Vertical
segments should have a minimal horizontal distance d..

I
Sit. a Sit. b) Sit. c) of a): Crossing of a): Knock-knee

Fig. 2, Diff. Segment Sharing Cony. Fig. 3. Crossing and Knock-knee

In a sequence of edge segments belonging to the same edge two adjacent
segments always share an endpoint. Convention 4 allows edge crossings, thus
the convention is applicable for nonplanar graphs, but the aesthetics requires

450

that the number of edge crossings should be minimized. Convention 5a and 6
contribute to the visual readability: The route of two different edges is clearly
distinguishable if they never share common equally-oriented segments (Fig. 2,
Sit. a). However, we relax this constraint and allow the sharing on the first
and the last segment of edges. The reason: If the last segments of edges are
shared, they also share the arrowhead, which increases the resolution (Fig. 2, Sit.
b). Of course, an edge segment with arrowhead never shares an edge segment
without arrowhead. Otherwise, it would not be recognizable which segments
have arrowheads. In particular, convention 5a forbids knock-knees which would
not be distinguishable from edge crossings (Fig. 3).

 WTf
a) Drawing b) legal semantics e) legal semandcs

Fig. 4. Confusing Sit. with Cony. 5b

a) Sit. of Fig. 3c b) Sit. of Fig.4b

W
e) Sit. of Fig. 4c

Fig. 5. Drawings with Conv. 5a

In tree layouts, convention 5a is often relaxed (see later Fig. 10):

5b) Two horizontal segments of different edges may share a subsegment, if they
also share the vertical segment adjacent to the subsegment (Fig. 2, Sit. c).

However in general graphs, drawings according to convention 5b are some-
times misleading. For instance, the drawing Fig. 4a can represent the semantics
sketched by Fig. 4b and Fig. 4c. Note that the corresponding drawings according
to convention 5a are more readable (Fig. 5).

3 H i e r a r c h y M a p p i n g

Def ini t ion 1 A p rope r n-level h i e r a rchy is a directed graph G = (V, E)
which satisfies the following conditions:

- The set o f nodes V is parti t ioned into n disjoint sequences I71, . . . , Vn.
- The set o f edges E is parti t ioned into n - 1 disjoint subsets E l , . . . , E,~-I

with Ei C_ ~ x 1~+1.

Furthermore lev(v) = i iff v ~ Vi. We call Vi the layer i. We write pos(v) = k
i f v is the kth node of a layer, i.e. the kth node in a sequence ~ .

Methods to convert an arbitrary directed graph into a proper hierarchy by
introducing dummy nodes are discussed in [15, 11, 6], and [10]. We use the no-
tions predecessor pred(v) of a node v, successor succ(v), indeg(v) -- Ipred(v)l,
outdeg(v) -- Isucc(v)[with respect to the proper hierarchy. Note: a predecessor
of v in a proper hierarchy need not to be a predecessor of v in the original graph.
For instance, an edge of the original graph may occur reverted in the proper
hierarchy.

451

Def in i t i on 2 A l i nea r s e g m e n t 5' is a maximal sequence of nodes wl, . . . ,
w,~ with
(1) lev(wi) = lev(wi+l) - 1
(2) indeg (wl) < 1, outdeg(w, , ,) < 1, suee (wl) = {w2}, pred(wm) =
(3) pred(wi) = {wi-1} and succ(wi) = {wi+l} for i �9 {2 , . . . , m - 1}.

A linear segment is a sequence of nodes that should be drawn as a straight
vertical line (Fig. 6). Each node belongs to at most one linear segment. We can
easily partition the proper hierarchy into disjoint linear segments and remaining
nodes in time O([Y I + IEI).

Edge crossing reduction in the proper hierarchy is done as follows: We traverse
the hierarchy from layer 1 to layer n; for each layer, we calculate a weight W v
for each node and change the positions pos(v) by sorting the nodes of the layer
according to this weight. Then, we traverse the hierarchy from layer n to layer
1 and reorder according to a weight Ws. This is iterated several times [11].

P r o p o s i t i o n 1 Assume that
(1) (V(v', w') e pred(v) • pred(w) pos(v ') < pos(w')) =~ Wp(v) < Wp(w)
(e) (V(v',w') �9 succ(v) x succ(w) pos(v') < pos(w')) =~ Ws(v) < Ws(w)
Then after a crossing reduction $raversal, for two linear segments Sa 7 s Sb
]]vi,vi+l �9 Sa,Wj,Wj+l �9 Sb with lev(vi) + 1 -- lev(wj) + 1 -- lev(vi+l) --
lev(w/+l) and pos(vi) < pos(w/) A pos(vi+l) > pos(wj+l)

Proposition 1 implies that after crossing reduction, two linear segments will
never cross. Assume that the proposition does not hold, i.e. that such vi, vi+t,
wj, Wj+l would exist. Obviously, vi+l and wj+l would be reordered in a top down
traversal of the layers, or vi and wj would be reordered in a bottom up traversal,
respectively. Good selections of weights Wp and Ws that satisfy assumptions (1)
and (2) can be found in [11] and [6].

, 1

o i

Example, Segment Ordering G r a p h

Fig. 6. Linear Segments

452

4 P o s i t i o n i n g o f N o d e s

Now, we try to find positions of nodes such that (a) layers 1 to n are positioned
top down, (b) nodes with pos - 1 . . . m are positioned left to right, (c) all nodes
of a layer are on a horizontal line, (d) the layout is balanced, (e) all nodes of
a linear segment are on a vertical line. In particular, this implies that the edge
segments and dummy nodes of a linear segment that formerly represented an
edge are now drawn in a long vertical line without bends. First, we calculate the
x-coordinates of the nodes. To simplify the explanation, each node v that does
not belong to a linear segment forms a trivial linear segment with one element
{v}. This implies that the whole graph is now partitioned into disjoint linear
segments. The linear segments are ordered according to the relation 'is left of '
(K) by using the segment ordering graph SG (Fig. 6):

(1) Nodes(SG) := all hnear segments; Edges(SG) := 0
(2) for each layer ~ do
(3) for j := 2 to I~l do
(4) let v~-i q S~ and vj q Sb
(5) /* it holds lev(vi_l) = lev(vr and pos(vj_l) = pos(v~) - 1 */
(6) Edges(SG) := {(So, S~)}u Edges(SC)
(7) od
(8) od
(9) topological_sort(SG)

SG is acyclic because of proposition 1. Thus topological sorting is possible,
and each linear segment S has an ordering number spos(S) afterwards. The
calculation of SG needs time O([V]) if the layers are represented by ordered,
doubly linked lists. Topological sorting needs time O([SGI) , but because the
number of linear segments does not exceed the number of nodes, and each node
introduces only one edge in SG, the whole calculation of ordering numbers can
be done in time O(]Y D. Now, we can produce an initial position z(v) for each
node that satisfies (b) and (e):

(10) for all S in increasing order of spos do
(11)
(12)
(13)
(14)
(is)
(16) od

for all v E S do
xmi,(v) := leftmost possible x-coordinate

od
x . ~ := max { ~ n (v) Iv e s}
for all v e S do z(v) := Xr.i,~ od

The leftmost possible x-coordinate must be a position right to the segments
that are already placed. This initial position is not yet balanced. We balance the
graph by using a variant of the pendulum method [10]. However, different from
[10], the movable entities are not the nodes but the linear segments, thus linear
segments remain straight vertical lines. We sketch the pendulum method again:
The linear segments are the ball and the edges between the linear segments are
the strings of the pendulum. If the uppermost segments are fixed on a ceiling,

453

the balls on the strings swing to a balanced layout driven by their gravity. Balls
attached by several strings swing into the middle position of their predecessor
balls. Neighbored bails may influence each other. For instance, if the left ball is
pulled to the right and the right ball is pulled to the left, the balls form a region
which is positioned such that the sum of pulling forces of the region becomes
zero. We simulate this simplified physical model.

De f in i t i on 3 The p r e d e c e s s o r de f l ec t ion of an edge e : (s, t), of a node v,
of a linear segment S and of a region of linear segments {S1, . . . , Sk) is defined
as

Dp(e) = x(s) - x(t)

Dp(S) = E D,(v)
yES

E(w,~)eE Dp((w, v))
Dp(v) = indeg(v)

Dp({SI,...,S~})= ~i6{I k}Dp(S;)
k

The successor de f l ec t ion Ds can be defined similarly.
Two segments Sa and Sb are t o u c h i n g if there is a node v E Sa and a directly
neighbored node w G Sb in the same layer and the distance between both nodes
is the minimal allowed distance.

If Dp(S) > 0, the segment is pulled to the right, and if Dp(S) < 0, it
is pulled to the left. Because each linear segment S is always positioned as a
straight vertical line, Dp(S) = Dp(vl) holds where vl is the first (topmost) node
of S, because Dp(vi) = 0 for vi E S with vi # Vl. We start with a trivial partition
P R of segments into regions R1. �9 R,~ and subsequently replace regions that
influence each other by their union.

(17) PR := {R, [R, = {Si} for each Si}
(18) repeat
(19) if Sa ~ Sb are touching then let Sa ERa and Sb E Rb
(20) if Dp(R,) >__ Dp(Rb) then PR := PR + union(R~, Rb) -R~ - Rb fl
(21) a
(22) unti l the regions don't change anymore.

Finally, we try to correct the position of each segment S of a region R by
moving all nodes of S horizontally by the minimum of IDp(R)] and the space
between S and its neighboring segments. We move to the left if Dp(R) < 0,
otherwise to the right. In this way, the nodes never overlap. The whole pro-
cess is repeated iteratively with the predecessor deflection Dp and the successor
deflection D~ until the layout is balanced.

The time overhead of this algorithm with respect to the originM algorithm in
[10] is constant} The lines (19)-(21) are in fact identical to the original algorithm.

1 This holds for the worst case (this is, if we have n - 1 unions for all n nodes of
the graph, i.e. if the result is one large region containing all nodes/segments). For
the normal case, a comparison of the complexity is difficult: Working on segments
instead of nodes might require more unions of regions, i.e. more iterations of (18)-
(22). On the other hand, our experience is, that the pendulum method comes faster
to a balanced situation, if it works on segments insteaxt of nodes.

454

We store for each node, which segment it belongs to, and for each segment, which
region it belongs to. In order to check whether two segments are touching, we
check'whether two nodes are touching (we did this in the original algorithm~
too) and get the segment and the region from the nodes in constant time (this
is the overhead).

5 A d j u s t m e n t to the Horizonta l Grid

Before we calculate the relative positions of the edges, which will also give the
positions y(v), we adjust the positions z(v) to a grid with raster d,: We traverse
the segments in increasing order of spos (i.e. from the leftmost to the rightmost
segment) and move each segment to the nearest possible grid point. This might
reduce the balance by a small degree, but it ensures that vertical edge segments
will have a minimal distance d~.

Edges of the proper hierarchy connecting nodes of the same linear segment
can be drawn as straight vertical lines. Edges connecting nodes of different linear
segments have two potential bend points. Since an original edge of the initial
directed graph may consist of a linear segment of dummy nodes and two edges
that connect the linear segment with the remaining graph, the maximal number
of bends of the original edge is four. In this section, we calculate the end points
of the edges. In the next section, we derive the bend points from the end points.

The end points of the edges depend on the port points where the edge is
adjacent to the node. Ports are points at the border of the node. A node v needs
at most indeg(v) incoming ports and outdeg(v) outgoing ports. The calculation
of the incoming ports starts with the ordered sequence SP(v) of trivial ports
and subsequently unifies neighboring ports if all end points of the corresponding
edges have the same arrowhead style. The arrowhead style indicates the existence
of an arrowhead, it might further indicate different colors, sizes or drawing modes
of arrowheads. Edges of the same port share a vertical edge segment.

(23) SP(v):= (Pl(v) , Pi,,a,g(,)(v)) with Pj(v) = {(w, v) �9 E[pos(w) = j}
(24) for j from 2 to indeg(v) do /* SP(v) = (... ,Pj-l(v),Pj(v),...) */
(25) if for some e~ �9 Pj-l(v), eb �9 Pj(v) is ahead_stylei,(e~) = ahead_style~n(eb)
(26) then SP(v):= (.. . , Pj-l(v)U Pj(v),...)
(27)
(28) od

Note that all edges in P(v) always have the same arrowhead style. Thus in
line (25), we need only one element ea E Pj-l(v) and another element eb e Pj(v)
in order to check whether for all e e Pi-l(v), e' E Pi(v) holds ahead_stylei,(e)
= ahead_styleln(e'). This algorithm needs time O(indeg(v)). The calculation of
the outgoing ports is symmetrical. It is done for all nodes. Thus, we get all ports
of the whole graph in time O([V[+ [El). Note: Since the predecessor nodes w
are already sorted according to pos(w) after the crossing reduction, the creation
of the ordered sequence SP(v) is possible without sorting the Pj(v). Traverse
the predecessor nodes s in that order, create for each outgoing edge (s, t) a set

455

P = {(s,t)) and append P to the sequence of ports SP(t). In this way, the
sequence of ports will automatically be ordered.

The ports are now assigned to x-coordinates. The corresponding end points
of all edges of a port get the same x-coordinate. The x-coordinate of a port
must be on the grid with raster dr. If a node needs more ports than available on
its border, this can be corrected by reducing the raster dv or by increasing the
size of the node. However, both solutions require a recalculation of the previous
steps. For simplicity, our current solution combines ports in this case until the
number of ports fits the number of available raster points on the border of the
node. Unfortunately, this fallback solution decreases the readability, but these
cases are rare: they occur only if the degree of a node is very high, there are
nearly as much backward edges as forward edges, and the schedule of forward
and backward edges at the node happens to be very unfavorable.

Fig. 7. K8 by Original Sugiyama
Layout

Fig. 8. K8 by Nearly Manhattan
Layout

Is is important to note that until this step the layout process is not strictly
related to Manhattan layout. The algorithm enforces long edges to be drawn
straight vertical, which is a necessary precondition for the Manhattan conven-
tion. But even without the following final step, the algorithm would produce
a nice, balanced drawing, that produces more straight vertical lines than the
original algorithm of Sugiyama et al. [11] (compare Fig.7, made by GraphEd [7],
with Fig.8. Figure 7 contains much more zig-zags).

6 P o s i t i o n i n g o f E d g e s

We have the following situation: Each node v of the proper hierarchy has a
position x(v) and a level lev(v) but not yet a position y(v). Each edge e between
two layers has a start position x,(e) and an end position xe(e) derived from the
positions of the incoming and outgoing ports e belongs to. The start position
of e is in the upper layer and the end position in the lower layer. Next, the
free vertical space between layers Vi and ~+1 is divided into ki line rows each

456

containing horizontal line segments (Fig. 9). The rows have the vertical distance
dh. Thus, the distance between two layers must be (ki + 1) dh. It holds ki < IEil,
but in order to avoid wasting of verticM space, we calculate a minimal ki. From
the ki the y-coordinates of the nodes and edges can be derived directly.

Convention 5a

?

Convention 5b

Fig. 9. Line Rows Fig. 10. Tree by VCG Manhattan Layout

Each edge e with x8 (e) r x~(e) is drawn by two straight vertical segments and
a connecting horizontal segment that belongs to line row r(e). We calculate the
line rows r(e) of the edges between layers ~ and V/+I by a plain sweep algorithm:
We traverse each Ei of the proper hierarchy by a sweep line in increasing order of
the x-coordinate. When the sweep line touches an edge e the first time, the edge
is added to the set of unfinished edges U and gets its r(e). The horizontal line
segment of e is in conflict only with those edges which are in U at that time. In
order to fulfill the drawing convention 5a, r(e) must be a number that is currently
not used by the edges in U. When the sweep line touches an edge the last time,
the edge is removed from U. The value ki is the maximal r(e). The algorithm
requires a list C of pairs (e,x), sorted according to x. For each edge e E E i ,
there are two pairs (e, x,(e)) and (e, xe(e)). Similar as the ordered sequence of
port sets, the list C can be constructed in time o(Ivl + IEI) without the call of a
sorting procedure, since the nodes of the layers are already sorted after crossing
reduction and the edges are already sorted after the port calculation.

(29) U:=I~; ki:=O
(30) for each (e, x) E C in increasing order do
(31) ifxs(e) r xe(e) then
(32) if �9 = mi~{~,(e), ~ (e) } then
(33) r(e) := 1 + max{r(e')le' e U}
(34) if k, < r(e) then ki = r(e) fl
(35) U := ~r + e
(36) else/* x = rnax{xs(e), x~(e)} */
(37) V := U - e
(38)
(39)
(40) od

The algorithm can easily be adapted to drawing convention 5b by a modifica-
tion of line (33). Further, with some time overhead, line (33) can be changed to
search for smaller values for r(e) that currently are not in U. This avoids wasting

457

of vertical space. The loop (30)-(40) is executed 2IEi I times. We implement U
as doubly linked linear list, i.e. each edge e has a reference to its occurrence in
U. Thus, insertion and deletion can be done in constant time. The maximal r(e)
in V is found in time O(ki), i.e. the whole algorithm needs time O(IY [+]Eilki).

At last, the y-coordinates of nodes and edges are derived. For nodes v E V0
we set y(v) = 0. For nodes v E ~ we set y(v) = (ki + 1) * dh + maz{y(w) +
height(w)] w E V~-I}. Assume that for instance the shape of the nodes
are boxes. Then, for edges e = (s,t) we set ys(e) = y(s) + height(s) and
ye(e) = y(t). For edges e with ze(e) # ze(e) we set further the two bend points
(Zs (e), y, (e)+ r(e)dh) and (ze(e), Ye (e)+ r(e)dh). This completes the calculation
of the Manhattan layout.

7 E x p e r i e n c e s

Table 1 shows the time and space of some examples laid out by the normal
algorithm [15, 11, 10] and by our extended Manhat tan layout algorithm. It is
difficult to analyze the time complexity of the algorithms. It depends heavily on
the number of iterations made during crossing reduction and node positioning.
However, it is known that the normal algorithm is very fast even for large graphs.
Compared to it, we need additional time O(]Yl+]E I max{k/})in the worst case.
In some cases (graph 2), Manhat tan layout is even faster than normal layout,
because less iteration are needed for node positioning.

Example Nodes Edges Crossings tnorm Wnorm tmsnh Wmaah BendingSmanh
G r a p h 1 33 38 0 2.3 490 2,4 620 16
G r a p h 2 20 190 2251 14.3 960 12.7 1370 628
G r a p h 3 40 131 585 3.1 1780 3.3 1830 418
G r a p h 4 50 151 190 5.8 270 6.1 340 474
G r a p h 5 615 1310 15640 61.5 15420 65.0 26970 2261

Times (sum of user time and system time in secs) for parsing, layout and drawing (Sun
Sparc 10/30, 32 MB mem., XllR6). tnorm/Wnorm are time/width of normal layout
[10], and tm~nh/Wmanh are time/width of Manhattan layout. The number of crossings
is independent of the layout method, because in both cases the same crossing reduction
method is used. The number of bendings is measured for Manhattan layout.

Table 1. Statistics

In dense graphs (graph 2, 3, 4) the number of bend points tends to the
maximal number 4[E[. Manhattan layout needs more space (W of graph 1, 2, 5)
because long linear segments block close node positions. With very long linear
segments the plane tend to be separated into a grid with large meshes. Most
nodes are placed on the grid points while only few nodes are inside the meshes.
This might be not satisfying because of the waste of space. In this case, the
reduction of bend points of edges has minor importance than the usage of space.
As solution the size of the linear segments can be restricted. In this variant of
our algorithm edges may have more than four bends but the nodes are closer
together.

458

8 Acknowledgment

We like to thank R. Wilhelm, C. Fecht, and R. Heckmann for their comments
on the presentation of the algorithm.

R e f e r e n c e s

1. Baker, B.S.; Bhatt, S.N.; Leighton, F.T.: An Approximation Algorithm for Man-
hattan Routing, in Preparata, F.P., ed.: Advances in Computing Research, Vol. 2,
pp. 205-229, JAI Press, Greenwich, Connecticut, 1984.

2. Batini, C.; Nardelli, E.; Tamassia, R.: A Layout Algorithm for Data Flow Diagrams,
IEEE Trans. on Software Engineering, SE-12(4), pp. 538-546, 1986,

3. Bhatt, S.N.; Cosmadakis, S.S.: The Complexity of Minimizing Wire Lengths in
VLSI Layouts, Information Processing Letters, 25, pp. 263-267, 1987.

4. Biedl, T.; Kant, G.: A Better Heuristic for Orthogonal Graph Drawings, Technical
Report UU-CS-1995-04, Utrecht University, 1995, also in Proc. 2nd Ann. European
Symposium on Algorithms (ESA '94), LNCS 855, pp. 24-35, Springer-Verlag, 1994.

5. Even, S.; Granot, G.: Grid Layouts of Block Diagrams - Bounding the Number
of Bends in Each Connection, in Tamassia, R.; Tollis, I.G., eds.: Graph Drawing,
Proc. DIMACS Intern. Workshop GD'94, LNCS 894, pp. 64-75, Springer-Verlag,
1995.

6. Gansner, E.R.; Koutsofios, E.; North, S.C.; Vo, K.-P.: A Technique for Drawing
Directed Graphs, IEEE Trans. on Software Engineering, 19(3), pp. 214-230, 1993.

7. Himsolt, M.: GraphEd - A Graphical Platform for the Implementation of Graph
Algorithms, in Tamassia, R.; ToUis, I.G., eds.: Graph Drawing, Proc. DIMACS
Intern. Workshop GD'94, LNCS 894, pp. 182-193, Springer-Verlag, 1995.

8. Johnson, D.: The NP-completeness column: An ongoing guide, Journal on Algo-
rithms, 3(1), pp. 215-218, 1982

9. Protsko, L.B.; Sorenson, P.G.; Tremblay, J.P.; Schaefer, D.A.: Towards the Auto-
matic Generation of Software Diagrams, IEEE Trans. on Software Engeneering,
17(1), pp. 10-21, 1991,

10. Sander, G.: Graph Layout Through the VCG Tool, in Tamassia, R.; Toms,
I.G., eds.: Graph Drawing, Proc. DIMACS Intern. Workshop GD'94, LNCS
894, pp. 194-205, Springer-Verlag, 1995. The VCG tool is publicly available via
http:/ /www.cs.uni-sb.de:80/RW /users/sander/html/gsvcgl.html.

11. Sugiyama, K., Tagawa, S., Toda, M.: Methods for Visual Understanding of Hierar-
chical Systems, IEEE Trans. Sys., Man, and Cybernetics, SMC 11(2), pp. 109-125,
1981.

12. Tamassia, R.: On Embedding a Graph in the Grid with the Minimum Number of
Bends, SIAM Journal of Computing, 16(3), pp. 421-444, 1987.

13. Tamassia, R., Tollis, I.G.: Planar Grid Embedding in Linear Time, IEEE Trans.
on Circuits and Systems, 36(9), pp. 1230-1234, 1989.

14. Vijayan G.; Wigderson A.: Rectilinear Graphs and Their Embeddings, SIAM Jour-
nal of Computing, 14(2), pp. 355-372, 1985.

15. Warfield, N.J.: Crossing Theory and Hierarchy Mapping, IEEE Trans. Sys., Man,
and Cybernetics, SMC 7(7), pp. 505-523, 1977.

16. Wieners-Lummer, C.: Manhattan Channel Routing with Good Theoretical and
Practical Performance, ACM SIAM Symp. on Disc. Alg., pp. 465-474, 1990.

